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Abstract 

A software tool is presented for interactive segmentation of volumetric medical data sets. To allow 
interactive processing of large data sets, segmentation operations, and rendering are 
GPU-accelerated. Special adjustments are provided to overcome GPU-imposed constraints such 
as limited memory and host-device bandwidth. A general and efficient undo/redo mechanism is 
implemented using GPU-accelerated compression of the multiclass segmentation state. A broadly 
applicable set of interactive segmentation operations is provided which can be combined to solve 
the quantification task of many types of imaging studies. A fully GPU-accelerated ray casting 
method for multiclass segmentation rendering is implemented which is well-balanced with respect 
to delay, frame rate, worst-case memory consumption, scalability, and image quality. Performance 
of segmentation operations and rendering are measured using high-resolution example data sets 
showing that GPU-acceleration greatly improves the performance. Compared to a reference 
marching cubes implementation, the rendering was found to be superior with respect to rendering 
delay and worst-case memory consumption while providing sufficiently high frame rates for in-
teractive visualization and comparable image quality. The fast interactive segmentation operations 
and the accurate rendering make our tool particularly suitable for efficient analysis of multimodal 
image data sets which arise in large amounts in preclinical imaging studies. 

Key words: Interactive Segmentation, Medical Image Analysis, Multimodal Imaging, GPU Processing, Seg-
mentation Rendering, Undo/Redo 

Introduction 
Modern preclinical and clinical imaging devices 

generate three-dimensional data sets at high resolu-
tions, whose large data amounts pose a challenge for 
visualization and analysis. For scientific purposes, but 
also increasingly for diagnosis and treatment plan-
ning in clinical applications, extraction of quantitative 
measurements is needed. To derive such quantitative 
measurements, segmentation is a commonly required 
intermediate step. A segmentation is usually defined 
as a subset of voxels, i.e., represented by a binary 
mask or label mask in case of multiple regions [1]. 
This voxel-wise representation is suitable for many 
operations such as thresholding, region growing, and 

morphological operations [2]. Segmented regions can 
be used to measure volumes and other properties of 
organs or lesions and are useful to analyze multi-
modal data sets [3]. 

Automated or semi-automated methods for im-
age segmentation have been proposed for special ap-
plications such as liver segmentation [4], segmenta-
tion of multiple sclerosis lesions [5] or mouse organ 
segmentation [6]. Automated segmentation methods 
are usually favored over a manual segmentation 
workflow because of their reduced workload for the 
user and the improved user-independence. However, 
for many applications an automated algorithm is 
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simply not available and the development of an au-
tomated method for a single experiment is often not 
worth the effort. Furthermore, automated methods 
rarely work in all cases robustly and the remaining 
cases need to be corrected manually. Therefore, a 
software tool for efficient interactive segmentation is 
required for many applications. 

For large data sets, the processing time can 
quickly become a bottle neck, both for segmentation 
and rendering. Fortunately, modern graphics pro-
cessing units (GPUs) provide massive processing 
power. These powerful devices come with several 
limitations though. To fully load these GPUs thou-
sands of threads need to be kept busy which requires 
a fine grained level of parallelism. The GPU memory 
is fast, but limited in size. Furthermore, the transfer 
between host and GPU memory can easily become a 
bottleneck. While GPUs are becoming easier to pro-
gram, simple code that minimizes diverging thread 
paths and scattered memory accesses is still the recipe 
to achieve the highest performance [7]. 

We present a newly developed GPU-accelerated 
tool for interactive segmentation with several essen-
tial and novel contributions. For reliable operation, 
we used a segmentation rendering with bounded 
worst case memory requirements. This is important to 
avoid sudden breakdown in special situations, e.g., 
when thresholding a noisy data set. Furthermore, all 
segmented regions, which we call 'classes', are ren-
dered together and the memory consumption is in-
dependent on the segmentation state and the number 
of segmented regions. Moreover, the preprocessing of 
the segmentation rendering, including computation of 
a space-leaping data structure required for efficient 
ray casting, is GPU-accelerated to minimize the delay 
between a segmentation operation and visualization 
of the result. A fast filter is proposed to reduce stair-

case artifacts, which result from the discrete nature of 
the segmentation maps, while maintaining visibility 
of small structures. After the preprocessing, views can 
be rendered at high frame rates from any viewing 
position to allow interactive inspection of the seg-
mentation state by rotation, panning, and zooming. 
The segmentation rendering can be combined with 
other isosurfaces and transparent overlays, i.e., vol-
ume rendering, in a way that it generates geometri-
cally correct images suitable for stereo vision. 

The bottleneck incurred by limited GPU memory 
and transfer bandwidth is compensated by com-
pressing and decompressing the segmentation maps 
on the GPU, enabling a general and efficient un-
do/redo mechanism. A set of fast segmentation op-
erations is implemented which can be used to handle 
many types of applications (Figure 1).  

To assess the speed-up realized by 
GPU-processing, we carried out performance meas-
urements for several operations. We compared our 
approach for segmentation rendering with a reference 
implementation of marching cubes to show that it is 
faster under many relevant conditions while main-
taining favorable worst-case memory requirements. 

While other systems for interactive medical im-
age inspection and analysis were proposed earlier 
[8–11], we believe that our system bears novel con-
tributions due to its broad applicability, robustness 
achieved through bounded worst case memory con-
sumption, its efficient undo/redo implementation, 
and the fast visual response after changing the seg-
mentation state. While many of the segmentation op-
erations may be supported by other tools in a general 
purpose setting, our tool is particularly suitable for 
efficient interactive analysis of multimodal image 
data sets which arise in large amounts in preclinical 
imaging studies.  

 
 

 
Figure 1: Interactive segmentation applications. A) Organ segmentation for biodistribution determination. B) Marker segmentation for multimodal image fusion. C) Bone 
segmentation and labeling. D) Segmented blood vessels of a mouse with a stenosed carotid artery. E) Segmented tumor blood vessels. F) Fat segmentation (visceral and sub 
cutaneous fat of a mouse). Data sets were acquired using µCT (micro Computed Tomography). 
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The software, named Imalytics Preclinical, has 
been used for analysis of passive drug delivery sys-
tems [12], active targeting [13], biodistribution analy-
sis [14], probe development [15], cell labeling [16], 
ballistic soap experiments [17], blood perfusion [18], 
dental implants [19], functional ultrasound [20], ath-
erosclerotic inflammation [21], atherosclerotic calcifi-
cations [22], carotid artery stenoses [23], tis-
sue-engineering [24], and quantification of body fat 
[25]. Information about the availability of the software 
can be found on our institutional website 
(http://exmi.rwth-aachen.de/).  

Related Work 
Parallel processing, using the shared memory 

paradigm, is particularly helpful to reduce the delay 
after each segmentation step. Simple operations, such 
as thresholding are straightforward to parallelize. 
Others, such as region growing, are more difficult 
[26]. Morphologic operations, e.g., dilation, erosion, 
opening, and closing, can be efficiently implemented 
using the Euclidian distance transform. This operation 
receives a binary 3D mask as input and the output is 
defined as a 3D image where the voxel values contain 
the distances to the closest true voxel. Dilation and 
erosion are implemented by applying a threshold on 
the output of the distance transform. The construction 
time is linear in the number of voxels and independ-
ent of the state of the binary mask [27]. Recently, the 
accurate Euclidian distance transform has been im-
plemented for GPUs [28]. The implementation re-
quires multiple buffers however, which may conflict 
with the limited memory situation for GPUs.  

For undo/redo, the usual implementation is to 
provide a reverse operation or to store the previous 
state. This is problematic because reverse operations 
are not available for many operations, e.g., morpho-
logic operations [2] and storage of multiple segmen-
tation states would require excessive amounts of 
memory. 

3D rendering of volume data can be classified 
into direct and indirect methods [29]. For the special 
purpose of segmentation rendering, both types of 
methods can be applied. Indirect rendering methods 
and particularly the marching cubes algorithm [30,31] 
are traditionally used [32]. The marching cubes algo-
rithm extracts triangles from the volume data to ap-
proximate an isosurface. These triangles can be ren-
dered at high speed for any viewing position by a 
GPU. The triangle extraction can be costly, however, 
even with GPU-accelerated methods [33]. Further-
more, the worst case memory consumption can be 
excessive, because up to 5 triangles can be generated 
per voxel [33]. 

Direct rendering methods, also called ray casting 

or volume rendering, compute the image by travers-
ing the volume along individual rays for each camera 
pixel. The final color is accumulated as the ray is 
traced through the volume. Ray casting benefits from 
early termination, i.e., the tracing can be stopped 
when an opaque state is reached. Furthermore, empty 
space regions can be skipped (“space-leaping”) using 
special data structures [34]. Ray casting has been used 
to visualize segmentations before. In [35], a modified 
z-buffer was used to select the visible voxels for a 
subsequent ray tracing step. Hadwiger et al. com-
bined the segmentation rendering with transparent 
volume rendering [36]. Sherbondy et al. applied a 
general volume rendering for a GPU-accelerated re-
gion growing method [37]. 

To implement efficient space-leaping, tree-based 
structures such as k-dimensional trees or octrees are 
most commonly used [38]. GPU implementations for 
tree structures have been proposed, but adjustments 
were necessary, particularly due to limited memory 
and registers per GPU thread or to avoid recursive or 
excessively diverging code paths [39]. When using 
tree structures for ray casting, much time is spent 
during traversal of the tree [40]. Flat grid-based opti-
mization structures are an alternative to tree struc-
tures [41]. They provide the distance to the closest 
opaque voxel and indicate a safe jumping distance 
[42,43]. When using a distance map, this is called 
sphere casting [44]. Ray casting code is much simpler 
for flat grid-based structures, bearing advantages for 
GPU processing. Furthermore, grid-based structures 
are more predictable with respect to memory re-
quirements and computation cost [38], which is es-
sential for a robust segmentation tool. 

For marching cubes, the frame rendering time is 
proportional to the number of triangles, which, alt-
hough depending on the image structure, is propor-
tional to the number of voxels, i.e., cubic in the vol-
ume diameter. Ray casting on the other hand is more 
affected by the target resolution of the 2D image be-
cause the cost for each ray is linear in the volume 
diameter. For these theoretical reasons, ray casting 
should outperform marching cubes for large data sets, 
but the question is, whether the turning point is 
reached with practically relevant data sets and when 
generating images of high resolution. 

Segmentation Operations 
In this section, a set of interactive segmentation 

operations is described, which is sufficient for many 
problems. A segmentation defines a partition of the 
voxels into a set of user-defined classes, such as "liv-
er", "tumor", or, "bone". Some operations require one 
or more seed points or an input and output class to 
specify or restrict the operation. These can be pro-
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vided by clicking into slice views or into the rendered 
3D image. In the latter case, the depth map resulting 
from the last rendering is used to find the corre-
sponding point in 3D [35]. 

Segmentation Representation 
Segmentation maps are represented as 3D data 

sets with one byte per voxel which stores the class 
index associated to the voxel. The value 0 is reserved 
for unclassified while the value 255 is reserved to be 
used as hidden temporary class. Therefore, 254 dif-
ferent non-overlapping classes can be represented. 
The user can add, remove, or rename classes and 
change their colors. 

Compression of Segmentation Maps 
To reduce memory consumption and mitigate 

the limited transfer bandwidth between host and 
GPU memory, a GPU-based compression and de-
compression method for segmentation maps is im-
plemented. The segmentation maps are highly com-
pressible by simple run length encoding in many 
practical cases. To compress and decompress, each 
GPU thread operates on one row of the 3D data set in 
the Y direction, i.e., the second leading dimension. 
This is advantageous because the memory accesses of 
successive GPU threads are coalesced, i.e., parallel 
threads access adjacent memory addresses. Each run 
is encoded using two bytes (1 byte for the class, 1 byte 
for the run length) and the compressed data of all 
rows is concatenated. In detail, the compression op-
erates in three steps. In the first step only the number 
of runs per row is determined, indicating the amount 
of storage needed for this row. In the second step, a 
parallel prefix sum of these individual row sizes is 
computed using the thrust library, available with the 
CUDA toolkit [45]. The parallel prefix sum vector in-
dicates the “row starts”, i.e., the destination locations 
for the compressed row data. In the third pass, the 
rows are compressed using the known storage loca-
tion for each row. The decompression requires a sin-
gle pass only, making use of the stored row starts. 
While the row starts can be recovered from the com-
pressed data, we store them to achieve faster decom-
pression on the expense of a suboptimal compression 
ratio. 

General Undo/Redo Implementation 
Undo and redo is enabled for all segmentation 

operations by providing a fast and general imple-
mentation. After each segmentation step, the seg-
mentation map is compressed on the GPU. The com-
pressed data is transferred to the host memory and 
maintained in a list, to enable iteration through the 
previous states (Figure 2). The maximum size of the 
undo/redo list is set to a default of 20 segmentation 

states which seem to be appropriate for many appli-
cations. To restore a state, the segmentation is trans-
ferred to the GPU and decompressed. 

 

 
Figure 2: Undo/redo mechanism. GPU-accelerated compression enables a 
general and efficient undo/redo implementation. The strongly compressed segmen-
tation map is transferred between host and GPU memory. It is expanded, processed 
and compressed on the GPU. The bandwidths were measured using a GeForce Titan 
GPU. 

 

Euclidian Distance Transform 
The Euclidian distance transform is useful for 

several segmentation operations such as dilation and 
erosion [27]. The distance map of a binary input mask 
has the same dimensions as the binary mask and the 
resulting intensities are the Euclidian distance to the 
nearest foreground voxel. For 3D masks, the compu-
tation can be separated into incremental passes along 
the scan lines along the X, Y, and Z dimension [27]. 
Since the processing cost is linear in the image di-
mensions, the total cost is linear with respect to the 
number of voxels. 

In [28] a GPU-based implementation has been 
proposed using doubly linked lists embedded into a 
2D texture which requires memory overhead propor-
tional to the number of voxels. We implemented a 
GPU-based version with less memory overhead. The 
X, Y, and Z passes are computed sequentially as in 
[28] but for each pass (X, Y, and Z), each scan line is 
processed by a single GPU thread by directly apply-
ing the method developed by Maurer and colleagues 
[27]. The processing of each pass is performed using 
inline memory usage and much less overhead because 
each thread utilizes a temporary buffer of the same 
size as the scan line. Since the number of threads is on 
the order of several thousands, this requires much less 
memory overhead than another 3D buffer, at least for 
large data sets. Since the squared distances between 
voxels are integral, the computations are performed 
using integer operations. To reduce the memory 
overhead, the distance map can be computed and 
stored using unsigned 16 bit or 8 bit integers. In this 
case the resulting distances are clamped to maxima of 
255 and 15, respectively, because the squared values 
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are stored. 

Basic Operations 
A thresholding operation classifies voxels based 

on their intensities using an upper or lower threshold 
or both. In our tool, the input class is used to restrict 
the operation while the output class indicates the re-
sulting class. Thresholding can be used as a starting 
point, e.g., to segment all bright regions. This often 
results in several disconnected regions that need to be 
isolated, which can be achieved by a region growing 
operation in combination with a seed point. The re-
gion growing can be further guided or constrained 
using a maximum distance from the seed point, a 
maximum volume or an end point. Using a maximum 
distance is useful to isolate ribs for example (Figure 
1C) using a few tries to find the appropriate distance. 
While parallel GPU-based region growing methods 
have been proposed [26], our current implementation 
is running on the CPU, making use of a breadth first 
search. Therefore, the computational cost is deter-
mined by the volume of the filled region, which is 
often much smaller than the entire data set. 

Morphologic operations, i.e., dilation, erosion, 
opening, and closing, are implemented using the dis-
tance transform [46]. To dilate a class by a distance d, 
the distance transform is computed for this class and 
then the voxels with distance below d are reassigned. 
Erosion is implemented similarly and opening and 
closing are successive calls to dilation and erosion. 
They are useful to remove small islets or fill holes, 
respectively. Since the computational cost of our 
GPU-based distance transform is linear with respect 
to the number of voxels, dilation, erosion, opening, 
and closing can be computed in linear complexity, 
independent on the parameters d. Usage of the Eu-
clidian distance map is more natural than when using 
a rectangular kernel, which results in hard-edged 
segmentations (Figure 3). 

Several other segmentation operations were im-
plemented. For instance, a class can be moved inter-
actively by dragging the mouse. Classes can be de-

leted or assigned completely to another class. A class 
can be smoothed which is implemented by Gaussian 
filtering of the binary class mask and successive 
thresholding. Vessel diameters can be determined 
using the method described in [47]. All connected 
components below or above a user provided volume 
can be found. For a given segmentation, statistics can 
be computed such as volume, mean intensity, and 
standard deviation of the underlay or overlay. 

Contour Delineation 
While thresholding and region growing are 

usually preferred for their ease of use, their applica-
tion is often difficult, e.g., in the absence of strong 
contrast as for soft tissue organs in CT images. Organs 
or lesions that have a relatively simple shape, such as 
the bladder, kidneys, or, in many cases, tumors, can 
be segmented by interactively delineating the region 
boundaries. The user can draw “scribbles” in 2D slices 
to specify the boundaries of objects. Based on these, a 
temporary 3D region is computed that approximates 
the convex hull of the scribbles. The user can incre-
mentally provide more scribbles until the accuracy is 
found to be acceptable. These scribbles can be drawn 
in any slices of any orientation because they are 
drawn into a temporary 3D data set of the same size 
as the data set to be segmented. The computation of 
the region embraced by the scribbles approximates 
the convex hull defined by the scribbles in 3D. It is 
performed as follows: a subset, e.g., 100.000, of all 
possible pairs of scribble points, is randomly selected 
and these pairs are connected by plotting lines be-
tween them. The gaps between these lines are filled 
using a morphological closing operation using a dis-
tance proportional to the size of the region (10% of the 
bounding box of the scribbles). This approach is pri-
marily meant for convex regions, however, 
non-convex regions, e.g., stomach and liver, can be 
segmented incrementally because of the fast imple-
mentation. Furthermore, the scribbles can be used to 
delete parts of a segmentation or to split a connected 
component, e.g., to separate two bones at a joint. 

 

 
Figure 3: Dilation using a spherical kernel. A) Bones of a mouse scanned with µCT were segmented by thresholding. B) The result after dilation with a box kernel appears 
hard-edged. C) The result after dilation with a spherical kernel appears more natural because no spatial directions are favored. 
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Segmentation Visualization 
We provide a sphere casting and a marching 

cubes implementation for segmentation rendering. 
Both methods have a preprocessing phase, after 
which views from any viewing position can be ren-
dered efficiently. The preprocessing starts from the 
compressed segmentation state, expands it into a 
temporary buffer and builds the data structures re-
quired for efficient frame rendering. When the user 
initiates a segmentation operation, all memory re-
quired for rendering is released, except the com-
pressed buffer. This is done to provide as much as 
possible free GPU memory for the segmentation op-
eration. After performing the segmentation operation, 
the new segmentation state is compressed and the 
preprocessing for rendering is performed again. In 
this way the conflicting memory requirements for 
rendering and segmentation are reduced. The pre-
processing includes a staircase filter which is required 
to generate a smooth surface appearance. Both sphere 
casting and marching cubes are fully 
GPU-accelerated, including the preprocessing phases. 
They generate visually indistinguishable results and 
are therefore exchangeable from an application de-
velopment point of view. They differ in terms of 
memory consumption and frame rate and are affected 
by the type of segmentation in different ways. An-
ti-aliasing is implemented by 2x2 super-sampling for 
sphere casting and by 4 times OpenGL mul-
ti-sampling for marching cubes. 

Staircase Filter 
In contrast to a regular volumetric data set, e.g., a 

CT data set, the segmentation is represented by dis-

crete indices. If this would be rendered directly, the 
image would show staircase artifacts (Figure 4) which 
can be very distracting due to the unnatural appear-
ance. To define a smooth surface and achieve a more 
natural visualization, the binary opaqueness mask 
(values are 0 and 255) is smoothed using a nonlinear 
staircase filter. A linear Gaussian filter or box filter 
would smooth away thin regions, which is particu-
larly problematic when rendering fine vessel struc-
tures. Our proposed staircase filter is an adjusted 
3x3x3 box filter which operates on 8 bit data sets. 
Similar to a regular separable box filter the kernel [1/3 
1/3 1/3] is applied in X, Y, and Z directions. To 
maintain the visibility state, i.e., to keep visible voxels 
above the visibility threshold β + τ (e.g., 128) and in-
visible voxels below the threshold, an additional con-
straint is applied after each pass. Voxel intensities 
above β + τ (τ is a margin, e.g., 5) stay above β + τ and 
intensities below β - τ stay below β - τ. This constraint 
is applied after each of the three passes of the separa-
ble box filter. Each thread processes one row of the 
data set which allows inline memory usage, i.e., an-
other buffer is not required. 

Sphere Casting 
Our segmentation rendering method is essen-

tially reduced to render an isosurface. An isosurface is 
defined as the set of points whose intensity is equal to 
a given threshold, the isovalue. When rendering an 
isosurface by ray casting, the first intersection be-
tween the ray and the isosurface is sought. Each pixel, 
i.e., ray, is computed by a single GPU thread. 

 

 
Figure 4: Quality aspects of segmentation rendering. A) The discrete nature of a segmentation results in staircase artifacts (top) if not compensated with surface 
smoothing (bottom). Shown is a mouse lung from a µCT scan. B) Aliasing artifacts (top) at edges, e.g., of ribs or bronchi, can be avoided by super-sampling (bottom). C) Rendering 
of a segmentation of the chest bones and blood vessels of the same mouse, using a coarse mesh approximation (top) and high quality rendering (bottom). 
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The preprocessing required before rendering 
starts by decompressing the segmentation state into a 
3D buffer (1 byte per voxel). Then this is converted 
with inline memory usage into a binary opaqueness 
mask (0 and 255). Subsequently the staircase filter is 
applied to the buffer (Figure 5). The smoothed data set 
is copied into a 3D texture (1 byte per voxel) to enable 
hardware-accelerated trilinear filtering during ray 
casting. To enable empty space leaping, i.e., sphere 
casting, a 3D distance map is computed [48], the voxel 
intensities of which provide the distance to the closest 
opaque voxel, a distance which can be safely skipped 
in any direction during ray casting [42]. The distance 
map is computed using the same algorithm as for the 
segmentation operations described above. To reduce 
the memory requirements the distance map is com-
puted, stored, and used at a resolution reduced by a 
factor of two in each dimension. In detail, the 
opaqueness mask is down-sampled by factor two in 
each dimension using the maximum operator, to 
avoid that single voxels are missed. The distance map 
is computed in 16 bit mode using this down-sampled 
mask and the final distances are stored using 8 bits 
per voxel. Storage of this distance map therefore re-
quires one byte per 2³ = 8 voxels. Finally, the buffer is 
filled with the segmentation map again using another 
decompression operation because this is required for 
the coloring step. The cost of all preprocessing steps is 
linear in the number of voxels, i.e., O(N³). Excluding 
the size of the compressed segmentation, which is 
often negligible, the occupied memory on the GPU 
amounts to 2.125 bytes per voxel, i.e., 1 byte for the 
segmentation, 1 byte for the smoothed opaqueness 
mask inside the texture, and 0.125 bytes for the 
down-sampled distance map. 

The code for casting each ray is very straight-
forward: the ray advances iteratively along its direc-

tion until the image intensity is above the isovalue 
(Figure 6). The step size is determined by the corre-
sponding intensity of the distance map, but if this 
value is below a safety margin, the step size is set to a 
fixed value, e.g., 0.3 times the voxel size. Once a posi-
tion above the isovalue is found, a more accurate po-
sition is determined using a few iterations of bisection 
[36]. In the next step, the coloring is applied for each 
pixel (Figure 5) by searching for the nearest segmen-
tation voxel in a 3x3x3 neighborhood. Therefore, all 
classes are rendered together in a single step. Finally, 
the color and brightness are computed assuming 
Lambertian reflection and a virtual light source. For 
sphere tracing, the maximal jumping distance is lim-
ited to 510 (corresponding to 255 in the 
down-sampled 8 bit distance map), which is not a 
problem because it enables sufficiently large jumps in 
practice. 

 

 
Figure 5: Segmentation rendering. A) The segmentation (top, axial slice through 
lung and heart) is converted into an opaqueness mask (middle) and smoothed to avoid 
staircase artifacts (bottom). B) The isosurface of all opaque classes is rendered at 
once. C) As a final step, the rendered image is colored. Here, the skeleton and organs 
of a µCT scan of a mouse are shown. 

 
 

 
Figure 6: Sphere casting. A) Shown is a sagittal slice through a segmentation of a mouse skull (from a µCT scan). Sphere casting makes use of a distance map (red overlay) to 
leap through empty spaces. B) Rendered 3D image. 
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Marching Cubes 
The marching cubes algorithm extracts triangles 

which approximate the isosurface [30,31]. The image 
intensities are considered to generate vertices with 
sub-voxel accuracy. For each voxel, up to five trian-
gles, i.e., 15 vertices are computed which approximate 
the isosurface in the “cell” defined by the voxel and its 
seven neighbors with higher indices [32]. A cell only 
contributes to the isosurface if some of its eight cor-
ners are below and some are above the isovalue. Then 
the cell is called an active cell or active voxel. The 
Nvidia CUDA toolkit provides example code for an 
efficient GPU-based marching cubes algorithm which 
is optimized using pre-computed lookup tables [32]. 
Our marching cubes implementation is based on this 
code, however, extensions were necessary to enable 
image sizes that are not powers of two. Furthermore, 
for smooth shading of the triangles, we compute a 
normal vector for each vertex. Additionally, the 
memory consumption was optimized: for each vertex, 
16 bytes are used, i.e., 12 bytes for the position (3 x 
float), 3 bytes for the normal (3 x char) and one byte 
for the color index. In the worst case, 240 bytes, cor-
responding to 5 triangles, are required per active 
voxel. During preprocessing, the active voxels are 
determined, i.e., those that contribute to the isosur-
face. The relative amount of these voxels, called oc-
cupancy, is often below 5%, but can be much higher 
under certain circumstances. By thresholding a noisy 
region, an occupancy of 50% can easily occur, result-
ing in problematic memory requirements. Such a sit-
uation is likely to occur in reality, e.g., when an 
isovalue is near the soft tissue brightness in a noisy CT 
data set [49]. Particularly when interactively changing 
the isovalue, this is almost guaranteed to happen at 
some point. In our implementation, the memory 
consumption per voxel amounts to 1 byte for the 
segmentation map and 1 byte for the smoothed seg-
mentation mask, additional to the memory for the 
triangles, which can be 240 bytes per voxel in the 
worst case. The memory for the vertices could be 
further reduced by storing shared vertices in a vertex 
list, particularly because each vertex is used by at least 
three triangles in closed isosurfaces. This would still 
require memory for an additional index into the ver-
tex list (e.g., 4 bytes), compared to 16 bytes for the 
entire vertex. It would also create a memory indirec-
tion during triangle rendering and cause scattered 
memory accesses to look up the vertices. Sorting and 
arranging the shared vertices is costly and would 
further delay the preprocessing stage. Furthermore, 
the memory consumption would still be prohibitively 
high in worst-case situations. The sparse indices of the 
active voxels are extracted using a parallel prefix sum 

and stored on the GPU [45]. The triangles are gener-
ated using CUDA and rendered using OpenGL. The 
entire preprocessing and rendering is performed on 
the GPU, i.e., no vertices are transferred between CPU 
and GPU memory. 

To render segmentations using marching cubes, 
the same staircase filter as for ray casting is applied. 
Subsequently, the active voxel subset is determined as 
for isosurface rendering. The triangles are generated 
with colors corresponding to the associated class.  

Underlay and Overlay Rendering 
The segmentation rendering can be combined 

with an isosurface rendering of an underlay and a 
transparent overlay. The underlay rendering is com-
monly used to inspect the data set on which the seg-
mentation is based. It is useful to visualize bone 
structures or the vasculature for CT data sets, for 
example. Our implementation is very similar to the 
segmentation rendering, except that the decompres-
sion, staircase filter and coloring steps are omitted. 
The transparent overlay rendering is useful to visual-
ize and analyze multimodal data sets [3,12]. To com-
bine rendering of underlay, segmentation and trans-
parent overlay, a depth map is used and the underlay, 
segmentation and overlay are rendered sequentially 
[50]. For transparent overlay rendering, standard 
volume rendering with front-to-back alpha blending 
is used. No zero skipping optimization is imple-
mented, because, usually the overlay data sets are of 
much lower resolution than the underlay and the 
segmentation. This approach results in geometrically 
correct renderings suitable for stereo vision. 

Performance Measurements 
Data Sets 

For performance experiments, three high resolu-
tion CT data sets were selected which resemble typical 
imaging studies. The data sets were acquired using 
three differently scaled CT devices, for humans, mice, 
and smaller probes. The segmentations of these data 
sets are useful to illustrate the advantages and dis-
advantages of the two rendering methods. The prop-
erties of the data sets used in the experiments are 
listed in Table 1. 

 

Table 1: Properties of data sets. 

Data set Dimensions 

 
Voxel size 
[µm³] 

Voxels 
[10^9] 

Femur Head 1183 x 1127 x 1496 35 x 35 x 35 1.99 
Human CT 1022 x 1022 x 1742 166 x 166 x 200 1.82 
Mouse Kidney 1000 x 1000 x 1247 6.9 x 6.9 x 6.9 1.25 
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First, an excised human femur head was scanned 
in a dual energy µCT for small animals (Tomoscope 
DUO; CT Imaging, Erlangen, Germany). Tubes were 
operated at 40 kV/1.0 mA and 65 kV/0.5 mA and 
2880 projections were acquired over 6 minutes [47].  

Second, a clinical CT angiography data set was 
used [47]. The scan was performed using a clinical 
dual energy CT (Somatom Definition, Siemens, Med-
ical Solutions, Forchheim, Germany) with tube set-
tings of 140 kV/55 mAs and 80 kV/230 mAs for the 
two tubes after bolus injection of 20 ml of io-
dine-containing contrast media (Ultravist 300, 
Bayer-Schering, Berlin, Germany). To generate a 
larger size for the performance experiments the vol-
ume size was doubled in each dimension using linear 
interpolation. 

Third, an excised mouse kidney, prepared by 

vascular casting [51], was scanned using ex vivo µCT 
(SkyScan 1172, Bruker, Kontich, Belgium), acquiring 
542 projections with 4000 x 2096 pixels. The recon-
structed data set (4000 x 4000 x 4990) was too large 
(122 GB) for interactive processing with currently 
available GPUs and therefore down-sampled by 
4x4x4 binning. 

The three segmented data sets are shown in 
Figure 7, as seen from the camera position that was 
used for the experiments. To assess the dependency of 
the rendering time on the 3D size, the data sets were 
successively down-sampled, and the rendering and 
preprocessing time were measured. The 
down-sampling of the segmentation was performed 
by 2x2x2 binning using the maximum operator for 
factors of 2 and using nearest neighbor interpolation 
for the intermediate steps. 

 

 
Figure 7: Frame time as function of volume size. The three exemplary data sets are increasingly difficult for ray casting and decreasingly difficult for marching cubes from 
left to right. A) Head of human femur scanned in small animal µCT. B) Human CT angiography with carotid artery stenosis and calcified plaque. C) Mouse kidney scanned ex-vivo 
using µCT. The top row shows slices through the CT data sets. Scale bars 10 mm (A), 50 mm (B), 2 mm (C). The middle row shows rendered segmentation images. Zoomed 
parts, rendered by ray casting (left) and marching cubes (right) show that both methods result in nearly identical images. The last row shows frame rendering times plotted over 
the volume diameter, i.e., the cube root of the number of voxels. Linear and cubic regression lines are shown for sphere casting and marching cubes, respectively. Sphere casting 
excels for data sets with large numbers of triangles (A,B) but is slowed down by complex vessel structures (C). 
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Devices and Software 
For the performance measurements, a PC (Dell 

Precision Workstation T7500) equipped with two Intel 
Xeon X5677 (3.47 GHz) quad-core processors, 96 GB of 
DDR3 RAM (CAS latency 9, DRAM Frequency 665.1 
MHz) and an Nvidia Geforce Titan (6 GB memory) 
was used. The operating system was Windows 7 
(64-bit). The CUDA Toolkit 5.5 including the Thrust 
library was used to develop and compile the GPU 
code. The C++ code was compiled with Visual Studio 
2012 Ultimate (Update 4). 

Segmentation Operations 
To measure the effect of the GPU acceleration, 

the time for compression, decompression, and dis-
tance map computation was measured using a paral-
lel CPU-based implementation. The speed up factors 
between GPU and CPU implementations of compres-
sion, decompression, and distance map computation 
were 16.7, 28.4, and 13.0, respectively, showing that 
GPU-acceleration is highly beneficial for this interac-
tive tool. It should be noted, that up to 3 times more 
powerful dual-socket CPUs are currently available, 
which would reduce the relative improvement of the 
GPU-acceleration. 

GPU-based compression and decompression 
achieved bandwidths of 23.3 GB/s and 54.5 GB/s, 
respectively, which were measured for the clinical CT 
data set. The compression factors were 24.3, 52.9 and 
62.9 for the three data sets of Table 1. The transfer 
speed between host memory and GPU memory was 
5.2 GB/s using pinned memory [52]. 

Preprocessing for Rendering 
The preprocessing time is the time required to 

compute the data structures needed for frame ren-
dering. For these measurements it was assumed that 
the segmentation is available in compressed form on 
the GPU, i.e., the decompression was included into 
the measurements. The preprocessing time depends 
linearly (R²=0.99, P<0.001) on the number of voxels for 
both sphere casting and marching cubes (Figure 8). 
For marching cubes it was more heterogeneous be-
cause it depends on the number of triangles to be 
generated. When splitting the preprocessing time into 
parts (Figure 8), it can be seen that the distance map 
and active voxel computation require the largest 
parts, without dominating the preprocessing, how-
ever. 

Frame Rate over Volume Diameter 
For this experiment, the frame rate was meas-

ured as a function of 3D volume diameter (Figure 7). 
We used a high 2D resolution to accommodate for 
modern high resolution displays. Images were ren-

dered in full HD (1920x1080 pixels), i.e., including 2x2 
super-sampling, around 8 million rays were cast for 
each frame. Compared to naive ray casting, sphere 
casting achieved a speed up of 15.0, 10.8, and 7.0 for 
the three data sets at the highest volume diameter, 
showing that a space leaping optimization is required 
to achieve interactive frame rates.  

 

 
Figure 8: Preprocessing time. The preprocessing time is proportional to the 
number of voxels for sphere casting (A) and marching cubes (B). The time is lower 
and more predictable for sphere casting. (C, D) Preprocessing time for ray casting and 
marching cubes split into categories, for the human CT data set. 

 
The theoretical frame rendering cost is linear in 

the image diameter for ray casting and cubic for 
marching cubes, with a much smaller constant factor 
for marching cubes [53]. This behavior was confirmed 
in the experiments; however, the performance of both 
methods strongly depends on the image structure. 
The three data sets are increasingly difficult for sphere 
casting, resulting in decreasing frame rates of 62.7 Hz, 
46.4 Hz, and 23.6 Hz. Sphere casting is particularly 
affected by complex vessel structures which nega-
tively affect early ray termination and space-leaping. 

For marching cubes, the opposite behavior was 
observed, i.e., the three data sets were decreasingly 
difficult. In large data sets with high occupancy, such 
as the femur head with the complex trabecular bone 
structures, marching cubes cannot maintain interac-
tive frame rates. Furthermore, marching cubes could 
not process the three largest data sets of the femur 
head pyramid because the buffer for the vertices was 
prohibitively large (Table 2). In cases of low occu-
pancy, the marching cubes method excels on the other 
hand. For the kidney example, due to the relatively 
small number of vertices, marching cubes was faster 
than sphere casting for all volume diameters. 
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Figure 9: Frame time as a function of 2D image size. A) For sphere casting the 
frame time increases with the 2D size since the number of rays grows proportional 
with the number of pixels. The measured effect is supra-linear, presumably because of 
beneficial caching effects resulting from tightly packed rays. B) For marching cubes the 
rendering time per frame hardly depends on the 2D size, except for very low 
resolutions. 

 

Table 2: Marching cubes properties of data sets. 

Data set Occupancy 
[%] 

Triangles 
[10^6] 

VBO Size 
[GB] 

VBO Bytes 
per Voxel 

Femur Head 4.09 163.6 7.5 3.8 
Human CT 1.43 52.2 2.3 1.3 
Mouse Kidney 0.67 16.5 0.7 0.6 

 
 

Frame Rate over 2D Resolution 
The frame rendering time was also measured as 

a function of the 2D resolution (Figure 9), i.e., the 
number of pixels of the rendered image. For the femur 
head, a down-sampled data set was used (the fourth 
in the pyramid), because the larger data sets resulted 
in prohibitive memory consumption. 

For sphere casting a supra-linear effect can be 
seen (Figure 9). Generally, the work-load should in-
crease linearly with the number of pixels, i.e., rays. 
The supra-linear effect can be explained because the 
GPU traces the rays for small blocks of pixels in par-
allel utilizing a SIMD-like architecture, i.e., 32 adjacent 
rays are traced by a group of 32 threads, called a 
warp. This architecture benefits from cases where rays 
processed by the same warp traverse the volume at 
nearby positions; the higher the 2D resolution and/or 
the simpler the surface of the object inside of the 3D 
volume the higher this benefit gets. When the rays are 
coarse, i.e., for low resolutions, the computation is 
bandwidth bound. For dense rays the computation 
eventually becomes compute bound since many rays 
share the cached 3D data. 

For marching cubes, the frame time appears to 
be almost constant over the rendering resolution, ex-
cept for small resolutions which receive a penalty. The 
OpenGL rendering consists of two phases, vertex 
processing and fragment shading. The vertex pro-
cessing costs are independent of the image resolution 
since it only depends on the given mesh which is 
constant in this experiment. Only the fragment shad-
ing is directly dependent on the image resolution, but 

this is not the bottleneck here as we only apply a 
simple lighting model, and, for our data sets, the re-
sulting triangles cover only a small number of pixels 
(often only one) even at high resolution which result 
in a workload for the rasterizer that depends more on 
the number of triangles than the number of pixels. 
Small resolutions receive a penalty because the ren-
dering hardware has to always shade groups of two 
by two fragments from the same triangle to be able to 
compute derivations (e.g., for texture mapping) in-
dependent of the number of pixels covered by a tri-
angle. In case of one pixel sized triangles this results 
in only a 25% fragment shader efficiency explaining 
the observed penalty for low resolutions. 

Discussion 
We implemented and evaluated a 

GPU-accelerated system for interactive segmentation 
of volumetric data sets. A major challenge for an in-
teractive segmentation tool is to implement both 
segmentation operations and rendering with low de-
lay while retaining high frame rates and image qual-
ity. While GPUs may be the solution for this with their 
massive processing power, they require special atten-
tion with respect to code complexity, limited memory, 
limited host-device bandwidth, and fine grained par-
allelism [54,55]. Tolerable worst-case memory con-
sumption is particularly relevant for a robustly ap-
plicable tool, because otherwise it could suddenly 
crash when reaching a segmentation state with pro-
hibitive memory consumption. 

We show that GPU-acceleration is useful for 
several segmentation operations, in particular mor-
phological operations and a general undo/redo 
mechanism. The latter is implemented by GPU-based 
compression of the segmentation map in combination 
with transfer and storage of the compressed data into 
host memory. Compression and decompression op-
erate at 23.3 GB/s and 54.5 GB/s, respectively, while 
compression factors above 20 are achieved for all 
three example data sets. In our opinion, this is the 
most reasonable way to implement undo/redo for our 
application, because multiple states cannot be stored 
on the GPU due to limited memory. Transfer of the 
uncompressed data would lead to an increased delay 
due to the transfer limitations and to excessive 
memory consumption on the host memory. Delayed 
transfer is not an option, because the GPU memory 
should be released as fast as possible to be available 
for GPU-based segmentation operations or rendering. 
The compression algorithm is a compromise between 
speed and compression ratio, and could be further 
optimized using Huffman encoding, probably with-
out sacrificing much speed when using pre-computed 
lookup-tables. 
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The entire segmentation rendering, including 
preprocessing required after changing the segmenta-
tion state, is performed on the GPU. Most studies 
about ray casting have focused on achieving a high 
frame rate, while the preprocessing cost has not been 
considered. The preprocessing time of our method is 
scalable, i.e., linear with respect to the number of 
voxels and independent of the number of regions. 
Furthermore, memory requirements for rendering are 
constant (per voxel) for sphere casting which is rele-
vant for a robustly applicable tool. To achieve inter-
active frame rates with ray casting, we found that a 
space-leaping optimization is required. Therefore, we 
chose a flat grid structure, a 3D distance map, which 
provides a safe jumping distance with a few simple 
operations, does not require recursion or tree tra-
versal, and can be efficiently computed on the GPU.  

A general comparison between direct and indi-
rect volume rendering may not be appropriate. 
However, for our use case of segmentation rendering, 
the resulting images are visually indistinguishable 
and a comparison does make sense. We show that the 
preprocessing time is more predictable for sphere 
casting and faster than for marching cubes. More 
importantly, the GPU memory consumption is con-
stant (2.125 bytes per voxel) for sphere casting, while 
for marching cubes, the memory requirements can 
become prohibitively large in cases of high noise or 
heterogeneous structures. Such a situation is not un-
likely in practice, since it occurs when thresholding a 
noisy image, which could be created through a sharp 
CT reconstruction kernel. For cases with moderate 
amounts of triangles, marching cubes is preferable, 
resulting in less memory consumption and higher 
frame rates. Therefore, a beneficial combination 
would be to use marching cubes for low numbers of 
triangles and otherwise switch to sphere casting. 

Limitations and Outlook 
Currently, the GPU memory size limits the size 

of data sets that can be processed and visualized with 
our tool. GPUs with 12 GB memory are available and 
GPUs with 4 GB are available for less than $100. 
Commodity PCs are easily upgraded with pow-
er-saving single-slot GPUs. In our implementation 
only a compressed segmentation state is kept on the 
GPU memory, from which the data structures for 
rendering and segmentation operations are rebuilt on 
demand. Data sets larger than the GPU memory could 
be rendered using a compressed format [56]. A tree 
structure would actually solve this implicitly [57]. 
Rendering at lower resolutions could reduce the 
memory constraints and increase the frame rate, e.g., 
during interactive rendering. However, to fully sup-
port data sets larger than the GPU memory, all seg-

mentation operations would have to be adjusted to 
operate on a compressed storage format. GPUs inte-
grated into the CPU chip with direct access to the po-
tentially larger CPU memory could also mediate the 
memory limitations. The speed of the preprocessing 
could be improved by using a faster approximate 
method instead of the accurate distance map [58] or 
using a distance map based on a different metric 
[59,60]. The staircase filter is essential to provide a 
smooth and natural visualization of the binary seg-
mentation map. A possible alternative is to use the 
image intensities of the underlying image as proposed 
in [61], however, this does not work well for regions 
that are not aligned to intensity gradients. The ray 
casting could be optimized further by starting with 
coarse fat rays which are split into fine rays once a 
sufficient narrowness is reached, which can be de-
termined from the distance map values. Another 
promising approach is to compact alive threads, cor-
responding to rays, to avoid idle GPU threads of ter-
minated rays [62]. Transparent rendering of isosur-
faces is currently not supported but could be imple-
mented by casting rays through the objects using a 
bidirectional distance map [63] or by two-level vol-
ume rendering [64]. It would come at the expense of 
increased computational cost and the combination 
with a transparent overlay is not trivial [65]. Our cur-
rent implementation supports up to 254 
non-overlapping classes, which can be extended at the 
expense of memory consumption by using 16 bit, 32 
bit, or 64 bit indices for the segmentation map. To 
support overlapping regions, only the last step in the 
segmentation rendering, i.e., the coloring, needs to be 
adjusted; however, the concept of non-overlapping 
regions, i.e., partitions, was found to be beneficial for 
many applications due to its simplicity [1]. A prag-
matic compromise might be to use multiple segmen-
tation maps and provide binary operations to com-
bine these. Nevertheless, the implemented segmenta-
tion operations are sufficient to solve many tasks 
arising in daily medical image analysis and we plan to 
implement more operations during future projects. 

Abbreviations 
FMT: Fluorescence-mediated Tomography; µCT: 

Micro-Computed Tomography; rBV: relative Blood 
Volume; GPU: Graphics Processing Unit; CPU: Cen-
tral Processing Unit; VBO: Vertex Buffer Object. 
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