Supplementary Materials

Supplementary Figures

HSC-LX2

Figure S1. Ligustrazine reduces membrane abundance of adhesion molecules in HSCs.

Flow cytometry analyses of membrane distribution of ICAM-1 and VCAM-1 by determining their fluorescence intensity in HSCs treated with ligustrazine for 24 h. Representative histogram graphs were shown and corresponding fluorescence intensity was indicated.

Figure S2. Ligustrazine decreases intracellular Ca²⁺ levels in HSCs. Flow cytometry analyses of intracellular Ca²⁺ levels by determining the fluorescence intensity of Fluo-3 in HSCs treated with ligustrazine for 24 h. Representative histogram graphs were shown and corresponding fluorescence intensity was indicated.

Figure S3. HIF-1α positively regulates HSC pericyte functions. (A) Western blot analyses of protein expression of pro-angiogenic cytokines in HSCs treated with PX-478 for 24 h. (B) Boyden chamber assay for evaluating migration of HSCs treated with PX-478 for 24 h (100× magnification). The number of migrated cells per field was counted. Significance: **P<0.01 versus control. (C) FDA staining for evaluating adhesion of HSCs treated with PX-478 for 24 h (100× magnification). The number of adherent cells per field was counted. Significance: *P<0.05 versus control, **P<0.01 versus control. (D) Collagen gel assays for evaluating contraction of HSCs treated with PX-478 for 24 h. Percentages of original gel area were quantified. Significance: *P<0.05 versus control.

Figure S4. Ligustrazine represses pericyte functions of primary HSCs isolated from rats intoxicated with CCI₄. At the end of experiments, primary HSCs were isolated from two rats in each group of control (samples 1# and 2#), CCI₄ (samples 3# and 4#), and ligustrazine (200 mg/kg) treatment (samples 5# and 6#), respectively. The freshly isolated HSCs were used for experiments immediately. (A) Western blot analyses of protein expression of pro-angiogenic cytokines in HSCs. (B) Boyden chamber assay for evaluating migration of HSCs (100× magnification). The number of migrated cells per field was counted. Significance: *P<0.05 versus control, *P<0.05 versus CCI₄. (C) FDA staining for evaluating adhesion of HSCs (100× magnification). The number of adherent cells per field was counted. Significance: *P<0.05 versus control, *P<0.05 versus CCI₄. (D) Collagen gel assays for evaluating contraction of HSCs. Percentages of original gel area were quantified. Significance: *P<0.05 versus control, *P<0.05 versus CCI₄. In this figure, ligustrazine is abbreviated as liqu.

Supplementary Tables

Table S1. Primer sequences for site-directed mutagenesis

Recombinant plasmids	Sequences	
PPARγ (wild-type)	Forward	5'-TACCGGACTCAGATCTCGAGCGCCACCATGACC
		ATGGTTGACACAGAG-3'
	Reverse	5'-GATCCCGGGCCCGCGGTACCGTGTACAAGTCCT
		TGTAGATCTCCTGCAGGAGCGGGTG-3'
PPARγ (Ser289 mutant)	Forward	5'-TACCGGACTCAGATCTCGAGCGCCACCATGACC
		ATGGTTGACACAGAGA-3'
	Reverse	5'-GATCCCGGGCCCGCGGTACCGTGTACAAGTCCT
		TGTAGATCTCCTG-3'
PPARγ (Ser342 mutant)	Forward	5'-TACCGGACTCAGATCTCGAGCGCCACCATGACC
		ATGGTTGACACAGAGA-3'
	Reverse	5'-GATCCCGGGCCCGCGGTACCGTGTACAAGTCCT
		TGTAGATCTCCTG-3'
PPARγ (Ser289 and Ser342 mutant)	Forward	5'-TACCGGACTCAGATCTCGAGCGCCACCATGACC
		ATGGTTGACACAGAGA-3'
	Reverse	5'-GATCCCGGGCCCGCGGTACCGTGTACAAGTCCT
		TGTAGATCTCCTG-3'

 Table S2. Primer sequences for real-time PCR.

Genes		Sequences	
VEGF-A (rat)	Forward	5'-GCACTGGACCCTGGCTTTACT-3'	
	Reverse	5'-ATGGGACTTCTGCTCTCTG-3'	
VEGF-A (human)	Forward	5'-CTGTCTAATGCCCTGGAGCC-3'	
	Reverse	5'-ACGCGAGTCTGTGTTTTTGC-3'	
bFGF (rat)	Forward	5'-CAACACTTACCGGTCACGGA-3'	
	Reverse	5'- CCCCGTTTTGGATCCGAGTT-3'	
bFGF (human)	Forward	5'-CCACCTATAATTGGTCAAAGTGGT-3'	
	Reverse	5'-TCATCAGTTACCAGCTCCCC-3'	
FATP (rat)	Forward	5'-GGTCTTCTGAGTCCCTGCTT-3'	
	Reverse	5'-ACATCCAAGCTTTGCCAAGG-3'	
FATP (human)	Forward	5'-TGCTCAGGTCTTGGAGAAGG-3'	
	Reverse	5'-CAGCGGGTCTTCACAATAGC-3'	
HIF-1α (rat)	Forward	5'-TAGACTTGGAAATGCTGGCTCCCT-3'	
	Reverse	5'-TGGCAGTGACAGTGATGGTAGGTT-3'	
HIF-1α (human)	Forward	5'-ACTTGGCAACCTTGGATTGGA-3'	
	Reverse	5'-GCACCAAGCAGGTCATAGGT-3'	
CD31 (rat)	Forward	5'-GACAGCCAAGGCAGATGCAC-3'	
	Reverse	5'-ATTGGATGGCTTGGCCTGAA-3'	
CD34 (rat)	Forward	5'-CCTGCCGTCTGTCAATGTTTC-3'	
	Reverse	5'-GCACTCCTCGGATTCCTGAAC-3'	
vWF (rat)	Forward	5'-GCGTGGCAGTGGTAGAGTA-3'	
	Reverse	5'-GGAGATAGCGGGTGAAAT-3'	
GAPDH (rat)	Forward	5'-GGCCCCTCTGGAAAGCTGTG-3'	
	Reverse	5'-CCGCCTGCTTCACCACCTTCT-3'	
GAPDH (human)	Forward	5'-TGACAACAGCCTCAAGAT-3'	
	Reverse	5'-GAGTCCTTCCACGATACC-3'	