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Abstract 

Quantum dots (QDs) are luminescent nanocrystals with rich surface chemistry and unique 
optical properties that make them useful as probes or carriers for traceable targeted delivery 
and therapy applications. QDs can be functionalized to target specific cells or tissues by 
conjugating them with targeting ligands. Recent advancement in making biocompatible QD 
formulations has made these nanocrystals suitable for in vivo applications. This review provides 
an overview of the preparation of QDs and their use as probes or carriers for traceable, 
targeted therapy of diseases in vitro and in vivo. More specifically, recent advances in the in-
tegration of QDs with drug formulations for therapy and their potential toxicity in vitro and in 
vivo are highlighted. The current findings and challenges for optimizing QD/drug formulations 
with respect to optimal size and stability, short-term and long-term toxicity, and in vivo ap-
plications are described. Lastly, we attempt to predict key trends in QD/drug formulation 
development over the next few years and highlight areas of therapy where their use may 
provide breakthrough results in the near future. 
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Introduction 

A new approach to development of biocompati-
ble nanoformulations that can target and treat human 
diseases involves the use of functionalized nanoparti-
cles engineered to deliver drugs to the desired tissues 

or organs [1-2]. Although efficient internalization 
within cells and selective targeting are the most es-
sential features of such a drug carrier, ideally it should 
also have long circulation time, self-regulation of drug 
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release, low toxicity and minimal side effects [3-4]. In 
general, drug carriers consist of therapeutic agents 
within a nanoparticle system with characteristic size 
from 10 to 1000 nm [5]. Such a nanoparticle system 
will increase solubility and enhance stability of mostly 
poorly water soluble therapeutic agents, and will 
protect them from interacting with non-targeted cells 
and tissues, thus reducing toxicity [6]. 

Presently, two main categories of nanoparticles 
are widely employed for biological applications: in-
organic nanoparticles and polymeric nanoparticles 
[7-9]. Polymeric nanoparticles can encapsulate drugs 
and release them in a regulated fashion through sur-
face erosion of the nanoparticles, diffusion of the drug 
through the polymer matrix, or swelling followed by 
diffusion [10-12]. Alternatively, drug release can be 
triggered by changes in pH or temperature, the pres-
ence of an analyte such as enzyme, or external appli-
cation of light or a magnetic field.[13-15] Over the last 
few decades controlled release polymeric nanoparti-
cle technology has impacted virtually every branch of 
medicine, including oncology, ophthalmology, pul-
monary medicine, orthopedics, immunology, neu-
rology and dentistry [16-20]. However, traditional 
polymer particle formulations tend to be of relatively 
large size (200-500 nm), and thus may not be ideal for 
specific applications, such as drug delivery to solid 
tumors and metastatic sites. The stability of these 
particles upon systemic administration may be com-
promised, and finally, these particles may lead to de-
velopment of an immune response that may counter-
act therapy. Inorganic nanoparticles, on the other 
hand, can be made less than 20 nm in diameter, which 
not only makes them suitable for unimpeded circula-
tion in the bloodstream and extravasation into tumor 
tissues, but may also permit excretion through renal 
filtration, without the need for biodegradation. Sev-
eral such materials, including silica, gold nanoshells 
and gold nanoparticles are known for their low tox-
icity and biocompatibility for targeted imaging and 
therapy [21-23]. Many such materials, including 
quantum dots (QDs) and iron-oxide nanoparticles, 
have unique characteristics that enable their use as 
image contrast agents [24]. However, their rigid ma-
trix does not generally allow for encapsulation and 

subsequent release of active molecules for conven-
tional drug delivery purposes. Instead, drug mole-
cules can be linked to, or combined with, the nano-
particles for targeted delivery purposes. 

Bioconjugated quantum dots (QDs) show prom-
ise in applications spanning both diagnostics and 
therapeutics [25-27]. QDs have been used for more 
than a decade as optical contrast agents for bioimag-
ing (see Figure 1) [28-31], and some comprehensive 
review articles have recently been published on the 
biological applications of QDs [32-33]. For targeted 
delivery applications, QDs must be conjugated with 
biorecognition ligands such as antibodies, DNA, bio-
tin, streptavidin, or peptides [34-37]. For example, 
Gao et al. demonstrated the preparation of anti-
body-conjugated polymeric micelle coated CdSe/ZnS 
QDs for targeting and imaging of human prostate 
cancer growing in nude mice [38]. Cai et al. reported 
the in vivo targeting and imaging of tumor vascula-
ture using arginine-glycine-aspartic acid (RGD) pep-
tide-labeled CdTe/ZnS quantum dots (QDs) [39]. 
Yong et al. showed that bioconjugated 
CdSe/CdS/ZnS quantum rods and CdTe/CdS 
quantum dots can be used as ultrasensitive optical 
nanoprobes for tumor vasculature imaging in live 
animals [40-41]. More recently, Erogbogbo et al. 
demonstrated the preparation of peptide-conjugated 
phospholipid-micelle-encapsulated silicon quantum 
dots for in vivo tumor imaging without observing any 
toxicity at the cellular and tissue level (see Figure 1) 
[42-43]. All these studies have laid an important 
foundation in engineering of QDs for disease therapy 
research and applications. Recently, several research 
groups have demonstrated the integration of drug 
molecules with bioconjugated QDs for traceable drug 
delivery and therapy in vitro and in vivo [44-45]. De-
spite extremely active research on QDs and their ap-
plication in bioimaging, the investigation of QD/drug 
nanoparticle formulations has only begun recently, 
due to the advancement of solution phase synthesis of 
QDs and bioconjugation chemistry for linking drug 
molecules to the QD surface. This review discusses 
the current status of this field, some of the critical 
challenges that remain, and measures that are being 
taken to overcome these challenges. 
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Figure 1. Time-dependent in vivo luminescence imaging of Panc-1 tumor bearing mice (left shoulder, indicated by white arrows) injected 

with silicon quantum dots conjugated with (A−E) and without (K−O) RGD peptide. All images were acquired under the same conditions. 

Autofluorescence and the unmixed SiQD signal are coded in green and red, respectively. Panels F−J and panels P−T correspond to the 

luminescence images in panels A−E and K−O, respectively. Reprinted with permission from (Erogbogbo F, Yong KT, Roy I, Hu R, Law 
CW, Zhao W, Ding H, Wu F, Kumar R, Swihart MT, and Prasad PN et al. In Vivo Targeted Cancer Imaging, Sentinel Lymph Node Mapping 

and Multi-Channel Imaging with Biocompatible Silicon Nanocrystals. ACS Nano. 2011; 5: 413-423.). Copyright (2011) American Chemical 

Society. 
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Synthesis, Characterization, and Optical 
Properties of Quantum Dots 

To date, colloidal core/shell QDs such as 
CdSe/ZnS, CdSe/CdS/ZnS, CdTe/CdSe and 
InP/ZnS are commonly synthesized for biomedical 
applications [39, 46]. Among many approaches for 
making QDs, the hot colloidal synthesis approach 
remains the best method for making robust, high 
quality QDs [47-50]. This method was first described 
by Murray et al., who used pyrolysis chemistry of 
organometallic precursors containing cadmium and 
selenium to generate CdSe nanocrystals [51]. Later, 
this method was modified and continues to be a pop-
ular method for obtaining good quality of QDs [52]. 
For example, core CdSe QDs can be synthesized at 
high temperature (e.g. 300°C) by the reaction between 
cadmium oxide dissolved in oleic acid and selenium 
dissolved in trioctylphosphine (TOPSe) [53]. This re-
action results in the formation of monodispersed QDs 
[54]. To use QDs for biological applications, one must 
passivate the core QD with a thin layer of non-toxic 
high band gap material such as ZnS or ZnSe [55]. Such 
core/shell QDs have many advantages over unpas-
sivated ones. For example, the chemical and optical 
stability of QDs can be maintained for longer periods 
of time when they are passivated with higher 
band-gap semiconductor materials [56]. The shell also 
significantly reduces the toxicity of the QDs, which 
makes them more suitable for biological applications. 
To date, many types of core/shell QDs were fabri-
cated. However, only CdSe/ZnS, CdTe/ZnS, and 
CdSe/CdS/ZnS have been commonly used for in vitro 
and in vivo imaging [57]. Such core/shell QDs are 
created by epitaxially growing a higher band-gap 
semiconductor material around the core. Shelling 
CdSe QDs with ZnS results in small red-shifts (~10 
nm) of the absorption and photoluminescence peaks 
of the QDs. In addition to cadmium-based QDs, many 
research teams are currently preparing cadmium-free 
QDs such as InP, CuInS2, and Si, addressing concerns 
about CdSe and CdTe QD toxicity associated with the 
presence of cadmium. Compared to cadmium-based 
QDs, these QDs are less toxic and more promising for 
in vivo applications. However, production of 
high-quality QDs is more difficult for these materials 
than for Cd-based materials. 

Most organic dyes display narrow absorption 
spectra and require specific excitation wavelengths to 
excite them [58-59]. In contrast, QDs have broad ab-
sorption spectra, allowing them to be excited by light 
of a wide range of wavelengths [60] (see Figure 2). 
This allows one to simultaneously excite QDs with 
different emission spectra for multiplex imaging us-
ing a single excitation source [61]. Organic dyes also 
have relatively broad emission spectra, resulting in 
the overlap of their fluorescence spectra, thus limiting 
their use for multiplex imaging [62]. In contrast, QDs 
have narrow emission spectra, which can be manipu-
lated by changing the core size and composition of the 
QDs. More importantly, the QDs can be tuned to emit 
emission ranging from UV to near-infrared region. 
The high photostability of QDs is another unique 
feature from QDs for fluorescence imaging applica-
tions [63]. Unlike organic dyes, which may photo-
bleach rapidly, QDs are stable and can withstand 
many cycles of excitation for long periods of time with 
a high level of brightness [64]. For example, dihy-
drolipoic acid-functionalized core/shell CdSe/ZnS 
QDs showed no change in the luminescence intensity 
after more than 10 hours of continuous excitation, and 
were 100 times as stable as rhodamine dye. In addi-
tion, QDs have a long luminescence lifetime after ex-
citation and this can be an advantage for time-gated 
imaging. The fast fluorescence emission of organic 
dyes is similar to the short lifetime of the autofluo-
rescence background from cells and tissues; thus, the 
signal-to-noise ratio is reduced. However, QDs gen-
erally emit light with a decay time of 30 to 100 ns, 
which is much slower than that of the autofluores-
cence background decay, while remaining fast 
enough to maintain a high photon turnover rate. In 
time-gated analysis, photons detected in the first few 
ns after pulsed excitation are disregarded to decrease 
background noise and increase sensitivity. This ad-
vantage has been utilized to produce images of 3T3 
mouse fibroblasts with a high signal-to-background 
ratio and to monitor the dynamics of erbB1 and erbB3 
receptors [2, 33, 65]. In this case, this technique can be 
used to differentiate the erbB3 receptors labeled with 
citrine and erbB1 receptors labeled with QDs. There-
fore, owing to their high brightness, photostability, 
and long decay time, the dynamics of QDs can be op-
tically traced in vitro and in vivo. 
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Figure 2. (a) Absorption and emission of rhodamine red, a common organic dye, and genetically-encoded DsRed2 protein. (b) Ab-

sorption and emission of different QD dispersions. The black line shows the absorption of the 510-nm-emitting QDs. (c) Photo 

demonstrating the size-tunable luminescence properties and spectral range of the six QD dispersions plotted in b versus CdSe core size. 

All samples were excited at 365 nm. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials (Medintz IL, Uyeda HT, 

Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005; 4: 435-46., 

http://www.nature.com), copyright 2005. 

 

Preparation of Bioconjugated Quantum 
Dots 

High quality core/shell QDs are most often 
made by using hot colloidal synthesis, which leaves 
their surface coated with hydrophobic moieties (e.g. 
trioctylphosphine oxide (TOPO), oleic acid, and/or 
trioctylphosphine (TOP)), that prohibit their disper-

sion in biological fluids. However, water-dispersible 
QDs with functional groups that facilitate bioconju-
gation are needed for biological applications [66]. 
Techniques for transferring hydrophobic core/shell 
QDs from organic solvents to an aqueous phase have 
been extensively studied for the last decade. In gen-
eral, there are two approaches to prepare wa-
ter-dispersible QDs: (i) functionalizing QD surface 
with bifunctional molecules such as mercapto acids, 
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or hydrophilic dendrimers[67-68]; and (ii) coating the 
QDs with a biocompatible material such as silica or 
amphiphilic polymers [69-71]. In the first approach, 
the preparation of water-dispersible QDs typically 
involves functionalizing the QD surface with a mer-
capto acid through ligand exchange [72]. The thiol 
group of the mercapto acid binds strongly to the QD 
surface, displacing the existing surface ligands and 
producing a carboxyl terminated surface suitable for 
subsequent bioconjugation. For example, hydropho-
bic QDs can be dispersed into water by replacing the 
hydrophobic moieties on the QD surface with biden-
tate dihydrolipoic acid. The second approach involves 
the encapsulation of QDs with amphiphilic biocom-
patible polymers[38, 73] or other hydrophilic shell. 
The encapsulation of QDs with biocompatible poly-
mers allows them to form dispersions in biological 
buffers that remain stable for months, due to the 
strong hydrophobic interaction between the hydro-
phobic moieties on the QD surface and hydrophobic 
segment of the amphiphile [74]. The overall QD size is 
much larger when this encapsulation approach is 
used than when ligand exchange is used. Conjugation 
of biomolecules to the QD surface remains an im-
portant requirement for targeted in vitro and in vivo 
delivery applications [68]. In general, wa-
ter-dispersible QDs can be made by terminating their 
surface with functional groups such as carboxylic ac-
ids, primary amines, and thiols. These groups can be 
linked to targeting ligands using established conjuga-
tion chemistry such as carbodiimide, maleimide and 
succinimide chemistries. Avidin–biotin cross-linking 
is another popular method for conjugating biomole-
cules on the surface of QDs. The functionalization and 
bioconjugation chemistry for QDs is summarized in 
Figure 3. 

Synthesis of Quantum Dots/Drug Formu-
lations for Targeted Delivery and Therapy 
Applications 

QDs provide a versatile platform for engineering 
traceable drug delivery systems with potential for 
improving pharmacological treatment of cancers. The 
mechanism of delivery of QD/drug formulations to 
tumor cells is determined by the architecture and 
properties of the nanostructures. Several rules must 
be considered in preparing QD/drug nanoparticle 
formulations for targeted therapy in vivo: (i) the na-
noparticle surface must be functionalized with tar-
geting ligands for specific delivery to tumor cells and 
must allow the drug to be delivered together with the 
carrier; (ii) the size of the nanoparticle must be mini-
mized to allow excretion from the body; (iii) the drug 

molecules must be confined within the nanoparticle 
delivery system to prevent any harmful effects to the 
normal tissue; however, the drug must be released at 
tumor cells after being triggered externally or by local 
environmental factors, and (iv) the surface of QDs 
must be passivated with a long lasting biocompatible 
polymer to prevent degradation or breakdown of the 
QDs upon encounter with the biological environment. 
In the next few paragraphs, we discuss recent findings 
on the preparation of QD/drug nanoparticle formu-
lations for targeted delivery and therapy. 

Two approaches can be used to integrate QDs 
and drug molecules into a nanoparticle formulation: 
(i) conjugating or linking drug molecules to the QD 
surface, followed by delivery of drug-conjugated QDs 
to specific sites and subsequent release of the drug 
molecules from the QD surface in response to local 
biological conditions such as pH or the presence of 
enzymes; or (ii) loading the drug in a polymer nano-
particle system that also contains either hydrophobic 
or hydrophilic QDs, depending on the type of poly-
mer particle used to encapsulate them. The entire 
QD/drug nanoparticle system is delivered to the de-
sired organ or tissue, and the drug molecules are ei-
ther released when the polymer particle is degraded 
at low pH or simply diffuse out from polymer parti-
cle. For example, Bagalkot et al. employed the first 
approach, demonstrating the synthesis of 
QD−aptamer(Apt)−doxorubicin (Dox) conjugates 
(QD−Apt(Dox)) as a complex conjugate for targeted 
cancer imaging, therapy, and sensing [75] (see Figure 

4). Basically, the QD surface was functionalized with 
an RNA aptamer that recognizes the extracellular 
domain of the prostate specific membrane antigen, 
enabling preferential targeting and imaging of pros-
tate cancer cells. The anticancer drug, Dox, which is 
intercalated with the RNA aptamer, is released slowly 
from the QD system. The drug-release process was 
monitored using the Förster (fluorescence) resonance 
energy transfer (FRET) between QD and Dox. This 
system could deliver Dox to the targeted prostate 
cancer cells and sense the delivery of Dox by activat-
ing the fluorescence of QDs that concurrently image 
the cancer cells. The specificity and sensitivity of this 
nanoparticle conjugate formulation as a cancer imag-
ing, therapy and sensing system were demonstrated 
in vitro. Chakravarthy et al. reported on the ability of 
nanoconjugates of CdSe/CdS/ZnS QD and doxoru-
bicin to target alveolar macrophages, cells that play a 
critical role in the pathogenesis of inflammatory lung 
injuries [76]. Confocal imaging showed the release of 
Dox from the QD-Dox nanoconjugate, as was evident 
by its accumulation in the cell nucleus and induction 
of apoptosis, indicating that the drug retains its bio-
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activity after coupling to the nanoparticle. Inflamma-
tory injury parameters (albumin leakage, proinflam-
matory cytokines, and neutrophil infiltration) were 
recorded after in vivo administration of QD-Dox and 
Dox, indicating no significant effect after QD-Dox 

treatment compared with free Dox. These results 
show that nanoparticle platforms can provide tar-
geted macrophage-selective therapy for the treatment 
of pulmonary disease. 

 

 

Figure 3. Functionalization and bioconjugation chemistry for QDs. Reprinted by permission from Macmillan Publishers Ltd: Nature 

Materials (Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 

2005; 4: 435-46., http://www.nature.com), copyright 2005. 
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Figure 4. (a) Schematic illustration of QD−Apt(Dox) Bi-FRET system. In the first step, the QD are surface functionalized with the A10 
PSMA aptamer. The intercalation of Dox within the A10 PSMA aptamer on the surface of QDs results in the formation of the 

QD−Apt(Dox) and quenching of both QD and Dox fluorescence through a Bi-FRET mechanism. (b) Schematic illustration of specific 

uptake of QD−Apt(Dox) conjugates into target cancer cell through PSMA mediated endocytosis. The release of Dox from the 

QD−Apt(Dox) conjugates induces the recovery of fluorescence from both QD and Dox, thereby sensing the intracellular delivery of Dox 

and enabling the synchronous fluorescent localization and killing of cancer cells. Reprinted with permission from (Bagalkot V, Zhang L, 

Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum Dotâˆ’Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, 

and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Letters. 2007; 7: 3065-70.). Copyright (2007) 

American Chemical Society. 

 
Mahajan et al have used an attractive approach 

where drug delivery has been integrated with 
site-specificity using a QD-based platform [77]. Spe-
cifically, the antiretroviral drug saquinavir and the 
biorecognition molecule transferrin (Tf) have been 
conjugated to carboxyl-terminated quantum dots us-
ing carbodiimide chemistry. The aim of this study was 
to significantly enhance the transport of saquinavir 
into the brain, for the treatment of HIV-1 infected cells 
within the brain, via targeting the transferrin recep-
tors (TfRs), which are overexpressed on the apical 
surface of the blood brain barrier (BBB). Using an in 
vitro model of the BBB, they demonstrated that these 
targeted and drug-doped QDs can efficiently cross the 
BBB, and caused a marked decrease in viral replica-
tion in the HIV-1 infected peripheral blood mononu-
clear cells (PBMCs) within the brain. These results 
highlight the potential of this nanoformulation in the 
treatment of Neuro-AIDS and other neurological dis-
orders.  

Some groups prefer to use the second approach 
for drug delivery because it does not involve conju-
gating the drug molecules to the QD surface and pu-
rifying the drug-conjugated QDs from the un-reacted 

drug molecules. Yuan et al. described an approach for 
combining QD technology with anti-cancer drug 
therapy [78]. More specifically, blue-emitting ZnO 
QDs were combined with biodegradable chitosan for 
tumor-targeted drug delivery. This showed that the 
chitosan-coated ZnO QDs could be loaded with anti-
cancer drug molecules and could deliver anticancer 
drugs to the tumor. The presence of chitosan on the 
QDs surface enhanced the colloidal stability of the 
QDs due to the hydrophilicity and cationic charge of 
chitosan.  

Savla et al. reported the preparation of tu-
mor-targeted, pH-responsive QD-mucin1 ap-
tamer-doxorubicin conjugate for the chemotherapy of 
ovarian cancer [79]. Basically, the QDs were conju-
gated with a DNA aptamer specific for mutated 
MUC1 mucin that is overexpressed in ovarian carci-
noma. Doxorubicin was then attached to QD through 
a pH-sensitive hydrazone bond to provide long-term 
stability of the complex in systemic circulation and 
drug release in the acidic environment within tumor 
cells. The hydrazone bond is stable at neutral and 
slight basic pH and undergoes rapid hydrolysis at 
mildly acidic pH. In vivo studies showed that the QD 
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conjugates had higher cytotoxicity than that of the 
free doxorubicin in cancer cells. More importantly, the 
QD conjugates were found to be preferably accumu-
lated in the ovarian tumor. The study shows that the 
proposed QD conjugate has the potential for treating 
ovarian cancer in vitro and in vivo.  

Tian et al. reported the design of drug-loaded 
liposome-QD hybrid vesicles by incorporating 
TOPO-coated CdSe/ZnS QDs into two types of lipid 
bilayers, namely, the „rigid‟ disteroylphosphatidyl-
choline and a fluid-phase bilayer of egg PC.[80] 
Structural characterization of QD hybrid-vesicles us-
ing atomic force microscopy revealed that the QD 
were incorporated within the lipid membranes of the 
vesicles. The encapsulation of hydrophilic small mol-
ecules (carboxyfluorescein) in the internal aqueous 
phase of the L-QD hybrids showed different degrees 
of release in buffer and serum, depending on the type 
of lipid used. The presence of QD in the lipid bilayer 
increased the carboxyfluorescein release from the EPC 
fluid bilayer. In contrast, (DSPC) L-QD hybrids 
showed a higher stability under the same conditions 
with minimal carboxyfluorescein leakage. In addition, 
(DSPC) L-QD hybrids showed no changes in size over 
a period of three weeks. Finally, doxorubicin (Dox) 
was loaded into L-QD hybrids using the osmotic gra-
dient technique with at least 97% loading efficiency. 
The fluorescence spectrum of Dox was simultane-
ously detected with that of green-emitting QD that 
indicated the coexistence of QD and Dox in a single 
vesicle system. Overall, the drug-loaded L-QD-Dox 
hybrid vesicles provide a promising multifunctional 
delivery vector capable of transporting combinations 
of therapeutic and diagnostic modalities.  

Wu et al. reported polysaccharide-based hybrid 
nanogels that combine functional building blocks for 
optical pH-sensing, cancer cell imaging, and con-
trolled drug release within a single nanoparticle sys-
tem for combined diagnosis and therapy.[81] The hy-
brid nanogels were synthesized by in-situ immobili-
zation of CdSe QDs in the interior of the dual respon-
sive (pH and temperature) hydroxypropylcellulose 
-poly (acrylic acid) (HPC-PAA) semi-interpenetrating 
polymer networks. The HPC-PAA-CdSe hybrid 
nanogels combine a strong trap emission at 741 nm for 
sensing physicochemical environment in a pH de-
pendent manner and a visible excitonic emission at 
592 nm for mouse melanoma B16F10 cell imaging. The 
hybrid nanogels also provide excellent stability as a 
drug carrier. They not only provide a high drug 
loading capacity for a model anticancer drug, te-
mozolomide, but also offer a pH-triggered sus-
tained-release of the drug molecules in the gel net-
work.  

Besides the two approaches mentioned above, 
related approaches have been developed using com-
binations of both QDs and drug for detecting and 
treating cancer in vitro. For instance, Mathew et al. 
demonstrated the fabrication of folic acid-conjugated 
carboxymethyl chitosan coordinated to Mn-doped 
ZnS QDs [82]. The system can be used for targeting, 
controlled drug delivery and imaging of cancer cells. 
The anticancer drug, 5-Fluorouracil, was incorporated 
into this QD formulation and was used for the treat-
ment of breast cancer in vitro. The nontoxicity of QD 
formulation was investigated using L929 cells. Breast 
cancer cell line MCF-7 was used to study the imaging, 
targeted delivery and cytotoxicity of the drug-loaded 
QD formulation. Zhou et al. investigated the use of 
water-dispersible CdTe QDs coated with negatively 
charged 3-mercaptopropionic acid to enhance drug 
uptake into cancer cells. They reported that the 
MPA-coated CdTe QDs were able to facilitate the in-
teraction of anticancer agent daunorubicin with leu-
kemia cells and enhance the efficiency of biolabeling 
in cancer cells. Thus, that study demonstrated a po-
tential method for simultaneous cellular inhibition 
and imaging of cancer cells. 

Li et al. reported an approach to enhance the ef-
ficient accumulation of anticancer drug daunorubicin 
in cancer cells through the combination with CdS QDs 
[83]. They reported that CdS QDs can readily bind 
with daunorubicin molecules on the membrane of the 
cells and promote the uptake of drug molecules in 
leukemia K562 cells. In addition, the competitive 
binding of both CdS QDs and anticancer drug to the 
membrane of leukemia K562 cells could efficiently 
prevent the drug release by leukemia cells and thus 
inhibit the possible multidrug resistance of cancer 
cells, which could be further utilized to improve the 
drug efficiency in respective tumor chemotherapies in 
the future. 

Apart from the delivery of conventional, small 
molecule drugs, quantum dots/rods have also been 
shown to have promise for delivery of more complex 
biomolecules, such as short interfering RNA (siR-
NA).[84] These short and double-stranded therapeutic 
RNA molecules function by blocking the expression 
of undesirable, disease-causing genes. However, in 
their free form they have high negative charge and are 
vulnerable to degradation in physiological fluids. 
Therefore, for optimal function in vitro and vivo, they 
must be delivered via electrostatic complexation with 
cationic nanocariers. Quantum dots/rods, appropri-
ately surface functionalized with cationic moieties, are 
ideal siRNA carriers as they not only render these 
genetic drugs with physiological stability and target 
specificity, but also the whole complex (nanoplex) can 
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be optically traced.  
We have shown the utility of quantum dot 

(QD)-siRNA complexes in maintaining the integrity of 
the blood brain barrier (BBB) (see Figure 5). The ma-
trix-degrading metalloproteinases (MMPs), particu-
larly MMP-9, are involved in neuroinflammation 
processes leading to disrupting of the BBB, thereby 
exacerbating neurological diseases such as HIV-1 
AIDS dementia and cerebral ischemia.[7] We evalu-
ated the specificity and efficiency of QD complexed 
with MMP-9-siRNA (nanoplex) in downregulating 
the expression of MMP-9 in brain microvascular en-
dothelial cells (BMVECs) that constitute the BBB. Si-
lencing MMP-9 gene expression in BMVECs and other 
cells such as leukocytes may help prevent breakdown 
of the BBB and inhibit subsequent invasion of the 
central nervous system (CNS) by infected and in-
flammatory cells, as well as circulating neurotoxins. 
Several other groups have also demonstrated the sig-
nificance of QD/QR mediated delivery of siRNA 
molecules for the treatment of a variety of ailments, 
particularly cancer.  

 
 
 

 

Figure 5. MMP-9 gene silencing in BMVEC by QD–siRNAMMP-9 

nanoplexes: BMVECs were transfected with QD–siRNAMMP-9 or 

Xtreme–siRNAMMP-9 or Xtreme siRNAscrambled for 48 h. RNA 

was extracted, reverse transcribed, cDNA amplified and MMP-9 

gene expression was determined by real-time, quantitative PCR. 

Relative expression of mRNA species was calculated using the 

comparative CT method. Data are the mean ± SD of 3 separate 

experiments done in duplicate. Statistical significance was deter-

mined using ANOVA based comparing QD–siRNAMMP-9 nano-

plexes to the negative control samples. Reprinted from Brain 

Research, 1282, Adela Bonoiu, Supriya D. Mahajan, Ling Ye, Rajiv 

Kumar, Hong Ding, Ken-Tye Yong, Indrajit Roy, Ravikumar 

Aalinkeel, Bindukumar Nair, Jessica L. Reynolds, Donald E. Sykes, 

Marco A. Imperiale, Earl J. Bergey, Stanley A. Schwartz, Paras N. 

Prasad, MMP-9 gene silencing by a quantum dot–siRNA nanoplex 

delivery to maintain the integrity of the blood brain barrier, 

142-155, Copyright (2009), with permission from Elsevier. 

 

Finally, it is worth mentioning that QDs have 
been used as a nanovehicle for the delivery of photo-
sensitizer drugs in photodynamic therapy (PDT), 
which is a light activated therapy used for the treat-
ment of cancer and other diseases. Here, mainly the 
drug conjugation approach is used, as unlike in con-
ventional drug delivery, in PDT the release of the 
drug from its carrier is not a necessity for their thera-
peutic action. In fact, it has been demonstrated that 
the efficacy of PDT has been enhanced when the drug 
is conjugated with the QD system, as a result of fa-
vorable energy transfer from the QDs (donor) to the 
photosensitizer drugs (acceptor). This energy transfer 
can also facilitate the activation of PDT action at tu-
mor sites located deep within the body. Therefore, 
QDs can play a pivotal role in enhancing the effec-
tiveness of this newly emerging light activated ther-
apy.  

Challenges and opportunities in QD/drug 
formulation development 

Cytotoxicity is an important factor that must be 
considered for biological applications [85-87]. The 
hydrodynamic size, surface charge, dosage, and sur-
face coating of QDs are crucial factors that determine 
the QD toxicity in vitro and in vivo.[88-89] It is worth 
noting that the surface coating on the QD surface is 
not only important for the QDs colloidal stability, but 
it is essential in preventing the degradation of QDs 
and the resulting leakage of cadmium ions from the 
QD core [90]. Moreover, some coating materials have 
been reported to have toxic effects in cells when the 
materials are released from the QDs surface. Thus, 
selecting biocompatible and long lasting polymers to 
coat the QD surface is essential for long term in vitro 
and in vivo usage [91]. Oxidation of QD surfaces can 
occur by multiple processes. Commonly, it happens 
through radical reactions of oxygen together with UV 
irradiation [92]. This leads to the formation of chal-
cogenoxides and release of cadmium ions [93]. The 
cadmium ions are responsible for the majority of the 
toxic effects that are ascribed to QDs. It has been 
suggested that if the surface coating of QDs is main-
tained during biological applications, the overall cy-
totoxicity of the QD formulation will decrease.[94] 
However, if the surface coating is too thick, it may 
affect the optical and colloidal stability of the QD 
formulation. Thus, it is important to obtain an opti-
mized formulation where the overall thickness of the 
surface coating of QDs is near the minimum required 
to protect the QDs from degradation.  

To date, cadmium-based QDs are commonly 
used for in vitro and in vivo studies [95]. Cadmium 
and selenium are the main constituent elements in QD 



Theranostics 2012, 2(7) 

 

http://www.thno.org 

691 

metalloid complexes. These elements are known to 
cause acute and chronic toxicities in vertebrates at 
high dosage. For instance, Cd ion, a potential carcin-
ogen, can cross the blood–brain barrier (BBB) and 
placenta, and is systemically distributed to all bodily 
tissues, with liver and kidney being target organs of 
toxicity. Recently, it was showed that upon intrave-
nous injection of cadmium-based QDs to small ani-
mals, the cadmium concentration in the liver and 
kidneys increased over the course of four weeks [33]. 
The cadmium signals in the kidneys reached 10% of 
the injected dose as compared to 40% in the liver. The 
presence of QDs was observed in both tissue sections 
of the liver and kidneys using fluorescence micros-
copy. It was speculated that the redistribution of 
cadmium over time may result from degradation of 
QDs in vivo, since the natural accumulation sites of 
Cd ions are the liver and kidneys [33]. Therefore, 
some research groups are currently trying to over-
come this challenge by designing cadmium-free QDs 
to substitute cadmium-based QDs for long term in 
vivo imaging applications. For example, InP QDs will 
serve as good candidate for overcoming all these 
drawbacks as mentioned above. The key advantages 
offered by InP nanocrystals (as opposed to the cad-
mium-based QDs which are already commercially 
available) lies in the robustness of the covalent bond 
in III-V semiconductors versus the ionic bond in the 
II-VI semiconductors, as well as the reduced toxicity 
of compounds such as InP. These QDs can be easily 
dispersed in aqueous systems using a simple 
co-ordination reaction with bifunctional ligands such 
as mercaptoacetic acid (MAA). The extending car-
boxylic-acid groups on MAA also allows for the at-
tachment of polyethyleneglycol (PEG) and targeting 
molecules to the QDs and permits specific targeted 
delivery to tumor cells of interest. To date, compre-
hensive studies on engineering biocompatible cad-
mium-free QDs for in vitro and in vivo applications 
are still rather limited. Thus, there are many oppor-
tunities and challenges in the current QDs community 
that are waiting to be overcome.  

Summary and future outlook 

In this review, different types of QD/drug na-
noparticle formulations are described for their poten-
tial use in targeted delivery and therapy. Using the 
rich surface functionalization chemistry of QDs, tar-
geting biomolecules and drug formulation can be in-
tegrated with QDs for traceable drug delivery and 
therapy in vitro and in vivo. Many studies have 
demonstrated that the incorporation of drug formula-
tions with QDs did not compromise the drug efficacy. 
More importantly, the QD/drug nanoparticle formu-

lations were able to serve as an excellent platform for 
development of a new generation of traceable drug 
delivery strategies for real time monitoring of the 
drug biodistribution in vitro and in vivo. Because of 
toxicity concerns, cadmium-based QDs might not be 
the best candidate for in vivo drug delivery and ther-
apy. Thus, many research groups are currently syn-
thesizing cadmium-free QDs for in vivo applications. 
For example, our group has demonstrated the syn-
thesis of indium phosphide, silicon, and copper in-
dium sulfide QDs for targeted tumor imaging and 
very low toxicity was observed from these formula-
tions[42-43, 96]. However, for in vitro-based drug 
studies, cadmium-based QDs will remain to be uti-
lized, since toxicity is not a concern. Another potential 
concern for the use of QDs in delivery and therapy is 
the overall QD size. In general, it is preferable to 
minimize the overall size of QDs for in vivo applica-
tions to reduce their accumulation in the reticuloen-
dothelial system. Recently, methods have been re-
ported to reduce the size of the QDs by tailoring their 
surface coating. Finally, passivation of the QD surface 
with a long-lasting and robust polymer coating is es-
sential to prevent the breakdown of QDs in the bio-
logical environment that gives rise to their toxicity. 
This is a definite concern for in vivo applications. Some 
reports have suggested that capping the QD core with 
a higher bandgap semiconductor or biomolecule can 
minimize the toxicity. But, it is worth noting that each 
additional step towards functionalizing the QDs will 
contribute to their final hydrodynamic size and could 
directly or indirectly affect their biodistribution. In the 
near future, we envision that the QD/drug nanopar-
ticle formulations will gain wide interest in many 
healthcare-related research areas. For example, the 
developed formulations can be used for early cancer 
detection and therapy. Also, the formulations can be 
systematically tailored for personalized drug treat-
ment. More importantly, additional modalities such 
as magnetic resonance imaging and positron emission 
tomography contrast agents can be integrated into the 
QD/drug formulations, thus allowing one to use two 
or more imaging modalities to verify the biodistribu-
tion and efficacy of the drug in vivo. We believe that in 
the next few years there will be a tremendous growth 
in developing QD/drug nanoparticle formulations for 
therapeutic and diagnostic applications. 
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