Supplementary Information

Degradable Hollow Mesoporous Silicon/Carbon Nanoparticles for Photoacoustic Imaging-Guided Highly Effective Chemo-Thermal Tumor Therapy *in Vitro* and *in Vivo*

Jinfeng Zhang^{1, *}, *Jun Zhang*^{3, 4} *, *Wenyue Li*^{2,4}, *Rui Chen*¹, *Zhenyu Zhang*², *Wenjun Zhang*², *Yongbing Tang*⁵, *Xiaoyuan Chen*⁶, *Gang Liu*^{3, Δ}, *Chun-Sing Lee*^{1, Δ}

- 1. Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
- 2. Center of Super-Diamond and Advanced Films (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
- 3. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, P. R. China.
- 4. Department of Ultrasound, Xijing Hospital, Xi'an, Shaanxi 710032, P. R. China.
- 5. Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences.
- 6. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), MD 20892, USA.

ΔCorresponding authors: apcslee@cityu.edu.hk (C. S. Lee), gangliu.cmitm@xmu.edu.cn (G. Liu) * These authors contributed equally to this work.

Figure S1. HRTEM image of the carbon shell which show pores with the size of 5~15 nm.

Figure S2. a) Standard absorbance curve of DOX; b) The absorbance of DOX molecule at 480 nm as a function of DOX concentration.

Si/C NPs / DOX Ratio (w /w)	Drug loading content (%)	Drug encapsulation efficiency (%)
5:2	11.6 %	33 %
5:4	31.1 %	56.5 %
5:8	34.2 %	32.5 %
5:12	41.6 %	27.3 %

Table S1. Optimizing the drug loading content and drug encapsulation efficiency by varying weight ratios between the Si/C NPs and DOX.

Figure S3. Protonation of amine groups on DOX molecule at lower pH (5.0 and 6.2).

Figure S4. The linear relationship between PA signal and concentration of PEG- Si/C -DOX NPs (0, 50, 100, 200, 300, 500 μ g/mL, 800 nm laser).