Electronic Supplementary Information

High-Discrimination Factor Nanosensor Based on Tetrahedral DNA
 Nanostructures and Gold Nanoparticles for Detection of MiRNA-21
 in Live Cells

Shulian Bai ${ }^{1}$, Bangtian Xu^{2}, Yongcan Guo^{3}, Juhui Qiu^{4}, Wen Yu^{1}, Guoming Xie ${ }^{\text {* }}$

${ }^{1}$ Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, P R China ${ }^{2}$ Department of pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing 401331, P R China
${ }^{3}$ Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, P R China
${ }^{4}$ Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, P R China
E-mail address: guomingxie@cqmu.edu.cn
Tel.: +86 2368485240
Fax.: +86 2368485240

The oligonucleotide sequences used in this article are as follows:

Expected detection probe P1 (ExP1):

5'-SH-ATTTGTATAGCTTATCAGACTG-3'.

5’-Dabcyl-ATTTGTATAGCTTATCAGACTG-3’.
Expected detection probe P2 (ExP2):

5'-TCAACATCAGTCTGATAAGCTATACAA AT-3'-FAM.

5'-FAM-TCAACATCAGTCTGATAAGCTATACAA AT-3'-Cy5.

Ordinary detection probe P1 (OrP1): 5'-SH-TATAGCTTATCAGACTG-3',

Ordinary detection probe P2 (OrP2):
5'-TCAACATCAGTCTGATAAGCTATA-3'-FAM.

Target (T): 5’-TAGCTTATCAGACTGATGTTGA-3'.

Proximal mismatch of cDNA (P): 5'-TAGCTTATCAGACTGAAGTTGA-3'.
middle mismatch of cDNA (M): 5'-TAGCTTATCTGACTGATGTTGA-3'.
distal mismatch of cDNA (D): 5'-TTGCTTATCAGACTGATGTTGA-3'.

18 insertion (18i): 5’-TAGCTT ATCAGACTGATCGTTGA-3’.

18 deletion (18d): 5’-TAGCTTATCAGACTGATGTT GA-3’.
18 mismatch (18m): 5'-TAGCTTATCAGACTGATCTTGA-3'.

MiR-200b:5'-TAATACTGCCTGGTAATGATGA-3'.

Let-7d: 5’-AGAGGTAGTAGGTTGCATAGT T-3'.

S1: CAGCACGAGTCACTCTTCCCCTCTGATAAGCTACGGTCTGATAA GCTACTTGAC.

S2: SH-CCGTAGCTTATCAGAGGGCATTAATCAACATCACAAAAT

GTACTGACGAAACTT.

S3: TTGTGATGTTGATTAATGTCTGATAACGTAACTGATGAAGAGTG

ACTCGTGCTG.

S4: AAGTTTCGTCAGTACATTGTCAAGTAGCTTATCAGAATCAGTTAC

GTTATCAGA.

Figure S1. Working principle of $\operatorname{ExP}(\mathrm{A})$ and $\operatorname{OrP}(\mathrm{B})$ for single base mutation target and wild type target detection. Tehold exchange probe, for example, ExP1P2 consists of a pre-hybridized complement strand ExP2 and a protector strand ExP1, which can react with T to release ExP1 and the hybridized product TExP2.

Table S1. Thermodynamic parameters evaluated by software

Name	Complementary	T	$\Delta \mathrm{H}^{0}$	$\Delta \mathrm{~S}^{0}$	$\Delta \mathrm{G}^{0^{*}}$
	bases	(K)	$\left(\mathrm{Kcal} \mathrm{mol}^{-1}\right)$	$\left(\mathrm{Cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	$\left(\mathrm{Kcal} \mathrm{mol}^{-1}\right)$
ExP1P2	22	310	-168.2	-467.7	-23.1
TExP1	22	310	-165.1	-451.8	-25.0
OrP1P2	17	310	-128.7	-357.0	-18.0
TOrP1	22	310	-165.1	-451.8	-25.0

Figure S2. (A) Kinetics experiments of the hybridization reaction and strand displacement reaction of ExP1P2. (B) $100 \mu \mathrm{~L}$ FAM-ExP2 (black curve); $100 \mu \mathrm{~L}$ Dabcyl-ExP1 and $100 \mu \mathrm{~L}$ FAM-ExP2 at 30 min (blue curve); $50 \mu \mathrm{~L}$ target was added to the above solution (purple curve) at 60 min . DNA concentrations were 200 nM .

Preparation of Au-NPs:

AuNPs ($20 \pm 3 \mathrm{~nm}$) were synthesized using the sodium citrate reduction method [1,2]. Typically, 1.8 mL of 1% aqueous trisodium citrate solution (freshly prepared) was quickly added to a boiling aqueous solution of HAuCl 4 $(100 \mathrm{~mL}, 0.25 \mathrm{mM})$ with vigorous stirring. The color of the solution changed from blue to brilliant red in several minutes. After boiling for 30 min , the heat source was removed to allow the reaction solution reached room temperature. The solution was stored at $4{ }^{\circ} \mathrm{C}$ before use.

Figure S3. (A) UV-vis detection of supernatant of Au-NPs@ExP1 after incubation with FAM-ExP2 for 2 h at room temperature in the dark. a-c represents $10 \mu \mathrm{~L}, 50 \mu \mathrm{~L}$, and $100 \mu \mathrm{~L} 10$ μ M FAM-ExP2. (B) a-c represents $10 \mu \mathrm{~L}, 50 \mu \mathrm{~L}$, and $100 \mu \mathrm{~L} 10 \mu \mathrm{M}$ of FAM-ExP2 without Au-NPs@ExP1, other components of the solution were the same with experiments of (A). Nucleic acid absorption peak was 260 nm . All these experiments were repeated thrice.

When we synthesized Au-NPs@ExP1P2, an interesting phenomenon was found the stability of Au-NPs increased with the total volume increasing of 10 $\mu \mathrm{M} \operatorname{ExP} 1$. We observed that Au-NPs were totally gathered in the bottom of the centrifuge tube in $10 \mu \mathrm{~L} 10 \mu \mathrm{M} \mathrm{ExP1}$ and were partly gathered in $50 \mu \mathrm{~L} 10 \mu \mathrm{M}$ of ExP1. However, they kept very stable in $100 \mu \mathrm{~L} 10 \mu \mathrm{M}$ of ExP1. Figure S2A showed supernatant of Au-NPs@ExP1 after incubation with FAM-ExP2 for 2 h at room temperature in the dark. We supposed that the Au-NPs need enough negatively charged nucleic acid to maintain their stability. Meanwhile, we did not observe the aggregation phenomenon in the nucleic acid hybridization step on Au-NPs@ExP1. Nucleic acid absorption peak was at 260 nm and the Au-NPs absorption peak was at 520 nm . We initially thought the absorption peak at 520 nm in Figure S2A was caused by Au-NPs, however, we again observed the absorption peak at 520 nm in Figure S2B in the absence of Au-NPs. We supposed that the absorption peak at 520 nm was mainly caused by FAM in Figure S2A, because the FAM fluorescence emission peak was also 520 nm .

Figure S4. Repeatability of recycled Au-TDNNs through six times detection of target.

Figure S5. Calibration curve of pure FAM-ExP2. The red dotted line represents the relative fluorescence intensity of the nanosensor when detecting target. The final concentration of Au-TDNNs was $1 \mathrm{nmol} / \mathrm{L}$.

Figure S6. MCF-7 cell viability analysis with addition of different concentrations of Au-TDNNs.

1. Slot JW, Geuze HJ. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985; 38: 87-93.
2. Li S, Xu L, Ma W, Wu X, Sun M, Kuang H, Wang L, Kotov NA, Xu C. Dual-mode ultrasensitive quantification of microRNA in live cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J Am Chem Soc. 2016; 138: 306-312.
