Supporting information for
The use of PET imaging for prognostic integrin α₂β₁ phenotyping to
detect non-small cell lung cancer and monitor drug resistance responses

Chiun-Wei Huang¹, Wen-Chuan Hsieh¹†, Shih-Ting Hsu¹†, Yi-Wen Lin¹, Yi-Hsiu Chung¹, Wen-Chi
Chang¹, Han Chiu¹, Yun Han Lin¹, Chung-Pu Wu²,³,⁴,⁵, Tzu-Chen Yen¹,⁶* and Feng-Ting Huang⁷*

Author Affiliations:
¹Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital,
Tao-yuan, Taiwan; ²Graduate Institute of Biomedical Sciences, ³Department of Physiology and Pharmacology, and
⁴Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan;
⁵Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan;
⁶Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan;
⁷Department of Biochemical Science and Technology, College of Life Science, National Taiwan
University, Taipei, Taiwan.

† Wen-Chuan Hsieh and Shih-Ting Hsu contributed equally to this work.

* Corresponding Authors:
Tzu-Chen Yen, M.D. Ph.D.
Department of Nuclear Medicine
Chang Gung Memorial Hospital
No. 5, Fu-Hsin St., Kweishan, Taoyuan, 33305 Taiwan
Tel.: 886-3-3281200 ext. 2744
Fax: 886-3-211-0052
E-mail: yen1110@cgmh.org.tw

Feng-Ting Huang, Ph.D.
Department of Biochemical Science and Technology
National Taiwan University
No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
Tel.: 886-2-3366-4083
Fax: 886-2-3366-2271
E-mail: fthuang@ntu.edu.tw
Figure S1. The integrin $\alpha_2\beta_1$ expression level and proliferation of A549- and A549-derived cell lines.

(A) Sorting of cells that highly express integrin $\alpha_2\beta_1$ using FACS. The subpopulation of A549 cells showing strong integrin $\alpha_2\beta_1$ antibody (ab24697; ab30484, Abcam) staining (top 25%) were selected, collected and expanded for second-round selection by FACS. The subline from the first-round selection was designated A549+, and the subline from the next round of selection was designated A549++. Experimental data were analyzed with Flowjo7.2.2 software. (B) The proliferation of the A549, A549+ and A549++ cells was validated by CCK8 assay, which indicated no significant differences among these cell lines.
Figure S2. *In vitro* assessment of the stability of 68Ga-DOTA-A2B1 in PBS (pH 7.4) and mouse serum at physiological temperature. After 1.5 h, the percentage of intact peptide probes remained greater than 90% in both conditions, as verified by radio-HPLC profiles.
Figure S3. *Ex vivo* biodistribution data of the integrin tracer 68Ga-DOTA-A2B1, 68Ga-DOTA-A2B1-Block and 18F-FDG. After administration of the tracers, the tissues were collected, weighed, and counted; the results are presented as % ID/g ± SD (n = 3).
Figure S4. The histological results of dissected subcutaneous A549 tumors. Immunostaining of lung tumor tissue with an α-integrin α2 antibody demonstrated that after A549 cells were inoculated into a living animal, integrin α2β1 was still highly expressed in the xenografts.
Figure S5. ROI analysis of PET images of the orthotopic A549 xenograft animal model. Blue bars, n = 5 for $^{68}\text{Ga-DOTA-A2B1}$, and red bars, n = 5 for $^{18}\text{F-FDG}$; major organs were compared, and the data are reported as the means ± SEM. *$p < 0.001$ compared with all organs.
Figure S6. *Ex vivo* high-resolution autoradiography of the orthotopic lung cancer model after injection of 18F-FDG tracers. (A) Representative autoradiographs of the lung after injection of 18F-FDG. Arrows indicate tumor lesions. Autoradiographs acquired from 40-μm tissue slices 60 min after injection of 18F-FDG radiotracer. (B) From the semi-quantitative results, the T/N ratio was calculated as 2.57.
Figure S7. Comparison of uptake of intravenously injected 68Ga-DOTA-A2B1 and 18F-FDG in animals with osseous tumors (blue bars, n = 5 for 68Ga-DOTA-A2B1, and red bars, n = 5 for 18F-FDG) injected intravenously. Statistical significance was determined with a 2-tailed Student’s t-test. For all graphs, data are represented as the means ± SEM. *$p < 0.001$ compared with all organs.
Table S1. The Gallium (68Ga)-labeled tracer should meet the “Quality Control Result (reference: European Pharmacopoeia 8th edition)” before release for any preclinical or clinical PET scan studies.

Quality Control Result

Gallium (68Ga)-DOTA-A2B1 Injection

<table>
<thead>
<tr>
<th>No.</th>
<th>Items</th>
<th>Release Limit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Appearance</td>
<td>Clear, particulate free</td>
<td>Pass</td>
</tr>
<tr>
<td>02</td>
<td>Ethanol Content</td>
<td>$\leq 10%$</td>
<td>Pass</td>
</tr>
<tr>
<td>03</td>
<td>pH</td>
<td>$4.0 < \text{pH} < 8.0$</td>
<td>pH = 6.5</td>
</tr>
<tr>
<td>04</td>
<td>Radiochemical purity</td>
<td>$\geq 91%$</td>
<td>RCP: 100%</td>
</tr>
<tr>
<td>05</td>
<td>Impurity</td>
<td>$\leq 3.33 \mu\text{g/mL}$</td>
<td>Pass</td>
</tr>
<tr>
<td>06</td>
<td>Chemical identity (API)</td>
<td>RRT = 1.3 ± 0.13</td>
<td>RRT = 1.37</td>
</tr>
<tr>
<td>07</td>
<td>Radiochemical impurity (68Ga(III) ion)</td>
<td>$\leq 2%$</td>
<td>0%</td>
</tr>
<tr>
<td>08</td>
<td>Radiochemical impurity (68Ga in colloidal form)</td>
<td>$\leq 3%$</td>
<td>0%</td>
</tr>
<tr>
<td>09</td>
<td>Radionuclidic identity (68Ga)</td>
<td>62 min $\leq T_{1/2} \leq 74$ min</td>
<td>$T_{1/2} = 66.66$ min</td>
</tr>
<tr>
<td>10</td>
<td>Strength</td>
<td>≥ 0.33 mCi/mL</td>
<td>15 mCi/mL</td>
</tr>
<tr>
<td>11</td>
<td>Radionuclidic Purity</td>
<td>$\geq 99.9%$ ub 0.511 MeV. 1.077 MeV, 1.022 MeV, 1.883 MeV and Compton scatter</td>
<td>Prurity: 100%</td>
</tr>
<tr>
<td>12</td>
<td>Radionuclidic impurity (Retain the preparation to be examined for at least 48 h)</td>
<td>Radionuclidic Impurities $\leq 0.001%$</td>
<td>0%</td>
</tr>
<tr>
<td>13</td>
<td>Bacterial endotoxin</td>
<td>≤ 11.6 EU/mL</td>
<td>< 10 EU/mL</td>
</tr>
<tr>
<td>14</td>
<td>Sterility</td>
<td>Meet the requirements of the test</td>
<td>Pass</td>
</tr>
</tbody>
</table>