Supporting Information

All-in-One Theranostic Nanoplatform Based on Hollow MoS₂ for Photothermally-maneuvered Oxygen Self-enriched Photodynamic Therapy

Jinping Wang, Li Liu, Qing You, Yilin Song, Qi Sun, Yidan Wang, Yu Cheng, Fengping Tan, Nan Li*

Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, PR China.

*Corresponding author at: School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, PR China.

Tel.:+86-022-27404986

E-mail address: linan19850115@163.com
Figures

Figure S1. The TEM images of the as-prepared HMoSₓ-HSA nanoparticles at different reaction steps.

Figure S2. (A) HRTEM image of the HMoSₓ and HRTEM image of a partial enlargement of HMoSₓ. (B) XRD pattern of as-prepared HMoSₓ.
Figure S3. (A) FTIR spectra of pure HSA, as-prepared HMoSₓ and HMoSₓ-HSA nanoparticles. (B) CD spectra of pure HSA and HMoSₓ-HSA.

Figure S4. UV-vis absorption spectrum of HMoSₓ-HSA nanoparticles.
Figure S5. Temperature increase of HMoSₓ-HSA nanoparticles under various wavelengths laser irradiation (670, 808, 980 nm) at the same power density of 1 W/cm².

Figure S6. (A) Photothermal effect of the irradiation of the aqueous dispersion of HMoSₓ-HSA nanoparticles (0.2 mg/ml) with the 670 nm NIR laser (1 W/cm²). The irradiation lasted for 600 s, and then the laser was turned off. (B) Plot of cooling time versus negative natural logarithm of the temperature driving force which is obtained from the cooling stage.
Figure S7. Size distribution of the HMoS$_x$-HSA/AlPc nanoparticles.

Table

<table>
<thead>
<tr>
<th>Element</th>
<th>wt%</th>
<th>wt% Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>13.91</td>
<td>0.29</td>
</tr>
<tr>
<td>N</td>
<td>0.68</td>
<td>0.19</td>
</tr>
<tr>
<td>Al</td>
<td>0.29</td>
<td>0.04</td>
</tr>
<tr>
<td>S</td>
<td>34.99</td>
<td>0.34</td>
</tr>
<tr>
<td>Mo</td>
<td>50.13</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Figure S8. EDS of the HMoS$_x$-HSA/AlPc nanoparticles.
Figure S9. The selective element line scanning HRTEM image of HMoS-x-HSA/AIPc nanoparticles.
Figure S10. Photographs of HMoS$_{x}$-HSA/AlPc dispersion and O$_2$@PFH@HMoS$_{x}$-HSA/AlPc dispersion at room temperature (A), or after heating over 60 °C for 1 min (B). A large number of bubbles emerged in the O$_2$@PFH@HMoS$_{x}$-HSA/AlPc dispersion after heating, while few bubbles could be found in the HMoS$_{x}$-HSA/AlPc.
Figure S11. Temperature elevation curves of aqueous solutions containing O$_2$@PFH@HMoS$_x$-HSA/AlPc with different concentrations under the irradiation of a 670 nm laser (1 W/cm2).

Figure S12. TEM images of HMoS$_x$-HSA before and after 670-nm laser irradiation (1 W/cm2, 5 min).
Figure S13. (A) Average fluorescence signals of tumors at different time points after administration of free AlPc and HMoSₓ-HSA/AlPc nanoparticles. (B) Photoacoustic signal intensity of the HMoSₓ-HSA/AlPc nanoparticles in the tumor at different time points.

Figure S14. Survive curve of the 4T1 tumor-bearing mice after various treatments.
Figure S15. H&E-stained images of major organs (heart, liver, spleen, lung, and kidney) collected from untreated healthy mice and O$_2$@PFH@HMoS$_x$-HSA/AlPc-injected mice 15 days after NIR laser irradiation treatment.