## SUPPLEMENTARY MATERIAL

## Direct Imaging of Cerebral Thromboemboli Using Computed Tomography and Fibrin-targeted Gold Nanoparticles

Kim et al. CT-based direct cerebral thrombus imaging

Jeong-Yeon Kim<sup>1\*</sup>, Ju Hee Ryu<sup>2\*</sup>, Dawid Schellingerhout<sup>3</sup>, In-Cheol Sun<sup>2</sup>, Su-Kyoung Lee<sup>1</sup>, Sangmin Jeon<sup>2</sup>, Jiwon Kim<sup>1</sup>, Ick Chan Kwon<sup>2</sup>, Matthias Nahrendorf<sup>4</sup>, Cheol-Hee Ahn<sup>5</sup>, Kwangmeyung Kim<sup>2</sup>, Dong-Eog Kim<sup>1</sup>

- 1. Molecular Imaging and Neurovascular Research Laboratory, Dongguk University College of Medicine, Goyang, South Korea;
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea;
- Departments of Radiology and Experimental Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, TX
- 4. Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and,
- 5. Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.

\*These authors contributed equally to this work.

Correspondence:

Dong-Eog Kim (<u>kdongeog@duih.org</u>), Molecular Imaging and Neurovascular Research Laboratory, Dongguk University Ilsan Hospital, 814 Siksa-dong, Goyang, South Korea. (Tel +82-31-961-7211; Fax +82-31-961-7212)

or

Kwangmeyung Kim (<u>kim@kist.re.kr</u>), Biomedical Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro, Seoul, South Korea.

Table S1. Results of neurobehavioral tests over 3 weeks after intravenous injection of fib-GC-AuNPs (120 mg/kg) in C57Bl/6 mice (n =6)

|                             | 0 week |   |   |   |   | 1 week |   |   |   |   |   |   | 2 week |   |   |   |   |   | 3 week |   |   |   |   |   |   |   |
|-----------------------------|--------|---|---|---|---|--------|---|---|---|---|---|---|--------|---|---|---|---|---|--------|---|---|---|---|---|---|---|
| <b>Behavior</b> \ Animal ID | 1      | 2 | 3 | 4 | 5 | 6      |   | l | 2 | 3 | 4 | 5 | 6      | - | 1 | 2 | 3 | 4 | 5      | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
| Body position               | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Touch escape                | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Finger approach             | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Tail pinch                  | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Tail elevation              | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Abdominal tone              | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Grip strength               | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ataxic gait                 | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Tremors                     | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Palpebral closure           | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Lacrimation                 | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Skin color                  | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Acute death                 | 0      | 0 | 0 | 0 | 0 | 0      | ( | ) | 0 | 0 | 0 | 0 | 0      |   | 0 | 0 | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Values are neurobehavioral scores;<sup>1</sup> and, 0 indicates no abnormal sign.

Table S2. Results of complete blood counts and liver function test at 3 weeks after intravenous injection of fib-GC-AuNPs (120 mg/kg) in C57Bl/6 mice (n = 6)

| Parameter                             | Normal Range     | Values (n=6)       |  |
|---------------------------------------|------------------|--------------------|--|
| WBC (× $10^3$ cells/µl)               | 1.8 ~ 10.7       | $4.5 \pm 0.1$      |  |
| RBC (×10 <sup>6</sup> cells/ $\mu$ l) | $6.4 \sim 9.4$   | $6.4 \pm 0.2$      |  |
| Hemoglobin (g/dL)                     | 11.0 ~ 15.1      | $10.9 \pm 0.2$     |  |
| Hematocrit (%)                        | 35.1 ~ 45.4      | $33.4 \pm 1.3$     |  |
| MCV (fL)                              | $45.4 \sim 60.3$ | $48.0 \pm 0.4$     |  |
| MCH (pg)                              | 14.1 ~ 19.3      | $16.8 \pm 0.4$     |  |
| MCHC (g/dL)                           | $30.2 \sim 34.2$ | $33.9 \pm 0.4$     |  |
| CHCM (g/dL)                           | $25.0 \sim 30.0$ | $28.6 \pm 0.3$     |  |
| RDW (%)                               | 12.4~27.0        | $13.4 \pm 0.2$     |  |
| HDW (g/dL)                            | $2.2 \sim 2.4$   | $2.2 \pm 0.03$     |  |
| MPV (fL)                              | $5.0 \sim 20.0$  | $28.5 \pm 0.3$     |  |
| Neutrophil (%)                        | 6.6 ~ 38.9       | $15.6 \pm 5.6$     |  |
| Lymphocyte (%)                        | 55.8 ~ 91.6      | $67.3 \pm 6.6$     |  |
| Monocyte (%)                          | ≤ 7.5            | $15.2 \pm 2.7$     |  |
| Eosinophil (%)                        | ≤ 3.9            | $0.8 \pm 0.1$      |  |
| LUC (%)                               | 0.6 ~ 1.3        | $0.4 \pm 0.1$      |  |
| Basophil (%)                          | $\leq 0.2$       | $0.5 \pm 0.2$      |  |
| Reticulocyte (%)                      | 5.6~9.9          | $5.3 \pm 0.2$      |  |
| Platelet (× $10^3$ cells/µl)          | $592 \sim 2972$  | $1323.3 \pm 137.4$ |  |
| AST (IU/L)                            | $70 \sim 120$    | 110.8±16.3         |  |
| ALT (IU/L)                            | $\leq$ 45        | $43.8 \pm 15.6$    |  |
| ALP (IU/L)                            | $30 \sim 120$    | $36.4 \pm 23.0$    |  |
| Total protein (mg/dL)                 | $5.4 \sim 5.8$   | $5.4 \pm 0.4$      |  |
| Total bilirubin (mg/dL)               | $0.1 \sim 0.12$  | $0.1 \pm 0.01$     |  |

Values are mean ± standard error or as frequency (percentage). WBC: white blood cell RBC: red blood cell MCV: mean corpuscular volume MCH: mean corpuscular hemoglobin MCHC: mean corpuscular hemoglobin concentration CHCM: cellular hemoglobin concentration mean RDW: red cell distribution width HDW: hemoglobin distribution width MPV: mean platelet volume LUC: large unstained cell AST: aspartate aminotransferase ALT: alanine aminotransferase ALP: alkaline phosphatase



Figure S1. Results of laser Doppler flowmetry monitoring of cerebral blood flow (relative to the baseline, rCBF) in mice (n = 76) that underwent embolic middle cerebral artery occlusion (clot placement in the middle cerebral artery – anterior cerebral artery bifurcation area of the distal internal carotid artery). CCA denotes common carotid artery.



Figure S2. Characterization of the physicochemical properties of fibrin-targeted gold

## nanoparticles.

A, Ultraviolet-visible (UV-vis) light absorption spectra of glycol chitosan-coated gold nanoparticles (GC-AuNPs) before (blue) and after (red) the conjugation of fibrin-targeting peptides used in EP-2104R.[1] The surface plasmon resonance peak of GC-AuNPs and fibrin-targeted fib-GC-AuNPs appear similarly at 533 nm, indicating that the fibrin-targeting peptides on GC-AuNPs are not aggregated. B and C, Size distribution of GC-AuNPs (B) and fib-GC-AuNPs (C) as measured with dynamic light scattering (DLS). This indicates hydrodynamic diameters (mean  $\pm$  SEM) of 119.9  $\pm$  2.8 nm and 127.4  $\pm$  2.7 nm, respectively, with a mono-modal size distribution. **D** and **E**, Transmission electron microscographs show monodispersed and spherical fib-GC-AuNPs with a diameter of approximately 30 nm, indicating the non-hydrated metallic core size. Red arrows indicate the GC coating layer, which is collapsed under the non-hydrated conditions required by transmission electron microscopy. Size differences between the two methods of transmission electron microscopy measurement (**D** and **E**) and DLS (**B** and **C**) reflect the hydrophilic coat (i.e. GC) expanding in solution. F. UV-vis light absorption spectra of fib-GC-AuNPs in PBS buffer at 0 vs. 48 hours, reflecting the stability of the imaging agent. G. No noticeable cytotoxic effects of fib-GC-AuNPs (up to 50  $\mu$ g Au / ml) on HeLA cells for 24 hours. Scale bars = 20 nm.



**Figure S3.** X-ray attenuation property of fibrin-targeted glycol chitosan-coated gold nanoparticles (fib-GC-AuNPs).

*In vitro* imaging studies (n = 3) were performed using a clinical positron emission tomography (PET) / computed tomography (CT) scanner (Gemini; Philips Medical Systems, Cleveland, OH; values in Hounsfield Unit) as well as a microCT (mCT) scanner (NFR Polaris-G90; NanoFocusRay, Jeonju, Korea; values in arbitrary unit: A.U.).

PET / CT parameters: 120 kVp, 41 mA, 600 × 600 mm field of view, 0.390 x 0.390 x 0.390 mm<sup>3</sup> voxel size, 360 views, 512 × 512 reconstruction matrix, 236 slices, scanning time 4.11 seconds. mCT parameters: 65 kVp, 60  $\mu$ A, 26.7 × 26.7 mm field of view, 0.053 × 0.053 × 0.054 mm<sup>3</sup> voxel size, 360 views, 512 × 512 reconstruction matrix, 600 slices, 500 milliseconds per frame.

Pearson correlation analysis was used to calculate the  $R^2$  and P values.



Figure S4. Imaging-histology co-localization study for fibrin-targeted glycol chitosancoated gold nanoparticles (fib-GC-AuNPs) vs. non-targeted GC-AuNPs.

**A–C**, Axial micro-computed tomography (mCT) images (**A**), *ex vivo* Cy5.5 near-infrared fluorescent (NIRF) thrombus image (**B**) and visible light image (**C**) of a representative C57Bl/6 mouse brain with embolic clot at the left distal internal carotid artery bifurcation area after injection with fib-GC-AuNP. Compared with the larger axial mCT image in **A**, the smaller image in the green inlet of **A** is about 2 mm higher (toward the vertex). Red arrows indicate the thromboembolus in the anterior cerebral artery, and the green arrow indicates the thromboembolus in the posterior cerebral artery. **D–F**, Coronal reformations of the mCT (**D**) in the same plane as the sectioned brain (at red- and green-colored brain regions with arrows pointing the locations of thromboembolism in **A** and **B**) imaged optically for Cy5.5 (**E**), and gross brain digitally photographed (**F**). Red arrows in **A** and **B** match with the red-dotted

reticles in **D** and **E**, and the green arrow in the inlet of **A** matches with the green-dotted reticles in **D** and **E**. **G**–**J**, Cryosections (10  $\mu$ m thickness) stained with hematoxylin and eosin (**G**), autofluorescence image in the green (fluorescein isothiocyanate) channel showing the vessel walls at a higher magnification view (**H**) obtained in the areas indicated by the redand green-dotted reticles in **G**, Cy5.5 image showing the thrombus (**I**), and merged images (**J**) showing both. **A'–J'**, The same for an animal injected with GC-AuNPs. Please, note that fluorescently marked embolic clot is equivalent, but that targeted nanoparticles are much better seen on CT than the non-targeted version. Scale bars = 2 mm. (**A-G**); 500  $\mu$ m (**H**).

## References

- Irwin S. Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia. 1968; 13: 222-57.
- Overoye-Chan K, Koerner S, Looby RJ, et al. EP-2104R: a fibrin-specific gadolinium-Based MRI contrast agent for detection of thrombus. J Am Chem Soc. 2008; 130: 6025-39.