Supplementary Information

Supplementary Methods

Immunohistofluorescence for relative fluorescence unit (RFU) detection

An adenoviral vector encoding mouse Chi3L1 shRNA was tagged by the red fluorescent protein gene. Lung tissues metastasized with B16F10 melanoma specimens were fixed in formalin and paraffin-embedded for examination. Sections (4 µm thick) were used for immunohistofluorescence. Paraffin-embedded sections were deparaffinized and rehydrated, washed in distilled water, mounted in Aqua-Mount with DAPI staining, and evaluated on a confocal microscope (Nanoscope Systems, Inc., Daejeon, Korea).

Wound healing migration assay

Migration of human lung cancer cells, A549 and H460, was quantified on a silicone insert (Applied BioPhysics, Inc., NY, USA). Cells were transfected with siChi3L1 or miR-125a-3p mimic before inoculation of cells (reverse transfection). Silicone inserts were discarded when the confluence of cells reached 100% and incubated at 37° C, 5% CO₂ in a humidified incubator for 12 hours. Images were captured under a light microscope (Olympus, Tokyo, Japan) at ×200 magnification and analyzed using NIH ImageJ software.

Supplementary Figures

Supplementary Figure S1. Gene identifier mapping by using Biomart and Gene Expression Omnibus analysis

20 genes related to Chi3L1 based on a composite gene-gene functional interaction network. Pink lines: Physical Interactions; Purple lines: Co-expression; Blue lines: Co-localization; Cyan lines: Pathway; Yellow lines: Shared protein domains. USF1, SPI1, SP3 and APOE are related with Chi3L1 as pathway network (Cyan lines) and MMP9 is related with Chi3L1 as co-expression (Purple lines) network.

Supplementary Figure S2. Gene and disease network of representative oncogenes

Gene–disease networks were analyzed based on the GWAS/OMIM/DEG records ($p < 10^{-6}$).

Supplementary Figure S3. Efficiency of Ad-shChi3L1 infection

Fluorescence image of Ad-shChi3L1-labeled red fluorescence units (RFU). Ad-shChi3L1labeled red fluorescence was observed in Chi3L1 KD mice lung tissues.

Supplementary Figure S4. Effects of Chi3L1 on phospho-STAT3 and phospho-ERK in ChiL1 KD mice lung tissues

Expression of p-STAT3 and p-ERK in C57BL/6 mice lung tissues. The experiments were repeated in triplicate. Quantification of gene expression was measured and analyzed. *Significant difference from the Ad-shControl injected mice (p<0.05).

Supplementary Figure S5. Effect of Chi3L1 on migration of human lung cancer cell line

(A) Wound healing migration assay of A549 and H460 cells transfected with siChi3L1.*Significant difference from siControl-transfected cells (*p*<0.05).

(B) Cell proliferation was measured by the MTT assay of A549 and H460 cells treated with rmChi3L1 or siChi3L1. *Significant difference from siControl-treated cells (p < 0.05).

All experiments were repeated in triplicate. Error bars represent SD.

Supplementary Figure S6. Effects of the RIG-like helicase activity in USF1 KD human lung cancer cells

RIG-I, MDA-5, and MAVS mRNA were measured by qRT-PCR. *Significant difference from siControl-transfected cells (p < 0.05).

Supplementary Figure S7. Protein expression of lung tissues in lung cancer patients

(A) Expression of Chi3L1 and USF1 proteins was determined by Western blotting in the normal and tumor lung tissue of lung tumor patients (n=15).

(B) The ratio of expression levels between USF1 and Chi3L1 in 15 lung tumor patients.Patient #3, #10, #11, and #12 are stage 1. Patient #5, #6, #7, and #13 are stage 2. Patient #4, #8, #9, #14, and #15 are stage 3. Patient #1 and #2 are stage 4.

(A) Human Chi3L1 gene promoter region

					E-Box		
			—	Chi3L1 Promo	oter region		iferase
CGGATCC			-1200		-190	+48	
TTGCCGCGTC	GGGGAGTGGA	GTGGGACAGG	TATATAAAGG	AAGTACAGGG	CCTGGGGAAG	AGGAAGCTTG	GTACCGAGCT
CATAGTACTC	CCCCGCCTCC	ACTTGCCAGC	CTCGTG ATTC	CTTCATTGAC	ACATAGCTCA	GTTCCCATAA	AAGGGCTGGT
CTTCTGCTGG	CAGGTGCCTC	ATGAAGACCT	GACCCAAAGT	TTTCAAAACT	CTGCGGTTTC	TCAACCCTCC	TCTGGTAATC
GGGGTGCAGG	AGTGGGAGGA	AGGCTGGGAA	ATGCGGCTGA	GTCACATCTC	CAGAAGCCCC	CCATCATCAC	CCTAGTGGCT
GGCCTGGAGT	GAATGCTGAA	GATGCAAAGG	TAGAGGCTGC	CAGAAAAGCC	AGGAAATTGC	TGGCAAGAAA	GGCCAGTGGT
GCCTGGGAAG	AAAACAACAG	CCTTGTTTAG	GGCACTGTGG	CTTACGTAAC	TAAATTGTGC	CCAGTTTCCA	CCTGGCCAGG
GCTCTCTGGC	CCTTACCCAG	CCTGAAGACA	GAAAGTGTGA	GGGGGAGGGT	AGGAAGGTAG	GTCAAGCAGG	GCAATGCTGA
ΑΑΑΑΑΑΑΑΑ	ΑΑΑΑΑΑΑΑΑ	AAGACACGGG	CCCAAAAGGG	AGCGCTCAGT	TTCAGGCTCT	TTGCTTTCCT	TCCTCCCGAG
AAAATAGCAC	CGGGGCTTAA	AGCATTCTTG	GGAATTTCCC	TGTCTTTCCC	TCTAAATAAT	CAGCATGTAA	ATTGCAAAAA
GTATTTCCTC	CATGGTGCCT	CACTGCAGCA	CCGAGCTTGC	AAAAGATCCT	CTCTCTTTAT	GGGAATTTCA	AAACAGAAGC
GGCTTGGGTT	CCAAAGCCTC	ACTGAGAGAG	TTGGGGAGCT	GACTGATGTC	AGATGCTCGT	GCAGCCGCCC	CGTAGGGCCT
GAGCCTCGTT	AAGAAGTTTT	GTTCTTGTCC	TAGGAGTGAT	GAGAGATCAC	TGAAGGATTT	AGAGAGGGGC	TGTATCATCA
AAGCCTGCAA	AGAATGGAGT	TGTCCTGGAT	ATTTGGCCAA	AAAAAAAATG	TATCCACAAA	CAGGGACGTA	ATCAGGCAGG
GTACTTTCTT	GAGAAGCCCT	TGGACCCATT	CTGCCTCTTG	GAGTTCTGAA	CTTTTCACTC	ACTGCCTATT	AATTAATGTT
AGCAGAGAGA	CCTCACCGAG	AGAGCTGCAA	AACCAGCCTG	GAAAAATTAG	AGTATTACCT	AACATTAGTG	AAAAATAAAG
AGATCTTGGA	ATTCATGAAG	GGAAGGCACT	GGCTGAGTTT	TAAAGGAAGA	GAAAGGGAGA	GAGGGAGAGA	AGAGGGAGAG

·····CCCCGCCTCCACTTGCCAGCCTCGTGATTCCTTCATTGAC·····

(B) Human Chi3L1 mRNA 3'UTR

CCCUCUGUUC UGCACACAGC ACGGGGGCCA AGGAUGCCC GUCCCCUCU GGCUCCA<mark>GCU GGCCGGGAGC CUGAUCACCU GC</mark>CCUGCUGA GUCCCAGCU GAGCCUCAGU CUCCCUCCU UGGGGCCUAU GCAGAGGUC ACAACACACA GAUUUGAGCU CAGCCUGGU GGCAGAGAG GUAGGGAUGG GCUGUGGG AUAGUGAGGC AUCGCAAUGU AAGACUCGGG AUUAGUACAC ACUUGUUGAU UAAUGGAAAU GUUUCAGGAU CCCCAAGCCU GGCAAGGGAA UUUCUUCAAC UCCCUGCCC CCAGCCCUCC UUAUCAAAGG ACACCAUUUU GGCAAGCUUC AUCACCAAGG AGCCAAACAU CCUACAAGAC ACAGUGACCA UACUAAUUAU ACCCCCUGCA AAGCCCAGCU UGAAACCUUC ACUUAGGAAC GUAAUGGAAC GUAAUGGUG CCCCUAUCCU ACUUCCCCUU CCUAAUUCCA CCCAGCCUCC UCAGCCCUGCA AAGCCCAGCU UGAAACCUUC ACUUAGGAAC GUAAUGUGU CCCCUAUCCU ACUUCCCCUU CCUAAUUCCA CAGCUGCUC

Mouse Chi3L1 mRNA 3'UTR

CUCCCCCUU CCCAUAUGGU ACCCCACUC UCUGGCCAGG AGUUUAAUCU CUUGCAAUGU UAAGUCCCCC AACUGAGCCU CAGU<mark>UUCUCC UUCCCUUGGC ACCUGU</mark>GUAA GGGGCCACAG CAGGCUCAGC UAUGGAGAAC AGGGAACUAG GGUAGGACGA UGGUGGGGUU GUGAGAGUCA CAGUGUGAGC AGAUACACAA CCCUGUUAAG GAAUGCAAAU UCUCAGACUC UAACCUCCCU UUACCCAGCC UGACCAAAGG ACACCACUUG GAUCAAGUAG GCAAAUAUCU UACAGGAUUG AGGGACCAUA CUAAUUAUAC CCUCUGCAAA GCCCAACUUG AAUCCUUCCC UUAGGAACUU AAUCGUCCCA CUUCCCUUUC CCUAAUUCCA CAGCUGUUCA AUAAAGCGCC AGAACCUAA

(C)

WT Vector	•	
3'	ccgagGGUUCUUGGAGUGGACa 5'	miR-125a-3p
	:: :	
58:5'	scussCCGGGAGCCUGAUCACCUGc 3'	CHI3L1 3'UTR
MT Vector		
3,	ccgagGGUUCUUGGAGUGGACa 5'	miR-125a-3p
58:5'	gcuggc 3'	CHI3L1 3'UTR

(D) Human miR-125a promoter

AGGAAGCCAGGTTTCTATCAGGCCATGCCTTCCCCAGGAGGCCTGCCTGGCCGGAGGAGGAGGGGCTGGGGGCAGGGACTCTGGGTCTCTGGGGAGAAGGAGGCTTGGATCTGGACTCATGAGTCTGAGGGAGGAAGGGGCTGAGTCCTTGGATTCCAGGAACATTTGGGGAGAAAAGGGCCAGAGGCCTGGATCCTGAGGAGGAAGGGGCTGAGGGCCTGGATCCTCTGGGTCCTTTAGGGAGGAGGGGCGGGGGCCCGGACTCCTCAGGGTCCCTGATGAGGAAGGGCCTGGACCCTGGGTCCTTGGGGAGGAGGGCCGGGGGCCCGGACTCCTGGGTCCTGCACCAACCGTAGAACCGACCTTGCGGGGCCTTCGCCGCACACAAGCTCGTGTCTGTGGGTCCGTGTCGGGGCCTCACCATCGCGGCGCGGCCCTCCCCCTCATCCCTGGTCCTCCTGGTCCTGTCTGTCTGTCTGTCGGGCCTCACCATCGCGGCCCCGCCCCGGGCGCCCCGGGCGCCCGGCGCTGAGGAGGACACCCAAGGAGATCACTATACGGCCTCCTAGCTTTCCCCAGGCCCCGGGCGGCCCGGCGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCCGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGCCCGCCCCCTCTTTTCGGCTCTTTGGGCCCGGGGGCCCCGCCCCTCCGGTCTCTGGGCCCGGGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGCGGGGCCCGGGGGGCCCGGCGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCGGGGGGCCCG

Mouse miR-125a promoter

TCCTTTCTGC	AGTGCAGAAG	TCAGGTCTCT	AACCAGATTG	TCTTCTCTAA	GGGATGTGCC	TGGTTGGACC	CTGAGTCTGC
CGGGGGAGGGC	TATGGGGTGG	AGGAGAACTG	TGAGGGTTAG	GGACTGAGTC	CCTGGGTCTG	GACTGAGGAG	AATTGAGTGC
AAGGCGGCAG	GGTCTGCTTC	CCTGGATCTG	TGGGAGGGAG	GGCTGTGACC	ACTACCCCTT	AGTCTAAGGG	AGGAAGCTTT
GGGACTGAGG	GAGGAGGGCT	GAGGTCTGGA	TCTCTGGCCT	TGAAAGAGGG	GGGCTGGGGC	TTAGATTTTG	GGGCTGGGAC
TGAATTCCTG	GGTTCCTTGG	GGAGGAGGGG	GCCGGGGGGCC	CGGACTCCTG	GGTCCTGGCA	CCCACCCGTA	GAACCGACCT
TGCGGGGCCT	TCGCCGCACA	CAAG <mark>CTCGTG</mark>	TCTGTGGGTC	CGTGTCGGGG	GCTCACCATC	GCGGCTGGGA	CCTCCCCGGC
CCTCCCCACC	CTCCCTACTT	CTGGTCTCCC	ATCAATCCAT	CTGTCAATCT	GCCCACCTGC	CGCGCCCCCC	GGGCTGAGGT
AGGAGGTTGT	ATAGTTGAGG	AAGACACCCG	AGGAGATCAC	TATACGGCCT	CCTAGCTTTC	CCCAGGCTGC	GCCCTGCACT
GGAAGGGGCC	GGCGGGGGACC	CCAGGTCCAC	ACCATTGCCC	AAGAGTTCTT	GATAGGAGCT	GGGGTGTCTT	CTCTGTTCAC
ATTCTATCCT	ATCCCTTTTC	TTTGCAGTCT	CTATGCCATC	TTGAGATTTT	CGAATTTTCT	GTCTCTGTCT	CTTATGCCAA
TGTCTCTAGG	GTTCTAGAAG	CTTCTGTTTC	TCTAGTGCTG	TGAATGTATC	TCTGTGACAC	TGGGTTTCTG	AGCTTTTTGA
GGCATCTCCT	GGTTCCTTTC	TATCTTCTGG	GGCTTAGGGT	ATCTGTTTCT	GTCTCGCTTC	CCCGTTCCCA	CCTCTGGGGA
AAAGGGTTTT	TCTGGTCCAC	CATAGCTACA	CTGCCGGCCT				

Supplementary Figure S8. Human Chi3L1 promoter region, 3'UTR of human and mouse Chi3L1 mRNA, and human miR-125a-3p promoter region mapping

(A) Chi3L1 gene promoter region. Chi3L1 promoter has pyrimidine-rich initiator elements and enhance-box (E-box) motifs. An E-box motif (CTCGTG) is located 190 bp upstream of the Chi3L1 transcription start site (bold red letters). The cloned human Chi3L1 promoter DNA fragments. This region is 1200 bases upstream of Chi3L1 transcription start site. The bHLH elements-binding site, called E-box, covers 190 base points of this region and is considered to be the USF1 binding domain.

(B) 3'UTR of matured human and mouse Chi3L1 mRNA. These gene maps show the mRNA sequences predicted to bind with miR-125a-3p (red sequences).

(C) Chi3L1 mRNA wild-type 3'UTR contained luciferase vector (WT Vector) and Chi3L1 mRNA miR-125a-3p binding site deleted mutant type 3'UTR contained luciferase vector (MT Vector) were subcloned and used for miR-125a-3p activity.

(D) Human and mouse *miR-125a* genes promoter (-1–1000 bp). *miR-125a* promoter has Ebox motifs located at 594 bp upstream of *miR-125a* gene (bold red letters). The cloned human Chi3L1 promoter DNA fragments. This region is 1000 bases upstream of *miR-125a* gene start site. The bHLH elements-binding site, called E-box, covers 594 base points of this region and is considered to be the USF1 binding domain.

Supplementary Figure S9. Chi3L1 mRNA levels are increased and cancel the inhibition by USF1 overexpression by miR-125a-3p inhibitor

Relative expression of Chi3L1 mRNA levels in USF1-overexpressed A549 and H460 cell lines by the treatment of miR-125a-3p inhibitor. *Significant difference from empty-6×Myc vector transfected cells of control (p<0.01). [#]Significant difference between empty-6×Myc vector transfected cells of control- and empty-6×Myc vector-transfected cells of the miR-125a-3p treatment (p<0.01).

Supplementary Figure S10. Conclusions

Schematic image of the relationship among Chi3L1, USF1, miR-125a-3p, and cancer metastasis. Knock-down of Chi3L1 through siChi3L1 or miR-125a-3p significantly increases USF1 expression. Increased USF1 induces miR-125a-3p expression, but blocking USF1 expression using siUSF1 treatment inhibited miR-125a-3p. USF1 should thus strongly inhibit Chi3L1 expression through induction of miR-125a-3p. Knock-down of Chi3L1 could inhibit cancer metastasis and progression *via* miR-125a-3p-dependent increase of USF1 expression.

Supplementary Table S1. Antibody list

Resource	Source	Identifier
Anti-CHI3L1 antibody	Abcam	Cat. # ab77528
Anti-MMP9 antibody	Santa Cruz	Cat. # sc-393859
Anti-MMP13 antibody	Santa Cruz	Cat. # sc-515284
Anti-VEGF antibody	NOVUS	Cat. # NB100-664
Anti-PCNA antibody	Abcam	Cat. # ab29
Anti-USF1 antibody	Santa Cruz	Cat. # sc-390027
Anti-β-actin antibody	Santa Cruz	Cat. # sc-47778
Anti-Histone3 antibody	Cell signaling	Cat. # 4620
Anti-pSTAT3(Y705) antibody	Cell signaling	Cat. # 9131
Anti-STAT3 antibody	Cell signaling	Cat. # 9139
Anti-pERK(T202/Y204) antibody	Cell signaling	Cat. # 4376
Anti-ERK1/2 antibody	Cell signaling	Cat. # 4696

Supplementary Table S2. Primer List

Gene	Application	Primer Sequence		
		F:GCAACACTGACTATGCTGTGG		
Chisei	QKI-PCK	R:GAGTGAAGCTCCTCCCGAAG		
USF1		F:CTACTGGGGAAGACCCAACC		
	QRT-PCR	R:TACATCACCTGGCCCCCATTC		
SPI1		F:GGAGACAGGCAGCAAGAAGA		
	QRT-PCR	R:CCTTGTCCACCCACCAGATG		
602		F:ATGACCGCTCCCGAAAAGC		
SP3	QRT-PCR	R:TCCAAGGCAGCCATTTCCTC		
APOE		F:AGGAACTGAGGGCGCTGAT		
	QRT-PCR	R:CGGGGTCAGTTGTTCCTCC		
MMP9		F:CATTCAGGGAGACGCCCATT		
	QKI-PCK	R:ACCGAGTTGGAACCACGAC		
RIG-I		F:AGGAAAACTGGCCCAAAACT		
	QKI-PCK	R:TTTCCCCTTTTGTCCTTGTG		
		F:GTGCATGGAGGAGGAACTGT		
MDA-5	QRT-PCR	R:GTTATTCTCCATGCCCCAGA		
MANE		F:GCAGCAGAAATGAGGAGACC		
MAVS	QKI-PCK	R:AAAGGTGCCCTCGGACTTAT		
18s		F:AGGAATTGACGGAAGGGCACCA		
	QKI-PCK	R:GTGCAGCCCCGGACATCTAAG		
Human Chi3L1		F: CCCGTAGGGCCTGTATTTCC		
binding site	CUIL-dLCK	R: GAAGGAATCACGAGGCTGGC		

Supplementary Table S3. Oligonucleotide list

Resource	Source	Identifier
CHI3L1 (ID 1116) Trilencer-27 Human siRNA	ORIGENE	Cat. # SR300798
CHI3L1 (ID 12654) Trilencer-27 Mouse siRNA	ORIGENE	Cat. # SR412856
Control siRNA-A	Santacruz	Cat. # sc-37007
Human USF1 siRNA	Santacruz	Cat. # sc-36783
<i>mir</i> Vana™ miRNA mimic, Negative Control #1	Thermo Fisher	Cat. # 4464058
mirVana® miRNA mimic hsa-miR-125a-3p	Thermo Fisher	Cat. # MC12378
mirVana® miRNA mimic hsa-miR-24-3p	Thermo Fisher	Cat. # 4464066
Ambion™ In Vivo Negative Control #1 siRNA	Thermo Fisher	Cat.#: 4457287
Ambion [™] In Vivo Pre-Designed siRNA against USF1	Thermo Fisher	Cat.#: 4457308

Supplementary Table S4. Material resources for experiment

Resource	Source	Identifier
Recombinant mouse Chi3L1, CF	R&D systems	Cat. # 2649-CH
Recombinant human Chi3L1, CF	R&D systems	Cat. # 2599-CH
Lipofectamine® RNAiMAX Reagent	Thermo Fisher	Cat. # 13778030
Lipofectamine [™] 3000 Reagent	Thermo Fisher	Cat. # L3000001
Invivofectamine [™] 3.0 Reagent	Thermo Fisher	Cat.#: IVF3005
QuantiNova [™] SYBR Green PCR Kit	QIAGEN	Cat. # 208052
High-Capacity cDNA Reverse Transcription Kits	Thermo Fisher	Cat. # 4368813
miRNeasy Mini Kit	QIAGEN	Cat. # 217004
easy-BLUE [™] Total RNA Extraction Kit	iNtRON	Cat. # 17061
miScript II RT Kit	QIAGEN	Cat. # 218160
miScript® SYBR® Green PCR Lit	QIAGEN	Cat. # 218073
miScript Primer Assays (has-miR-125a-3p)	QIAGEN	Cat. # MS00008554
miScript Primer Assays (mms-miR-125a-3p)	QIAGEN	Cat. # MS00011088
miScript Primer Assays (mms-miR-342-3p)	QIAGEN	Cat. # MS00002184
miScript Primer Assays (RNU6B)	QIAGEN	Cat. # MS00033740
Secrete-Pair [™] Dual Luminescence Assay Kit	GeneCopoeia™	Cat. # SPDA-D010
SimpleChIP® Plus Enzymatic Chromatin IP Kit	Cell Signaling	Cat. # 9004
pO6A5 shuttle vector with U6 promoter	Sirion	Cat. # SB-P-AV-104-01
Lung tissue from human lung cancer patients and	US Biomax	Cat. # LC1503;
general public donors		Cat. # LC241b
B16F10	ATCC	ATCC® CRL-6475
A549	ATCC	ATCC® CCL-185 [™]
H460	ATCC	ATCC® HTB-177 [™]