SUPPLEMENTARY INFORMATION

Targeting mitochondrial dysfunction and oxidative Stress in activated microglia using dendrimer-based therapeutics

Anjali Sharma1§, Kevin Liaw1,2§, Rishi Sharma1, Zhi Zhang3, Sujatha Kannan1,3,4,5, and
Rangaramanujam M. Kannan*1,2,4,5

1Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;

2Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD, 21218, USA;

3Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;

4Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore MD, 21205, USA;

5Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA;

§These authors contributed equally

*Corresponding author:

Rangaramanujam M. Kannan, Arnall Patz Distinguished Professor of Ophthalmology, Center for Nanomedicine at the Wilmer Eye Institute, 400 North Broadway, Baltimore, Maryland 21231, USA

Tel.: +1 443-287-8634; Fax: +1 443-287-8635; e-mail: krangar1@jhmi.edu
Scheme S1. Synthesis of D-TPP

Figure S1. 1H NMR spectrum of BOC protected bifunctional dendrimer 2a in DMSO (500 MHz).
Figure S2. 1H NMR spectrum of bifunctional dendrimer 3a in DMSO (500 MHz).

Figure S3. 1H NMR spectrum of compound 4 in DMSO (500 MHz).
Figure S4. 1H NMR spectrum of compound 5 in DMSO (500 MHz).

Figure S5. 1H NMR spectrum of compound 2b in DMSO (500 MHz).
Figure S6. 1H NMR spectrum of compound 3b in DMSO (500 MHz).

Figure S7. 1H NMR spectrum of compound 6 (D-Cy5) in DMSO (500 MHz).
Figure S8. 1H NMR spectrum of compound 2c in DMSO (500 MHz).

Figure S9. 1H NMR spectrum of compound 3c in DMSO (500 MHz).
Figure S10. 1H NMR spectrum of compound 7 in DMSO (500 MHz).

Figure S11. 1H NMR spectrum of compound 9 in DMSO (500 MHz).
Figure S12. 1H NMR spectrum of compound 2d in DMSO (500 MHz).

Figure S13. 1H NMR spectrum of compound 3d in DMSO (500 MHz).
Figure S14. 1H NMR spectrum of compound 10 (D-NAC) in DMSO (500 MHz).

Figure S15. HPLC chromatogram of compound 5 (TPP-D-Cy5) at 650nm.

Figure S16. HPLC chromatogram of compound 6 (D-Cy5) at 650nm.
Figure S17. HPLC chromatogram of compound 9 (TPP-D-NAC) at 210nm.

Figure S18. HPLC chromatogram of compound 10 (D-NAC) at 210nm.
Figure S19. Cell viability assessment of TPP-conjugated dendrimer. Free TPP and TPP-conjugated dendrimer do not exhibit cytotoxicity at and above the range of concentrations used in *in vitro* experiments.

Figure S20. Confocal images showing that at the corpus callosum of the contralateral site of injury, there was no significant TPP-D-Cy5 uptake in the resting microglia in pediatric TBI rabbit kits.