Supplementary Information:

Prostaglandin E₂ hydrogel improves cutaneous wound healing via M2 macrophages

polarization

Shuaiqiang Zhang, Yuanyuan Liu, Xin Zhang, Dashuai Zhu, Xin Qi, Xiaocang Cao, Yihu Fang, Yongzhe Che, Zhong-Chao Han, Zuo-Xiang He, Zhibo Han, Zongjin Li

Transcription	Prime sequences
CD206	Forward: GGGTTGCTATCAC TCTCTATGC Reverse: TTTCTTGTCTGTTGCCGTAGTT
iNOS	Forward: CCAAGCCCTCACCTACTTCC Reverse: CTCTGAGGGCTGACACAAGG
IL-10	Forward: TGAGGCGCTGTCGTCATCGATTTCTCCC Reverse: ACCTGCTCCACTGCCTTGCT
IL-6	Forward: GAGGATACCACTCCCAACAGACC Reverse: AAGTGCATCATCGTTGTTCATACA
IL-1RA	Forward: CATTGAGCCTCATGCTCTGTT Reverse: CGCTGTCTGAGCGGATGAA
Arg-1	Forward: CTCCAAGCCAAAGTCCTTAGAG Reverse: GGAGCTGTCATTAGGGACATCA
TNF-α	Forward: ACAGAAAGCATGATCCGCG Reverse: GCCCCCCATCTTTTGGG
IL-1β	Forward: CAACCAACAAGTGATATTCTCCATG Reverse: GATCCACACTCTCCAGCTGCA
Col1A1	Forward: ACTTCACTTCCTGCCTCAG Reverse: TGACTCAGGCTCTTGAGGGT
TGF-β	Forward: GTCAGACATTCGGGAAGCAG Reverse: GCGTATCAGTGGGGGGTCA
Fibronectin	Forward: ATGTGGACCCCTCCTGATAGT Reverse: GCCCAGTGATTTCAGCAAAGG
b-FGF	Forward: GCATCACCTCGCTTCCCGCA Reverse: CGCAGGAAGAAGCCGCCGTT
VEGFA	Forward: ACTGGACCCTGGCTTTAC Reverse: TCTGCTCTCCTTCTGTCGTG
Ang-1	Forward: ACAGGGACAGCAGGCAAAC Reverse: GGCATCGAACCACCAACC

Table S1: Primers used for real-time PCR

Ang-2	Forward: GACTGGGAAGGCAACGAG
	Reverse: CTGAGAGCATCTGGGAACA
PDGF-BB	Forward: ATCCAGGGAGCAGCGAGCCA
	Reverse: CAGGGCCGCCTTGTCATGGG
PLGF	Forward: CTTCTGAGTCGCTGTAGTGG
	Reverse: TCCTTTCTGCCTTTGTCG
BMP-7	Forward: TTTGACATCACAGCCACCAGCAAC
	Reverse: ATGAACCTCCGTGGCCTTGAAGAA
TIMP-1	Forward: ACGAGACCACCTTATACCAGCCG
	Reverse: GCGGTTCTGGGGACTTGTGGGC
TIMP-2	Forward: TCTGGATGGACTGGGTCACA
	Reverse: CTTGATGCAGGC GAAGAACTT
GAPDH	Forward: TTGTCTCCTGCGACTTCAAC
	Reverse: GTCATACCAGGAAATGAGCTTG

Supplemental Figures:

Figure S1. CS+PGE₂ hydrogel accelerated recovery of skin function. (A) The magnification of red rectangle in Figure 2C. (B) Quantitative analysis data revealed that CS+PGE₂ hydrogel treatment demonstrated a more regenerative healing with improved skin structures including a greater return of hair follicles and sebaceous glands. Data are expressed as the mean \pm SD. n=10. **P*<0.05 versus PBS. Scale bars, 50 µm. CS+PGE₂, CS+PGE₂ hydrogel; PGE₂, free PGE₂; CS, chitosan hydrogel; PBS, untreated wounds.

Figure S2. Mice were treated with a single PGE2 hydrogel (CS+PGE2 hydrogel was only administered on days 0 after injury for treatment), double (on days 0 and 2), and triple (on days 0, 2 and 4), respectively. Skin tissues were harvested on day 14 after treatment, and the effect of different treatment strategies on tissue repair was observed by HE staining. The results revealed that multiple dosing of PGE2 could lead to tissue hyperplasia, the formation of scar, and even the loss of skin functions.

Figure S3. CS+PGE₂ hydrogel promoted the polarization of M2 macrophages *in vitro*. (A) The expression of CD206 and CD68 when macrophages were treated with PBS, CS, PGE₂, CS+PGE₂ hydrogel, LPS or IL-4 for 48 h. (**B**) Quantitative analysis data revealed that PGE₂ hydrogel could promote the transformation of macrophages into M2 phenotype. (**C**) Real-time PCR showed the expression of CD206 when macrophages were treated with PBS, CS, PGE₂, CS+PGE₂ hydrogel, LPS or IL-4. (**D**) Real-time PCR showed the expression of CD206 and

iNOS when the macrophages were additionally stimulated with LPS and then treated with PBS, CS, PGE₂ or CS+PGE₂ hydrogel. Data are expressed as the mean \pm SD. **P*<0.05 versus LPS; **P*<0.05 versus CS/LPS⁺; **P*<0.05 versus PGE₂/LPS⁺. The number of positive cells was counted in ten randomly selected areas. All experiments were performed in triplicate. Scale bars, 50 µm. CS+PGE₂, CS+PGE₂ hydrogel; PGE₂, free PGE₂; CS, chitosan hydrogel.

Figure S4. Western blot analyzed the expression IL-10 and IL-6 *in vitro*. (A) Western blot analysis of IL-10 and IL-6 after macrophages treated with PBS, CS, PGE₂ or CS+PGE₂ hydrogel for 48 h. (B) Quantitative analysis data revealed that CS+PGE₂ hydrogel could promote the expression of IL-10, but inhibit the expression of IL-6. Data are expressed as the mean \pm SD. **P*<0.05 versus PBS; #*P*<0.05 versus CS. All experiments were performed in triplicate. CS+PGE₂, CS+PGE₂ hydrogel; PGE₂, free PGE₂; CS, chitosan hydrogel.

Figure S5. CS+PGE₂ hydrogel induced the polarization of M2 macrophage *in vivo*. Representative images displayed CD206 and CD68 expression on day 1 and 7. Scale bars, 50 μm. CS+PGE₂, CS+PGE₂ hydrogel; PGE₂, free PGE₂; CS, chitosan hydrogel; PBS, untreated wounds; Normal, unwounded skin tissue.

Figure S6. Quantitative analysis of Figure 4C. $CS+PGE_2$ hydrogel significantly improved the secretion of IL-10, but remarkably reduced the secretion of IL-6. **P*<0.05 versus PBS; #*P*<0.05 versus CS. All experiments were performed in triplicate. $CS+PGE_2$, $CS+PGE_2$ hydrogel; PGE₂, free PGE₂; CS, chitosan hydrogel; PBS, untreated wounds; Normal, unwounded skin tissue.

Figure S7. CS+PGE₂ hydrogel greatly promoted the early angiogenesis of wound healing. (A) Microvascular density was examines with CD31 staining on day 1, 4 and 7. (B) Quantitative analysis data revealed that CS+PGE₂ hydrogel could promote the early angiogenesis. The number of positive CD31 cells was counted in ten randomly selected areas. (C) Real-time PCR

analysis of angiogenic-related gene expression of skin tissue 4 days after injury. Data are expressed as the mean \pm SD. **P*<0.05 versus PBS; #*P*<0.05 versus CS; \$*P*<0.05 versus PGE₂. All experiments were performed in triplicate. Scale bars, 100 µm. CS+PGE₂, CS+PGE₂ hydrogel; PGE₂, free PGE₂; CS, chitosan hydrogel; PBS, untreated wounds; Normal, unwounded skin tissue.

Figure S8. CS+PGE₂ hydrogel increased the anti-fibrotic gene expression. (A) Real-time PCR analysis of anti-fibrotic gene expression in skin tissues 5 days after injury. Data are expressed as the mean \pm SD. **P*<0.05 versus PBS; #*P*<0.05 versus CS; \$*P*<0.05 versus PGE₂. All experiments were performed in triplicate. CS+PGE₂, CS+PGE₂ hydrogel; PGE₂, free PGE₂; CS, chitosan hydrogel; PBS, untreated wounds; Normal, unwounded skin tissue.