Supplementary Information

Molecular Detection and Analysis of Exosomes Using Surface-Enhanced Raman Scattering Gold Nanorods and a Miniaturized Device

Elyahb Allie Kwizera†,‡ Ryan O’Connor †,‡, Vojtech Vinduska†,‡, Melody Williams†, Elizabeth R. Butchζ, Scott E. Snyderζ, Xiang Chen†, and Xiaohua Huang†,*

†Department of Chemistry, The University of Memphis, Memphis, TN 38152
ζDiagnostics Imaging Department, St Jude Children’s Research Hospital, Memphis, TN 38105
†Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN 38105
‡ These authors contributed equally to this work

*Corresponding Author. Email: xhuang4@memphis.edu. Phone: (901) 678 1728. Fax: (901) 678 3744

KEYWORDS. Exosome, detection, molecular profiling, cancer, surface enhanced Raman scattering, gold nanorod
Figure S1. Absorption (A) and SERS spectra (B) of CTAB/QSY21/AuNRs in PBS at different time after preparation. (C) Absorption spectra of CTAB/AuNRs in PBS at different time after preparation.
Figure S2. SERS spectra from five different locations of the exosome spot. The laser beam was 200µm in diameter and the exosome spot was 2 mm in diameter. Anti-CD63 antibodies were used as the targeting ligand to target exosomes derived from MM231 cells. $\lambda = 785$ nm. Laser power: 50 mW. Acquisition time: 1s.
Figure S3. Size distributions of exosomes derived from MM468, SKBR3, and MCF12A cells characterized with NTA.
**Figure S4.** ROC curves generated based on patient profiling data in Figure 8 (main text).