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Abstract 

Plasmonic nanoparticles have been widely applied in cell imaging, disease diagnosis, and photo-
thermal therapy owing to their unique scattering and absorption spectra based on localized surface 
plasmon resonance (LSPR) property. Recently, it is still a big challenge to study the detailed 
scattering properties of single plasmonic nanoparticles in living cells and tissues, which have dy-
namic and complicated environment. The conventional approach for measuring the scattering light 
is based on a spectrograph coupled to dark-field microscopy (DFM), which is time-consuming and 
limited by the small sample capacity. Alternatively, RGB-based method is promising in 
high-throughput analysis of single plasmonic nanoparticles in dark-field images, but the limitation in 
recognition of nanoparticles hinders its application for intracellular analysis. In this paper, we 
developed an automatic and robust method for recognizing the plasmonic nanoparticles in 
dark-field image for RGB-based analysis. The method involves a bias-modified fuzzy C-means al-
gorithm, through which biased illumination in the image could be eliminated. Thus, nearly all of the 
gold nanoparticles in the recorded image were recognized both on glass slide and in living cells. As 
confirmed, the distribution of peak wavelength obtained by our method is well agreed to the result 
measured by conventional method. Furthermore, we demonstrated that our method is profound 
in cell imaging studies, where its advantages in fast and high-throughput analysis of the plasmonic 
nanoparticles could be applied to confirm the presence and location of important biological 
molecules and provide efficiency information for cancer drug selection. 

Key words: Cell imaging, Bias-modified fuzzy C-means algorithm, localized surface plasmon res-
onance, plasmonic nanoparticle. 

Introduction 
Plasmonic nanoparticles (Au, Ag, Cu), owing to 

their unique optical and physical properties, have 
become promising materials in the field of biology, 
chemistry and photonics [1-3]. The localized surface 
plasmon resonance (LSPR) induced by interactions 
between surface electrons on nanoparticles and inci-
dent light could significantly amplify their scattering 
and absorption of light [4]. Since LSPR band is im-
pacted by size, shape, composition, surrounding me-
dium, and electron density of the nanoparticle, it 
provides wide approaches for construction of func-

tional sensors [5-7]. Moreover, due to the excellent 
biocompatibility [8], photostability [9] and facile 
modification [10, 11] of gold nanoparticles (GNPs), 
they have been applied in cell imaging [12-15], drug 
delivery [7, 16] disease diagnosis [17-19], etc. For 
example, a highly sensitive ATP sensor has been de-
veloped based on the scattering spectra shift of a sin-
gle GNP [20]. By conjugating with antibodies, spectra 
shift of GNP could be used to distinguish between 
cancerous and noncancerous cells [21]. The highly 
enhanced absorption of incident light also allows 
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plasmonic nanoparticle serving as efficient agent for 
photothermal therapy [22-24]. 

Recently, advances in optical techniques such as 
dark-field microscopy (DFM) and differential inter-
ference contrast (DIC) microscopy makes it possible to 
acquire plasmon resonance scattering light of indi-
vidual nanoparticles [25, 26]. In particular, dark-field 
microscopy coupled with spectrograph has high sig-
nal-noise ratio which has been widely applied in the 
studies of LSPR-based detections at sin-
gle-nanoparticle level. The concentration of NADH in 
the cells could be obtained according to the scattering 
spectra shift of the intracellular plasmonic nanoparti-
cles [27]. However, the DFM approach has several 
limitations for intracellular analysis. First, the spec-
trograph could only measure a few nanoparticles at a 
time. Since a large number of nanoparticles are incu-
bated in the cell, the result of arbitrarily selected na-
noparticles may be unreliable for an experiment [28]. 
Second, it is a time-consuming process in acquiring 
the spectra of numerous nanoparticles, which is in-
sufficient to study fast chemical reactions in pure 
samples, much less rapid biological process [29]. 
Third, the conventional single-nanoparticle spectro-
graph has the difficulties in focusing on floating na-
noparticles and endures the intense scattering inter-
ference of organisms in cells [27, 30]. Previous studies 
in our group have introduced a RGB-based method 
for monitoring plasmonic nanoparticles in the 
dark-field images [28, 31], which holds potential for 
high throughput analysis. Development of digital 
cameras enables acquiring images at high speed 
(more than 100 f/s). In RGB-based method, scattering 
spots of individual nanoparticles in the cells are seg-
mented from the dark-field image by naked eye, the 
RGB value of pixels in the spots is subsequently ap-
plied to evaluate peak wavelength of scattering light 
and estimate the size of gold nanoparticles. Nonethe-
less, it is still a challenge to recognize the scattering 
spots of nanoparticles in living cells, which have dy-
namic and complicated environment. Though the 
scattering spots are able to be recognized by naked 
eyes, we found it would cause individual bias, par-
ticularly for intracellular analysis with significant 
scattering interference. Moreover, it is still inefficient 
and impossible to recognize every individual scatter-
ing spots and their alternation by naked eye. Conse-
quently, the above limitations has hindered the DFM 
to achieve detailed and reliable scattering information 
of intracellular plasmonic nanoparticles. Another 
method has been developed based on dual wave-
length difference imaging for analysis of intracellular 
GNPs, which requires a special light source with two 
laser beams [30]. 

Here, we present an automatic, robust and 

high-throughput method for studying the resonance 
scattering light of single plasmonic nanoparticles in 
dark-field image for intracellular analysis. A bi-
as-modified fuzzy C-means (BM-FCM) algorithm is 
introduced to eliminate disturbance of scattering light 
in the image, which is a useful method in the field of 
pattern recognition for image segmentation [32, 33]. 
The recognized pixels in the image is subsequently 
clustered by a region growth method. Therefore, peak 
wavelength of every individual nanoparticle could be 
calculated through the RGB-based method. To testify 
the accuracy of our method in recognizing the nano-
particles, gold nanoparticles (GNPs) on glass slide 
and in living cells were used as model samples. Al-
most all the scattering spots of the plasmonic nano-
particles in the recorded image could be recognized 
and clustered through our method. We confirm that 
the distribution of calculated peak wavelengths of 
GNPs is consistent with the result measured by con-
ventional spectrograph. And the result of cell exper-
iment agrees with the previous study. Furthermore, 
we demonstrate that our method allows to obtain 
detailed and reliable information for monitoring the 
distribution of NADH in cancer cells, and estimating 
efficiency of cancer drug. 

Materials and methods 
Materials 

All reagents were of analytical grade. Taxol (AR), 
3-mercaptopropyl trimethoxysilane (95% v/v) and 
the reagents for cell culture were purchased from 
Sigma-Aldrich Co. Ltd. (USA). Absolute ethanol (AR), 
acetone (AR), and copper chloride (AR) were pur-
chased from J&K Scientific Ltd. (China).Ultrapure 
water with a resistivity of 18.2 MΩ·cm was produced 
using a Milli-Q apparatus (Millipore, USA) and used 
in the preparation of all the solutions. The indium tin 
oxide (ITO) slides were purchased from Geao Co. Ltd. 
(China). Gold nanoparticles used in the experiments 
were prepared as described previously [27]. Scanning 
Electron Microscopy (JSM-6360LV, JEOL, Japan) and 
a Ocean optical USB 2000+ UV-vis spectrometer were 
used to characterize the GNPs. 

Preparation of the Samples 
For bulk solution experiment, gold nanoparticles 

were immobilized on the glass slide. The surfaces of 
ITO slides were cleaned by ultrasonic bath in both 
ethanol and water for more than 1h, respectively. To 
modify the clean ITO slides (20 mm×10 mm ×1.1 mm) 
with thiol, the slides were soaked in a solution of 1% 
v/v 3-mercaptopropyl trimethoxysilane in ethanol for 
12 h and then rinsed with ethanol several times and 
dried under a stream of nitrogen. GNPs were modi-
fied on the slide by Au-S chemical adsorption after 
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placing the slides in diluted gold colloid solution (10 
times) for 15 min. The GNP-functionalized ITO slides 
were rinsed with water and dried under a stream of 
nitrogen prior to the dark-field observation. 

For intracellular experiment, HeLa cells were 
selected as model sample. The cells were cultured in 
Dulbecco's modified Eagle's medium (DMEM), sup-
plemented plus 10% heat-inactivated fetal bovine se-
rum (FBS) and antibiotics (100 mg/mL streptomycin 
and 100 U/mL penicillin) at 37ºC in the humidified 
atmosphere under 5% CO2. The Cells were seeded in 6 
cm dishes at a density of 6×105 cells/dish and grew 
for 12 h. Then cells were incubated with fresh media 
containing 0.15 nM GNPs (v/v, 8:1) for 24 h. As con-
trol experiments, 10 µM of taxol solution was added 
to the culture medium, followed by incubation at 37ºC 
for 5 h. Then cells were rinsed by Tris-buffered saline 
(TBS, 10 mM, pH = 7.3, 0.15 M NaCl). After recording 
the original spectra of GNPs in cell, 20 µM 
CuCl2solution were added to the media to form the 
Au@Cu core-shell structure. 

Measurement with Dark-Field Microscopy and 
Scattering Spectroscopy 

As shown in Figure 1A, the dark-field meas-
urements were carried out on an inverted microscope 
(eclipse Ti-U, Nikon, Japan) that was equipped with a 
dark-field condenser (0.8 < NA < 0.95) and a 40× ob-
jective lens (NA = 0.8). The GNP-functionalized slides 
were immobilized on a platform, and the white light 
source (a 100 W halogen lamp) was used to excite the 
GNPs and generate plasmon resonance scattering 
light. A true-color digital camera (Nikon DS-fi, Japan) 
was used to capture the dark-field images. The scat-
tering light of gold nanoparticle was split by a mon-
ochromator (ActonSP2300i, PI, USA) that was 
equipped with a grating (grating density: 300 
lines/mm; blazed wavelength: 500nm) and recorded 
by a spectrometer CCD (pixis 400, PI, USA) to obtain 
the scattering spectra.  
Results and Discussion 
Process of Dark Field Image Analysis 

The flow diagram of data process is depicted in 
Figure 1B. Firstly, the recorded dark-field image is 
converted to gray scale image. If the image has ho-
mogeneous illumination, the gray scale image could 
be directly converted to binary image through a 
threshold. Otherwise, for images with biased illumi-
nation field such as scattering interference of cells and 
their contents, it is hard to find an appropriate 
threshold to segment the scattering spots of nanopar-
ticles. Therefore, a bias-modified fuzzy C-means 
(BM-FCM) algorithm is used to evaluate the influence 

of biased illumination at each pixel. The model of 
dark-field image based on the premise that the influ-
ence of biased field at each pixel is represented as a 
gain factor to the intensity with homogeneous illu-
mination, as Equation 1, 

   
…(1) 

 …(2)  

where , ,  are the intensity of 
gray scale image, the intensity with homogeneous 
illumination and the gain factor representing the bi-
ased field at position (p, q) in the image which has a 
size of m×n. To fit the form of BM-FCM, 2D descrip-
tion of the image was rearranged to a 1D column 
vector, and taking logarithmic transformation into 
Equation 2. Then the object function of BM-FCM was 
given by Equation 3, 

 …(3) 

where parameter c is the number of classifications; 
m≥1 is a custom weighting exponent; control param-
eter α is set according to the signal-noise rate. In the fol-
lowing applications, we use the configuration of c=3, 
m=2, α=0.2. u(j,k) describes the fuzziness of a pixel to 
the clustering center v1(j) and v2(j); the operation 

 
is 

the Euclidean norm.  is the averaged intensity 
of the k-th pixel’s neighborhood. The third term in 
Equation 3 is a restriction formula, in which λ is a La-
grange multiplier. The process for evaluating the pa-
rameters follows an iterative method as reported pre-
viously [32]. The estimated g(k) was subsequently 
subtracted from the gray scale image to achieve a 
modified image with homogeneous illumination. 
Then the modified image is converted into binary 
image through a threshold. The binary image informs 
whether a pixel in the image is recognized for a scat-
tering spot. It could be applied as a mask for the 
dark-field image. To clustering the recognized pixels, 
a region growth algorithm is used to scan throughout 
the masked image [35]. Finally, wavelength peak of 
each scattering spot is calculated through the 
RGB-based method as described previously [31]. For 
spots whose peak wavelength is lower than 500 nm 
were filtered as they may contribute to the dirt on the 
slide or organ in the cells. The whole process is real-
ized in a Matlab program. 
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Figure 1. (A) Setup of the dark-field microscope. The light that scatters from GNPs is captured by the imaging CCD. (B) Flow diagram of the data process. 

 
Analysis of GNPs on Clean Glass Slide 

In this section, we testified presented method by 
analyzing the scattering of GNPs on clean glass slide, 
whose spectra could be accurately acquired by spec-
trograph. Figure 2A shows the dark-field image of 
GNPs (approximately 52 nm in diameter, Supple-
mentary Material: Figure S1) immersed in water. The 
dark-field image was firstly converted to a gray scale 
image. Due to the homogeneous illumination of the 
dark-field image, the scattering spots of GNPs were 
able to be discriminated on the basis of the intensity of 
pixels in the image. Thus, the gray scale image was 
directly converted to a binary image through a 
threshold. In the binary image, pixels in the scattering 
spots of plasmonic nanoparticles have been seg-
mented from the background. Those recognized pix-
els were clustered into groups through the region 
growth algorithm, as shown in Figure 2B. Therefore, 
the scattering spots of nanoparticles could be ana-
lyzed individually in the further step. Since the 
threshold highly impacts the result of recognition, it 
should be carefully set. Here, an automatic threshold 
detection process as the Otsu method was used to 
obtain an optimal threshold [34]. We confirmed that 
nearly all of the GNPs in the image were accurately 
recognized by our method (Supplementary Material: 
Figure S2).  

After the recognition, peak wavelength of all the 
localized GNPs were automatically calculated 
through the RGB-based method. The distribution 
histogram of the calculated result was perfectly fitted 

to a Gaussian function (Figure 2C) centered at 558 nm. 
To examine the accuracy of our method, we acquired 
scattering spectra of 15 GNPs in the image by the 
spectrometer CCD as shown in Figure 2D. The mean 
value of the peak wavelengths of the spectra is 559 nm 
which is comparable to the calculated result. This re-
sult suggests that our method is appropriate to rec-
ognize the scattering spots of GNPs. Furthermore, the 
distribution of peak wavelength could inform the 
purity of the nanoparticles, and give a comprehensive 
description of the sample at single particle level. 
Whereas, the spectrometer-based method is easily 
influenced by the selection of nanoparticle. It is also 
notable that our method is very fast to obtain these 
scattering spots and evaluate their peak wavelengths. 
A rough comparison of presented method with con-
ventional method on analysis speed has been given in 
the Supplementary Material. 

Analysis of GNPs in Living Cells 
The difficulty for localizing the scattering spot 

originates from the scattering interference of cells and 
their containers, which would produce a biased illu-
mination field in dark-field image of GNPs. Therefore, it is 
insufficient to segment the scattering spots of gold 
nanoparticles according to the intensity of gray scale 
image. Here, we used a dark-field image of intracel-
lular GNPs as an example (Figure 3A). The scattering 
light from cells overlapped with the scattering spots 
of GNPs obviously. By directly applying a threshold 
to the gray scale image (Figure 3B), the binary image 
was obtained as shown in Figure 3C. In the binary 
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image, white pixels reflects to the recognized region, 
in which part of the pixels belongs to the scattering of 
cells and have been merged with the pixels of scat-
tering spots. As a result, most of the scattering spots 
have not been well segmented. This unsatisfied result 
is mainly due to the high intensity of biased field 
caused by the cell scattering. To solve this problem, it 
is necessary to estimate the biased field in the image, 
which could be realized by the bias-modified fuzzy 
C-means (BM-FCM) algorithm in our method. Conse-
quently, a modified image was obtained as shown in 
Figure 3D by subtracting the biased field from the 
gray scale image. It is clear that scattering of cells has 
been removed in the modified image. Figure 4D 
shows the binary image converted from the modified 

image through a threshold. Since the recognized pix-
els have not been merged with the pixels of cell scat-
tering, the region growth method could cluster them 
into groups of individual scattering spots. By apply-
ing this method, a total number of 264 nanoparticles 
were recognized and marked in red rectangle as de-
picted in Figure 3F. Because of the benefit of the 
BM-FCM, the scattering spots have been well seg-
mented. To evaluate whether the presented method 
can be used for real-time detection in cells, we have 
studied the time dependent behavior of the nanopar-
ticles in cells. The results supported that our method 
could be used in the complex environment (see the 
Supplementary Material: Figure S3).  

 

 
Figure 2. (A) DFM image of GNPs immersed in water on glass slide. (B) Detailed view of the DFM image and the localized scattering spots are marked by 
red rectangle. (C) Histogram of localized GNPs’ peak wavelength in the DFM image fitted to a Gaussian function. (D) Scattering spectra of 15 different single 
GNPs measured by spectrograph in the DFM image. 
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Figure 3. (A) Dark-field image of HeLa cell incubated with GNPs and the corresponding bright-field image (insertion). (B) Gray scale image converted from 
the original image. (C) Binary image converted from the gray scale image through a threshold. (D) Modified image by substrate the biased illumination from 
the gray scale image. (E) Binary image converted from the modified image through a threshold. (F) Result of recognition, scattering spots of GNPs are 
framed by red rectangle. Scale bars in (B)-(F) is 50 μm. The thresholds are calculated by the Otsu method, respectively. 

 

 
Figure 4.(A) DFM images of GNPs in HeLa cells which have been treated with taxol (10 μM) and then incubated in a TBS solution that contains 20 μM 
CuCl2 for 3 h. (B) DFM images of GNPs in HeLa cells that have not undergone treatment with taxol. (C and D) Detailed views of the DFM images in (A) 
and (B), respectively. Scattering spots of GNPs were localized by the presented method and marked by red rectangles. (E) Distribution of the GNPs' peak 
wavelength in (A) fitted by a Gaussian function showing a peak at 559 nm. (F) Distribution of the GNPs' peak wavelength in (B) fitted to two Gaussian peaks 
labeled as PI and PII. 
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Application in Cancer Drug Screening 
In a previous study, we demonstrated an appli-

cation of GNPs as nanoprobes for investigating the 
efficiency of cancer drug, based on the scattering 
properties of gold and copper nanoparticles which are 
able to detect NADH in living Hela cells using DFM 
[27]. GNPs with diameter of approximately 50 nm 
were incubated in living cells for 24 h. After treatment 
with copper ions for 3 h, NADH in the cells reduced 
copper ions to copper atoms, which would adsorb 
onto the surface of gold nanoparticles to form the 
Au@Cu core−shell structure. This formation of 
core−shell structure led to an obvious red shift in the 
scattering wavelength of the nanoparticles. On the 
contrary, with the addition of cancer drug taxol which 
could confine the generation of NADH, the reduction 
process of copper ions was prevented. As a result, the 
structure of most GNPs in the cells was unchanged, 
which indicates that the cancer drug was effective. In 
the analysis part, only several nanoparticles were 
measured to evaluate the shifts in scattering spectra 
through the spectrometer CCD. If we could recognize 
and monitor the GNPs in the cells, the result of drug 
efficiency would be more reliable, and the mapping of 
the cancer drugs that targets NADH in the cell is able 
to be achieved.  

Dark-field images of HeLa cells with and with-
out treatment of the taxol are depicted in Figure 4A 
and Figure 4B, respectively. It is difficult to identify 
the difference between the nanoparticles in the two 
images by naked eyes. Our method was applied to 
automatically recognize the scattering spots of GNPs 
in these cells, and calculate their peak wavelengths 
through the RGB-based method. As a result, the bi-
ased field was eliminated and most of the GNPs were 
recognized (Figure 4C and Figure 4D). The total 
number of recognized GNPs in dark-field images of 
HeLa cells with and without treatment of the taxol 
were 817 and 556, respectively (Supplementary Mate-
rial: Figure S4 and Figure S5). Determined peak 
wavelengths of GNPs in Figure 4A were distributed 
following a Gaussian function centered at 559 nm 
(Figure 4E), which illustrated that most of the GNPs 
did not show obvious red shift of the peak wave-
length. Without treatment of taxol, the peak wave-
lengths of GNPs in Figure 4B fall into two populations 
labeled as PI at 564 nm and PII at 574 nm (Figure 4F). 
For the population PI, a limited red shift of the peak 
wavelength (less than 5 nm) was observed. While the 
population PII has a significant red shift (more than 10 
nm), which indicates that the generation of NADH 
was not suppressed near the GNPs.  

We attribute the histogram peak in Figure 4E to 
the GNPs surrounded by low concentration of NADH 

in the cells. The inhibited generation of NADH im-
plies that the cancer drug has effected around the 
GNPs, which is consistent with the previous results. 
The histogram obtained by our method also informs 
that about 13% of the GNPs in a cell underwent red 
shift more than 10 nm. This result could not be con-
cluded by the conventional spectrograph-based ap-
proach, because of the small sample capacity. The GNPs 
with significant red shift have probably turned into 
Au@Cu core−shell structure due to the high concen-
tration of NADH, which indicates few cancer drugs 
existed nearby. This new observation of intracellular 
cancer drug achieved by our method is supported by 
the nature of heterogeneous distribution of cancer 
drug in cells. Hence, our high throughput method is 
promising to map the distributions of drugs and drug 
targets in cells. Moreover, compared with the con-
ventional spectrograph-based approach, the results 
obtained by our method is more reliable and com-
prehensive.  

Conclusion 
In summary, we developed an automatic meth-

od for analyzing plasmonic nanoparticles for intra-
cellular studies based on the DFM image. To our best 
knowledge, it is for the first time to apply a bi-
as-modified fuzzy C-means to eliminate the scattering 
interference in dark-field images. The peak wave-
lengths of plasmonic nanoparticles obtained by our 
method agreed well with the results measured by 
conventional spectrograph. Due to its advantage of 
high throughput and fast analysis speed, the method 
could provide distributions information of peak 
wavelengths, which could be extremely useful in 
analysis of complicated samples that consists of na-
noparticles with different peak wavelengths. The 
drug screening experiments showed that our method 
could be utilized to analyze the efficiency of cancer 
drug and confirm the presence and location of NADH 
in the living cells. Furthermore, our method does not 
require any improvements of the device, which en-
sures its popularity in any DFM instruments. We be-
lieve that this novel method could promote the ap-
plications of plasmonic nanoparticles in studying fast 
chemical reactions and biological processes in living 
cells. 

Supplementary Material 
Figures S1 – S5. 
http://www.thno.org/v05p0188s1.pdf  
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