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Abstract 

Breast cancer is the most common malignancy in women worldwide. Recent developments in 
minimally invasive interventional radiology techniques have significantly improved breast cancer 
treatment. This study aimed to develop a novel technique for the local management of breast 
cancers using radiofrequency heat (RFH). We performed both in vitro experiments using human 
breast cancer cells and in vivo validation in xenograft animal models with magnetic resonance 
imaging (MRI) and pathological correlation to investigate the feasibility of our approach. Four 
treatment groups, including (1) no treatment (control), (2) RFH-only, (3) chemo (doxorubi-
cin)-only, and (4) combination therapy with both doxorubicin and RFH, were conducted in each 
experiment. In vitro combination therapy significantly decreased breast cancer cell proliferation 
while increased their apoptosis index compared to the other three groups. MRI demonstrated a 
significant tumor size reduction in animals treated with combination therapy compared to those 
receiving other treatments in vivo. Such result was further confirmed by pathological examination. 
In conclusion, our findings suggests that RFH can enhance the therapeutic efficiency of doxorubicin 
on breast cancers, thus establishing the basis for future development of interventional molecular 
image-guided local chemotherapy for breast malignancies. 
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Introduction 
Breast cancer is the most common malignancy in 

women with a steadily increasing incidence world-
wide. It is estimated that 235,030 patients will be di-
agnosed with invasive breast cancer and 40,430 will 
die of the disease in the United States in 2014 [1]. 
Although systemic chemotherapy is one of the main 
therapeutic strategies for breast cancer, there is no 
guarantee that sufficient concentration of chemo-
therapeutic agents would be delivered to the target 

tumor without causing toxicities to other vital organs 
[2]. In addition, previous studies have suggested that 
inefficient drug deposit at the target tumors via sys-
temic administration significantly contribute to 
chemoresistance in cancer [3].  

Recent studies have reported that hyperthermia 
at approximately 41 ℃ to 45 ℃ can enhance the effi-
ciency of chemotherapy in a variety of malignancies 
[4-7]. However, certain limitations, such as inade-

 
Ivyspring  

International Publisher 



 Theranostics 2014, Vol. 4, Issue 11 

 
http://www.thno.org 

1146 

quate devices for local heat delivery to the targets and 
lack of appropriate temperature monitoring at the 
targets, limit the application of hyperther-
mia-enhanced therapy for cancer in clinical practice 
[8, 9]. 

 Minimally invasive interventional radiology 
techniques have greatly improved outcome of breast 
cancer treatment [10]. A combination of interventional 
radiology with locally delivered hyperthermia may 
therefore advance current chemotherapies. The pre-
sent study aimed to develop a novel technique for 
local chemotherapy of breast cancer using interven-
tional radiofrequency heat (RFH). 

Materials and Methods 
 The present study included both in vitro estab-

lishment of the “proof-of-principle” that RFH en-
hanced chemotherapeutic efficiency in human breast 
cancer cells, and in vivo validation of interventional 
RFH-enhanced chemotherapy for breast cancer using 
xenograft animal models. 

In vitro experiments 

Cells 
 Human breast cancer cell (Bcap-37) were cul-

tured in RPMI 1640 medium (Gibco-Life Technolo-

gies, Mulgrave, Australia) adjusted to contain 1.5-g/L 
sodium bicarbonate, 2.5-g/L glucose, and 0.11-g/L 
sodium pyruvate supplemented with 10% fetal bo-
vine serum (Gibco-Life Technologies). They were in-
cubated at 37°C in a humidified atmosphere with 5% 
CO2.  

In vitro experimental set-up 
These breast cancer cells were seeded in each 

chamber of a Lab-Tek® 4-chamber cell culture slide 
(Nalge Nunc International, Rochester, NY, USA) at 4 
× 104 cells/chamber. The slice was placed in a 37 °C 
water bath. A 0.032-inch magnetic resonance imag-
ing-heating-guidewire (MRIHG) was attached under 
the bottom of chamber 4 of the 4-chamber cell culture 
slide, and then connected to a 2450-MHz radiofre-
quency (RF) generator (GMP150, OPTHOS, Rockville, 
MD, USA) (Figure 1). When the RF generator was 
operated at 2–3 Watts through the MRIHG, the tem-
perature in chamber 4 increased to approximately 42 
°C from 37 °C, which created a heat gradient along the 
4 chambers. The temperature of each chamber was 
recorded by a thermometer (Photon Control, Burna-
by, Canada). 

 

 
Figure 1. (A) In vitro experimental set-up for radiofrequency heat (RFH) of human breast cancer cells. Cells are seeded in a 4-chamber cell culture slide, which is placed in 37°C 
water bath. A 0.032-inch magnetic resonance imaging-heating-guidewire (arrow) is positioned under the bottom of chamber 4. (B) When the temperature reaching 42 °C in 
chamber 4, a stable heat gradient is observed along the four chambers. (C) The proliferation of cells treated with RFH at 42 °C is significantly decreased compared to those 
treated at 37 °C and 39 °C (*, p < 0.05; **, p < 0.01). 
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Figure 2. (A) In vivo experimental set-up for radiofrequency heat (RFH) of a xenograft tumor (circle) implanted in a nude mouse. Trans-tumor insertion of a 0.032-inch magnetic 
resonance imaging-heating-guidewire (MRIHG) is performed (open arrow). The radiofrequency-heated tumor is maintained at 42 °C by instantly measuring the temperature with 
a micro-figure thermometry wire (solid arrow), which is placed parallel to the MRIHG within the tumor. (B) Pathological study with hematoxylin and eosin staining confirms the 
successful generation of a breast xenograft tumor (400 × magnification). 

 
For comparison of therapeutic effects among 

different RFH temperatures, the same amount of 
doxorubicin (0.25 µM) was dripped into each of the 
four chambers while the bottom of chamber 4 was 
heated to 42°C for 20 minutes and that of chamber 1 
remained at 37 °C (Figure 1). For comparison of 
therapeutic effects among different treatments, breast 
cancer cells were divided into groups: no treatment 
(control), RFH-only (42 °C for 20 minutes), 
chemo-only (0.25 µM doxorubicin), and combination 
therapy (chemo plus RFH). The concentration of 
doxorubicin at 0.25 µM was selected based on previ-
ous studies by other groups[11-13]. Cells were then 
cultured for 72 hours before different laboratory ex-
aminations, including cell proliferation assay and 
apoptosis assay, were conducted to examine and 
compare the effects of various treatments on breast 
cancer cells. 

Laboratory examinations 
Cell proliferation was assessed using the Cell 

Counting Kit-8 (CCK-8; Dojindo, Kamimashiki-gun 
Kumamoto, Japan) according to the manufacturer’s 
instruction. Briefly, 100 μL of CCK-8 solution was 
added into each chamber and incubated for 120 
minutes. Then, cell proliferation was assessed by 
measuring the absorbance at 450 nm using a Univer-
sal Microplate Reader (BIO-TEK Instruments, Min-
neapolis, MN, USA). Cell apoptosis index was exam-
ined via staining with annexin V-conjugated fluores-
cein isothiocynate (FITC) and propidium iodide (PI) 
as described in the annexin V-FITC apoptosis detec-
tion kit (Becton Dickinson Biosciences, San Diego, CA, 
USA), and flow cytometry analysis (Becton Dickinson 
FACScan, Mount View, VA, USA). Flow cytometry 
results were analyzed by Cell Quest Pro software 
(Becton Dickinson). 

In vivo experiments 

In vivo experimental set-up 
 The animal protocol was approved by our In-

stitutional Animal Care and Use Committee. Female 
nu/nu mice at 4–6 weeks of age were used to generate 
the tumor model. A suspension of 1 × 107 Bcap-37 cells 
in 100 μL of phosphate-buffered saline (PBS) was in-
jected subcutaneously into the unilateral back of each 
mouse to initiate a breast cancer mass (Figure 2). 
Within two weeks, the tumor masses grew to ap-
proximately 5 mm in diameter. A 0.032-inch MRIHG 
was inserted through the center of each tumor for 
local heating, while a 2.7-mm micro-thermometry 
fiber was placed parallel to the MRIHG for instant 
measurement of the MRIHG-mediated RF heating at 
the target tumor (Figure 2).  

RFH-enhanced chemotherapy 
 Twenty-four mice bearing human breast cancer 

xenograft tumors were randomly stratified to four 
study groups (6 mice per group) with receiving dif-
ferent intratumoral treatments: (i) PBS (control), (ii) 
RFH-only (42 °C for 20 minutes via the MRIHG), (iii) 
chemo-only (intratumoral injection of 10-mg/kg 
doxorubicin), or (iv) combination therapy (chemo 
plus RFH).  

MRI follow-up 
Mice were anesthetized by intraperitoneal de-

livery of 4% chloral hydrate (0.01 mL/g) for MRI fol-
low-up. MRI was performed using a 3.0-Tesla MR 
scanner (GE Healthcare Corporation, New York, 
USA) by placing the mouse into a 100 mm-diameter 
micro-imaging coil. MRI was acquired before and at 
days 7 and 14 after treatment. T1-weighted images 
(T1WI) and 0.2-mmol/kg gadodiamide-enhanced 
T1WI (Omniscan, GE Healthcare) were acquired us-
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ing a rapid acquisition with OAx T1 550 Spin Echo 
sequence: TR/TE = 550 ms/15 ms, field of view = 8 
cm, matrix = 256 × 256, section thickness = 1.5 mm, 
intersection gap = 0.5 mm, NEX = 2; and total scan 
time = 3 minutes and 31 seconds.  

Pathological confirmation 
After satisfactory MRI, mice were euthanized by 

5% CO2 and the tumor masses were harvested. We 
then estimated the volume of each mass using the 
following formula: tumor volume = (length × width × 
width)/2 [14]. Owing to inevitable variation in tumor 
size at the beginning of treatment, relative tumor 
volume (RTV) was used for tumor growth compari-
son. RTV was calculated using the following formula: 
RTV = TVn/TV0, where TVn was the tumor volume at 
day n and TV0 was the tumor volume at day 0 [7].  

The harvested tumor tissues were then fixed in 
4% paraformaldehyde, embedded in paraffin, and 
sectioned at 5-mm slices. After de-waxing and hydra-
tion with a gradient ethanol series (100%, 95%, 90%, 
80%, and 70%), tissue slices were stained with the in 
situ Cell Death Detection Kit Fluorescein (Roche, Ba-
sel, Switzerland) and then exposed to fresh-
ly-prepared proteinase K working solution for 15–30 
minutes at 37 ℃ (10–20 μg/mL in 10 mM Tris/ 
HCl, pH 7.4–8). After washing with PBS, slices were 
incubated in 50 mL of TUNEL (terminal deoxynucle-
otidyl transferase-mediated nick end-labeling) reac-
tion mixture for 60 minutes in dark and humidified 
environment. They were again washed with PBS and 

sealed with Prolong Gold Antifade Reagent after 
staining with 4', 6-diamidino-2-phenylindole dihy-
drochloride (DAPI; Invitrogen, Carlsbad, USA) over-
night. All slides were examined with a fluorescent 
microscope (Leica, Solms, Germany). The number of 
apoptotic cells was counted by Image-Pro Plus 6 
software (Media Cybernetics, Rockville, MD, USA). 

Statistical analysis 
 Statistical analysis was performed using SPSS 

(IBM, Armonk, New York, USA). Data were present-
ed as the mean ± standard deviation. One-way analy-
sis of variance was performed to compare the average 
cell proliferation rate, cell apoptosis index, tumor 
volume, and RTV. Differences among the four study 
groups were considered statistically significant at p 
<0.05. 

Results  
RFH-enhanced chemotherapeutic efficiency in 
breast cancer cells 

In vitro combination therapy significantly de-
creased breast cancer cell proliferation (0.62 ± 0.04 vs. 
1.19 ± 0.02 vs. 1.00 ± 0.07 vs. 0.71 ± 0.07, p < 0.05) while 
increased their apoptosis index (55.37 ± 13.99% vs. 
1.61± 0.53% vs. 3.32 ± 0.61% vs. 43.32 ± 15.47%, p < 
0.05), compared to the other three treatment groups 
(controls, RFH-only, and chemo-only, respectively; 
Figure 3).  

 
Figure 3. (A) Cell proliferation assay demonstrates that the proliferation of cells treated with combination therapy (chemo plus radiofrequency heat [RFH]) is significantly 
reduced compared to those receiving other treatments. (B) Representative results of apoptosis assay via flow cytometry. (C) Apoptosis assay shows a higher average apoptosis 
index in cells treated with combination therapy (chemo+RFH) compared to those receiving other treatments (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
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RFH-enhanced chemotherapy for breast 
cancer xenograft models 

MRI demonstrated a significant tumor size re-
duction in mice treated with combination therapy 
compared to those receiving control, RFH-only, and 
chemo-only treatments in vivo (Figure 4). Such result 
was confirmed by subsequent pathological examina-
tion (Figure 5). The average RTV in the combination 
treatment group was significantly smaller than those 

of the control, RFH-only, and chemo-only groups 
(0.86 ± 0.50 vs. 4.46 ± 1.16 vs. 2.85 ± 1.54 vs. 2.01 ± 0.33, 
respectively, p < 0.05; Figure 5). The number of 
apoptosis cells and average apoptosis index in the 
combination therapy group were significantly higher 
than those in other three groups (37.02 ± 11.25% vs. 
9.80 ± 4.22% vs. 9.04 ± 8.50% vs. 23.29 ± 10.92%, p < 
0.05; Figure 6). 

 
Figure 4. T1-weighted images (T1WI) of mice bearing breast cancer xenografts in all four treatment groups, demonstrating homogeneous hypointense tumor masses (arrows) 
on the animals’ unilateral back. The tumor masses become hyperintense after intravenous administration of gadolinium (enhanced T1WI). The follow-up imaging of tumor growth 
at different time points shows that tumor size in the chemo plus radiofrequency heat (RFH) group (s–x) clearly decreases at week 2 after treatment (arrow on x), in comparison 
to those in the control (a-f), RFH-only (g-l), and chemo-only (m-r) groups. 

 
 
 
 

Figure 5. (A) Representative pathology of the tumor masses harvested from the 
four study groups further confirm the size reduction of tumor masses in mice 
receiving combination therapy with chemo plus radiofrequency heat (RFH). (B) 
Comparison of the relative tumor volume among the four treatment shows that 
RFH-enhanced chemotherapy significantly inhibits tumor growth at week 2 
post-treatment. 
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Figure 6. (A) Apoptosis assay demonstrates more apoptosis cells (green dots) in the combination therapy group (Chemo+RFH) than in other three groups, which is further 
confirmed by analysis of the apoptosis index, showing higher apoptosis index with combination treatment compared to other treatments (B) (*, p < 0.05; **, p < 0.01). 

 

Discussion 
Breast cancer is the most common malignancy in 

women worldwide. Although chemotherapy and 
hormone treatments have improved patient survival, 
ineffective chemotherapy remains a clinical problem 
owing to the disease’s significant heterogeneity with 
different histologic components, gene-expression 
profiles, and mutational patterns [15]. Systemic ad-
ministration of chemotherapy is conventional, but 
current technology does not guarantee sufficient ac-
cumulation of chemotherapeutic agents at the target 
tumors, whereas toxicities to other vital organs re-
main with systemic delivery [2, 16]. 

Recent developments of minimally-invasive in-
terventional radiology technologies have significantly 
improved cancer management, including that of 
breast cancer [17, 18]. Under the guidance of imaging, 
one can precisely place the interventional devices to 
the target tumors, thereby delivering highly concen-
trated therapeutics to the targets. Such local ap-
proaches can avoid the systemic administration of 
chemotherapeutic agents and thus minimize toxicity 
to other organs [19, 20].  

In the present study, we attempted to overcome 
the disadvantages of systemic chemotherapy for 
breast cancer by developing a novel interventional 
therapeutic approach that combined the benefits of 
multiple modalities including RF technology, inter-

ventional oncology, and chemotherapy. Our in vitro 
and in vivo results demonstrated that RFH could sig-
nificantly improve the efficacy of chemotherapeutic 
agent (doxorubicin) in human breast cancer cells and 
that intratumorally delivered RFH could significantly 
enhance local chemotherapy for breast cancer. The 
mechanisms underlying RFH-enhanced chemother-
apy might include heating to fracture tissue, increas-
ing permeability of the cytoplasmic membrane, in-
creasing cellular metabolism, and increasing the ac-
tivity of heat shock proteins [21]. In addition, RFH 
itself may also impair the drug efflux ability of cancer 
cells. All these mechanisms facilitate the entrance of 
therapeutics into targeted tumor cells for effective 
destruction of tumor tissues, and thereby improve 
therapeutic outcome.  

In addition, our novel technique potentially al-
lows simultaneous intratumoral delivery of both 
chemotherapeutic agents and RFH, which might ben-
efit conventional radiofrequency ablation (RFA) of 
tumors. RFA has become an important therapeutic 
tool for the treatment of unresectable tumors [22]. 
However, its application is limited in tumor masses 
that are in close proximity to normal structures prone 
to thermal injury, such as the vasculatures [23]. Fur-
thermore, incomplete ablation often occurs at the tu-
mor margins due to either decreased RFA heat by 
neighboring blood flows or irregularly shaped tumor 
masses being too large to be completely covered by 
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the RFA electrode field [24]. Ultimately, such draw-
backs of incomplete ablation often result in recur-
rences of RFA-treated tumors. A combination of 
RFH-enhanced local chemotherapy and intratumoral 
RFA may provide the opportunity of using 
RFA-associated peritumor hyperthermia to specifi-
cally enhance chemo-destruction of the tumor mar-
gins while avoiding RFA-related thermal injuries to 
the normal structures adjacent to the RFA-treated 
tumor masses [25, 26].  

Further efforts are required to determine 
whether this novel combination therapy approach can 
increase endpoint survival and to validate this new 
technique in different tumor models with optimiza-
tion of administered regimens. Bcap-37 cells were 
relatively fast growing breast cancer cells, and thus 
we had to limit our follow-up time up to two weeks 
after the treatments. This was because longer fol-
low-up period would result in the xenograft tumor 
masses, especially in the control animal group, be-
coming more than ten percent of the body weight, 
which was not approved by our Institutional Animal 
Care and Use Committee. Thus, as a limitation, this 
study did not allow us to evaluate the long-term 
therapeutic effects with follow-up MRI. 

In conclusion, the results of our study indicated 
that RFH might enhance the therapeutic efficacy of 
intratumorally delivered chemotherapy for breast 
cancer, thus establishing the groundwork for future 
development of interventional molecular im-
age-guided local chemotherapy for breast malignancy 
using RF technology-integrated interventional on-
cology and chemotherapy.  
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