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Abstract 

Molecular imaging has played an important role in the noninvasive exploration of multiple biological 
processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter 
probe, a reporter protein can induce the accumulation of specific signals that are detectable by an 
imaging device to provide indirect information of reporter gene expression in living subjects. There 
are many types of reporter genes and each corresponding imaging technique has its own advantages 
and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple 
imaging modalities can compensate for the disadvantages and potentiate the advantages of each 
modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor 
gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of 
multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated 
detectors and multimodality reporter gene systems are needed. 

Key words: reporter gene, molecular imaging, multimodality imaging, cell tracing, gene directed therapy, drug 
screening 

Introduction 
Molecular imaging is a rapidly developing 

discipline combining molecular biology and medical 
imaging techniques [1-7]. Over the last decade, 
advances in cell biology and molecular biology have 
led to an enhancement of our understanding of cancer 
[1] and cell behavior [8], and have stimulated progress 
in gene therapy [9]. Molecular imaging uses this 
information to allow the visualization of biological 
processes, as well as diagnosing and managing 
diseases [1, 10]. Compared with traditional in vitro 
tissue culture and in vivo animal studies, “molecular 
imaging is the visualization, characterization and 
measurement of biological processes at the molecular 
and cellular levels in humans and other living 
systems” [2, 11]. It allows longitudinal, noninvasive, 
quantitative, and repetitive imaging of targeted 
biological processes at both the molecular and 
anatomic levels [7, 12]. Remarkable advances have 

been made in molecular imaging by integration of 
many fields, such as biology, chemistry, physics, 
engineering, pharmacology, and medicine [13]. 
Molecular imaging allows numerous applications, 
such as monitoring of endogenous transcriptional 
regulation, analysis of gene transfer, tracking of 
tumor cell survival, screening for transgenic animal 
phenotypes, earlier detection and characterization of 
disease, evaluation of treatment, and expedition of 
drug discovery (Figure 1) [14, 15]. 

So far, molecular imaging techniques have 
usually been divided into two main categories, direct 
imaging, or the reporter gene-based technique. The 
former employs contrast agents, such as luminescent 
dyes, radioactive tracers, or magnetic particles, 
whereas the latter depends on the expression of a 
receptor, protein, or enzyme after the temporary or 
permanent transfection of cells [7, 16, 17]. The term 

 
Ivyspring  

International Publisher 



 Theranostics 2018, Vol. 8, Issue 11 
 

 
http://www.thno.org 

2955 

“reporter gene” is used to describe a gene whose 
expression product is easily identified and satisfies 
the following characteristics: it has been cloned and 
the whole sequence has been determined, and the 
expression product does not exist in the recipient cells 
or its amount is insufficient for detection by imaging 
modalities [18-20], and can be quantified [21, 22]. In 
living subjects the expression of a reporter gene can be 
indirectly reflected when the reporter protein 
combines with the corresponding probe and causes 
the accumulation of a specific imaging signal [13], 
detected by an imaging device [7]. “Constitutive” 
reporter genes allow monitoring of gene activity; 
“inducible” expression is tied to the level of 
endogenous promoters and transcription factors [7, 9]. 

In the past decades, with the development of 
biotechnology and imaging technology, reporter gene 
imaging has also been flourishing. Multimodality 
imaging technology has also been applied in the 
reporter gene imaging. Reporter gene multimodality 
imaging strategy could be applied to trace implanted 
cell, monitor gene therapy, assess endogenous 
molecular events and scree drugs, which shows more 

and more important prospects. The aim of this review 
is to summarize the construction methods and 
applications of the multimodality reporter gene, and 
look forward to the future progress. 

Direct imaging strategy vs. reporter gene 
imaging strategy 

In terms of direct imaging strategies, the chief 
advantage of direct cell labeling is that it needs very 
little cell manipulation. Although direct labeling is 
commonly used owing to its straightforward 
operation and providing strong imaging signal, the 
accuracy of the imaging signal produced by 
exogenous contrast agents might be compromised 
due to the contrast agents dilution with each cellular 
division or phagocytosis by macrophages, leading to 
the signal fading over time [29]. Both viable and dead 
cells emit signals [20, 30, 31], leading to uncertainty 
about cell viability [32, 33]. Exogenous contrast agents 
are not specifically targeted to certain cells. Side 
effects, including renal toxicity and allergic reactions, 
may arise when using these agents [34, 35].  

 
Figure 1. Schematic diagram of molecular imaging techniques, including nuclear modalities such as positron emission tomography (PET) [23, 24] (Adapted with permission from 
[23], copyright 2017 ACS Publications) (Adapted with permission from [24], copyright 2017 Wolters Kluwer Health) and single photon emission computed tomography (SPECT) 
[25] (Adapted with permission from [25], copyright 2016 Elsevier), magnetic resonance imaging (MRI) [26] (Adapted with permission from [26], copyright 2013 Nature Publishing 
Group), optical imaging (OI) such as bioluminescence imaging (BLI) [27] and fluorescence imaging (FLI) [27] (Adapted with permission from [27], copyright 2014 Public Library 
of Science), photoacoustic imaging (PAI) [26] (Adapted with permission from [26], copyright 2013 Nature Publishing Group), and Cerenkov luminescence imaging (CLI) [28] 
(Adapted with permission from [28], copyright 2014 American Association for Cancer Research).  
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From this perspective, genetic techniques are 
superior because the reporter gene is inserted directly 
into the cell’s DNA, thus ensuring that the reporter 
gene transcription and translation occur only in living 
cells [36] and will be passed on to the daughter cells 
equally [7, 37, 38]. However, during reporter gene 
imaging, transplanted cells often undergo further 
spontaneous genetic modification, posing potential 
safety issues, such as oncogenesis or an immune 
response [7, 39]. This raises safety issues. Although 
reporter gene imaging may cause extra risks for 
mutagenesis, it is still the predominant strategy owing 
to its accuracy of signal detection from living cells 
(Table 1 and Figure 2) [21]. 

The reporter gene strategy is most commonly 
used in modern molecular imaging, namely, 
combining a reporter gene with the corresponding 
reporter probe [7]. So far, an assortment of molecular 
imaging modalities, including the different kinds of 
optical imaging (OI) such as fluorescence imaging 
(FLI), bioluminescence imaging (BLI), photoacoustic 
imaging (PAI), and Cerenkov luminescence imaging 
(CLI); positron emission tomography (PET); single 
photon emission computed tomography (SPECT); and 
magnetic resonance imaging (MRI) can all be used for 
reporter gene imaging [26, 40-42]. 

 

Table 1. Comparison of molecular imaging strategies. 

Imaging 
Strategy 

Labeling 
Method 

Labeling 
Object 

Advantages Disadvantages References 

Direct 
Imaging 
Strategy 

Physical Contrast 
agents 

1. Relatively 
simple and direct 
operation. 
2. Minimal cell 
manipulation, no 
mutation. 
3. A variety of 
targets 
  

1. Different aims 
need different 
probes. 
2. Specific probe 
should be made for 
a special target.  
3. Limited binding 
sites, receptor 
affinity. 
4. Low accuracy. 

[29, 43, 44] 
 

Reporter 
Imaging 
Strategy 

Genetic Gene 1. Only exist in 
viable cells. 
2. Reliable and 
accurate data. 
3. Monitoring 
gene expression 
changes. 

1. More complex in 
design and 
operation. 
2. DNA 
modification may 
cause mutation.  

[4, 16] 

 
Presently, green fluorescent protein (GFP), 

enhanced green fluorescent protein (eGFP), red 
fluorescent protein (RFP), and the latest near-infrared 
fluorescent proteins are the most commonly used 
reporters in FLI [45, 46]. BLI employs luciferases such 
as those of the American firefly Photinus pyralis, the 
sea pansy Renilla reniformis, or the marine copepod 
Gaussia princeps, as reporters [47, 48]. The herpes 
simplex virus type-1(HSV1-tk) and its mutant 
HSV1-sr39tk from thymidine kinase (TK) are 
enzyme-based reporter genes for PET imaging with 
124I-FIAU (2-fluoro-2-deoxy-1-β-D-arabinofuranosyl- 

 

 
Figure 2. Schematic of common approaches for molecular imaging in vivo. For direct labeling (left), imaging probes may enter the cell via endocytosis (i.e., SPIOs, USPIOs and 
Au NPs), transporter uptake (i.e., 18F-FDG), or passive diffusion (i.e., 111In-ox) and may bind to the cell surface through antigen - antibody or ligand - receptor recognition (i.e., 
microbubbles). Labeled cells are then detected by imaging systems such as PET, SPECT, MRI, CT, and ultrasound. In reporter gene imaging (right), genetic modification of cells 
utilizes reporter gene integration. Target cells are transduced or transfected with a multimodality reporter gene construct. Transcription of the reporter gene under the control 
of a promoter is followed by translation of its mRNA, leading to accumulation of reporter proteins such as enzymes (i.e., HSV1-tk, RLuc, FLuc, and eGFP), receptors (i.e., D2R), 
and transporter proteins (i.e., hNIS). Abbreviations: Au NP: Au nanoparticle; CT: computed tomography; D2R: dopamine D2 receptor; eGFP: enhanced green fluorescent 
protein; 18F-FDG: 18F-fluorodeoxyglucose; Fluc: firefly luciferase; hNIS: human sodium−iodine symporters. HSV1-tk: herpes simplex virus type-1; RLuc: Renilla luciferase; SPIO: 
superparamagnetic iron oxide; USPIO: ultrasmall superparamagnetic iron oxide.  
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5-iodouracil) or 18F-FHBG (9-(4-18F-Fluoro-3-[hydro-
xymethyl]butyl)guanine) [49]. Human ferritin heavy 
chain (hFTH) is a novel gene reporter in magnetic 
resonance imaging [50]. The overexpression of 
transferrin receptors (TfR) induces a significant 
reduction in T2-weighted signal intensity on MRI [51]. 
Sodium-iodine symporters (NIS) can effectively 
accumulate 99mTc, 123I ,131I or 124I in cells for SPECT or 
PET imaging, respectively [52]. 

All of these imaging techniques and reporter 
genes have their own advantages and disadvantages, 
making them more suitable for different applications 
[41, 53, 54]. For example, radionuclide-based imaging 
techniques, such as PET and SPECT, have the 
advantage of high sensitivity, providing quantitative 
and tomographic information that may be used in a 
clinical setting. However, their shortcomings are 
relatively poor spatial resolution, cost, and radiation 
exposure [55, 56]. OI using BLI or FLI is suitable for in 
vitro studies and frequent small animal imaging [57]. 
It offers great sensitivity (10-15 M for bioluminescence) 
[42] at a lower cost and higher throughput. It also 
possesses the ability to exploit differential spectral 
properties of molecular probes for multichannel 
imaging [58-60], but the energies in the visible to 
near-infrared region of the spectrum are limited due 
to the intrinsic absorption and light scattering of 
heterogeneous tissues [61, 62], which has become a 
major obstacle to its clinical application [63]. Optical 
signals have lower spatial resolution [13], and are not 
suitable for large imaging areas or tomography [57]. 
These weaknesses limit the application of OI for 
intraoperative use, making it difficult to translate 
animal studies into clinical studies [64, 65]. MRI has a 
high degree of spatial resolution [57, 66] with superb 
soft tissue contrast [40], a lack of ionizing radiation 
[67] and can image deep tissue [68], which makes 
preclinical findings easily translated to the clinic [61]. 
However, it is handicapped by its inherently low 
sensitivity compared with OI and nuclear imaging 
[40, 68, 69]. CLI is based on Cerenkov radiation, which 
is generated when a charged particle (positron or 
electron) traverses through a dielectric medium at a 
velocity greater than the phase velocity of light in the 
medium [70, 71]. The most dramatic characteristic of 
CLI is combining the advantages of optical and 
nuclear imaging, and the availability of many PET 
radiopharmaceuticals already approved by the US 
Food and Drug Administration may push the rapid 
translation of CLI into clinical practice [72]. PAI is a 
hybrid optical imaging method that detects acoustic 
responses in tissue by generating a transient rise in 
local temperature [73-75]. It is capable of producing 
3D imaging in vivo with high spatial resolution and 
contrast. Moreover, it allows mapping of deeper 

tissues (approximately 5 cm) beyond the optical 
diffusion limit [73, 76, 77]. 

The ideal imaging platform should have the 
following characteristics, such as safety and 
biocompatibility. It ideally could be used for 
quantification of cell number and undergo no dilution 
with cell proliferation [78]. All the above-described 
single-mode imaging techniques have their own 
unique applications, advantages, and limitations [53]. 
Modalities with high sensitivity tend to have lower 
resolution (e.g., OI and nuclear imaging), while those 
with high resolution have limitations in sensitivity 
(e.g., MRI) [79, 80]. Hence at present no imaging 
modality combines all these advantages, and no one 
imaging modality is better than the others [81]. An 
imaginative strategy, combining cellular-level and 
whole-organism-level imaging, via fusing different 
reporter genes detectable by different imaging 
modalities, so-called “multimodality reporter gene 
imaging” is one solution [82, 83]. Multimodality 
reporter gene imaging has the potential to harness the 
advantages of each modality [84-86]. 

Molecular biology of recombinant genes 
Construction strategies for recombinant genes  

For generating a multimodality reporter gene 
system, several strategies are available for the linkage 
of multiple exogenous genes. There are five 
frequently used strategies (Figure 3). First is the use of 
a fusion gene vector, whereby multiple genes are 
linked and located downstream from a common 
promoter to form a single reading frame. In this case, 
their coding sequence will generate a single fusion 
protein. Second is the bicistronic strategy, which has 
been the most widely used. An internal ribosome 
entry site (IRES) element is inserted between two gene 
sequences, with the two connected reporter genes 
both under the control of a single promoter to create 
an “expression cassette.” This expression cassette 
gives rise to two different mRNAs that translate into 
two different proteins. The bicistronic strategy has 
been reported to give rise to unbalanced expression 
levels of the two genes; the expression of the IRES 
downstream gene is often lower than that of the 
upstream gene. A third approach is to make two 
exogenous genes into two vectors, which are 
co-transfected into the same cells. The shortcoming of 
this strategy is relatively low and uncontrollable 
transfection efficiency. Fourth, multiple reporter 
genes can be constructed into a single vector, but each 
gene is controlled by its own promoter and expresses 
its corresponding protein independently. This may be 
the best method. A fifth strategy uses bidirectional 
transcription. A promoter locates centrally in the 
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vector, and is surrounded with two reporter genes, 
which makes it possible for co-expression of two 
different products in a bidirectional manner [13, 
87-97]. 

Vectors of recombinant genes  
Although reporter gene imaging has been 

extensively studied in vivo, a critical issue in these 
molecular imaging strategies is to choose a safe 
transduction pathway to transfer exogenous genes 
into the cells of interest [98]. The expressed genes, 
targeted cell types, the phase of transfection and 
expression vectors are all the factors that affect the 
infection efficacy. In terms of transfection vectors, 
viral infection method is the most effective. Vande 
Velde G et al. showed that adeno-associated viral 
vectors system seemed to be the most promising 
vector system for in vivo MRI reporter gene imaging 
for its low background signal interference and high 
transgene expression levels [99]. Wu et al. transiently 
transduced a single reporter gene into embryonic rat 
H9c2 cardiomyoblasts with E1-deleted adenovirus 
[100]. Although the E1 region was deleted, there still 
was a host immune response against the transduced 
H9c2 cells expressing small amounts of immunogenic 
adenoviral proteins [101]. Because the adenoviral 
transduction approach cannot integrate the 
exogenous gene into the chromatin of recipient cells, 
the expression of reporter protein will decrease with 
cell division and proliferation, which makes it 
difficult to track cell survival and proliferation over 
time [102].  

Retroviral-mediated gene transfer is an efficient 
method for inserting transgenes into actively dividing 
primary cells [103]. Recent data suggest that a 
retrovirus transfection system can accomplish the 

integration of foreign DNA into the chromosome of 
the host cell, which may simplify monitoring of cell 
proliferation, although it is accompanied by an 
increased risk of mutagenesis [104]. However, 
retroviruses are incapable of integrating a transgene 
into non-dividing cells [105]. They also suffer from the 
phenomenon of silencing by DNA methylation and 
histone deacetylation during extended cell division 
[106]. Lentivirus, on the other hand, possesses the 
unique ability to insert a transgene into the cell 
chromatin with minimal cytotoxicity, infect cells in 
the stationary phase as well as the mitotic phase, and 
is not vulnerable to gene silencing [107-110]. The use 
of self-inactivating long terminal repeats (LTRs) in the 
lentivirus allows incorporation of the internal 
promoters into the transfer vector. Thus, the reporter 
genes can be expressed in a tissue- or lineage-specific 
manner, or in an inducible system [111, 112]. Also, the 
virus glycoprotein pseudotyped lentivirus can be 
concentrated to achieve a high titer that is several 
orders of magnitude greater than the retrovirus. Titers 
as high as 109 transducing units/mL (TU/mL) have 
been reported [109]. Compared with all of the above 
vectors, baculovirus has recently caught researchers’ 
attention as a multipurpose and robust vector system 
for protein production, development of vaccines, in 
vitro and in vivo gene delivery, drug development, 
and cancer treatment [113-115]. Baculovirus can 
transduce mammalian cells efficiently with minimal 
cytotoxicity. Although it possesses some distinct 
advantages, it is still incapable of replicating in 
mammalian cells, so the viral genome gradually 
dilutes with cell division. In recent years, 
baculoviruses with steady transgene expression have 
been developed, which may optimize this vector 
system for use in long-term monitoring of cell 

 
Figure 3. Schematic of promoter-reporter gene constructs strategies. P1 and P2 represent promoter/enhancer sequences; Gene1 and Gene2 are reporter genes; IRES is 
internal ribosomal entry site. 
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behavior [116, 117]. This novel vector can also infect 
dividing and nondividing cells and boasts a large 
packaging capacity of > 100 kb [118]. As it never 
randomly integrates into the host genome, unwanted 
mutations can be avoided [119, 120]. Furthermore, 
recombinant baculovirus can be easily constructed 
and achieves high titers [121].  

Although viral-mediated methods are 
widespread in the application of reporter gene 
transduction, the possibility of uninhibited infection 
and stochastic genomic insertion of exogenous 
reporter genes limits their clinical application [88]. In 
contrast, in clinical practice, non-viral gene delivery is 
more acceptable due to the use of some biocompatible 
materials, and its safety is easily assessed by 
pharmacokinetic and pharmacodynamics studies 
[122]. The piggyBac transposon system, a non-viral 
gene-delivery arrangement, permits a “cut and 
paste”-mediated transposition of exogenous genes 
into the genome at “TTAA” sequences [123]. It 
features mammalian compatibility, large cargo 
capacity with higher transposase activity, and stable 
reporter gene expression. It can integrate multiple 
transposons simultaneously, and it can maintain the 
DNA sequence when removed from the integration 
site. Compared with Sleeping Beauty, which presents 
a significant reduction in efficiency with larger 
transgenes, piggyBac is able to deliver large (9.1-14.3 
kb) transposable elements without significant loss of 
transposition efficiency [124, 125]. It requires an 
auxiliary plasmid that encodes the piggyBac 
transposase gene to facilitate the transposition of 
exogenous genes [126]. Though its application has 
been less frequently reported in multimodality 
reporter gene imaging, its advantages still make it a 
great tool for potential therapeutic and biological 
applications such as cancer research, induced 
pluripotent stem cells, and immunotherapy without 
using viral vectors [127, 128]. 

Linker length of recombinant genes  
As described before, joining two or more 

reporter genes together with short linkers under 
control of a single promoter is a useful approach for 
the multimodality reporter gene technique [129]. 
Studies have shown that the maintenance of each 
protein’s function is strongly related to the length of 
the linker amino acid (aa) sequence [130], as 
sometimes one or more reporter proteins may lose 
enzymatic activity when fused together [131]. Ray et 
al. were the first to build an optical-PET fusion 
reporter and demonstrated its validity in cell culture 
and tumor-xenograft-bearing mice with biolumi-
nescence and microPET imaging. They explored three 
linkers (10 aa, 18 aa, and 20 aa) with different lengths 

and compositions, and found that the 20 aa linker was 
optimal to maintain sufficient activities for both 
reporters. In addition, with the positive control 
(pCDNA3.1-HSV1-sr39tk) as a reference, each group 
of all the fusion constructs showed decreased TK 
enzyme activity and the shorter length of the linker 
indicated the lower TK activity. In addition, the RL 
activity of each construct was relatively higher 
(approximately 6–8 fold) in comparison to the positive 
control (pCDNA3.1-rl) and its activity correlated 
positively with spacer length [9].  

Order of recombinant genes  
Due to the functional importance of the position 

of crucial amino acids in the protein backbones, the 
order of the fusion genetic construct is a crucial factor 
in maintaining the activities of each protein. Studies 
have demonstrated that even a few changes in several 
critical amino acids at the COOH-terminal end of 
HSV1-tk will render TK protein vulnerable to loss of 
activity [132, 133], indicating that caution with the 
COOH terminus in the fusion process is necessary. 
The tk20rl fusion gene constructed with partial loss of 
TK activity might be improved by inserting a longer 
linker between the two genes or positioning TK as the 
downstream gene [9].  

Preclinical applications of multimodality 
reporter gene imaging  

Advances in multimodality reporter gene 
imaging strategies have been important for exploring 
biological processes. Typically, there are two imaging 
strategies. One is the reporter gene strategy, which is 
based on using a stand-alone reporter gene or 
combining two or more reporter genes together to 
serve as multimodality reporters. The other is a 
combined labeling strategy, involving reporter genes 
(e.g., luciferase and eGFP) and physical labeling with 
contrast agents (e.g., micron-sized particles of iron 
oxide (MPIO) and superparamagnetic iron oxide 
(SPIO)) together (Figure 4). The former can objectively 
provide accurate data on cell viability or engraftment 
since the reporter signal will only be produced by 
viable cells. PET reporter gene substrates (e.g., 
18F-FHBG) cannot cross the intact blood–brain barrier. 
However, the MRI agents make up for this 
shortcoming.[134].  

Reporter gene strategy 

*Fusion reporter genes for multimodality imaging  
A widespread strategy is to form a recombinant 

DNA construct (e.g., HSV-tk1-eGFP-Fluc) by 
assembling several reporter genes together, allowing 
the expression product to be detected by multiple 
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imaging instruments [89, 135-138]. To ensure 
authenticity, the expression of each component of the 
recombinant gene should be consistent with its 
independent reporting genes; also, the recombinant 
construct should be stable [139]. However, after 
combining different reporter genes, the protein 
expression of one or more genes may decrease 
because of some reasons, such as the steric hindrance 
[57, 140]. 

OI and nuclear medicine imaging (NMI) 
Combining these two technologies with a single 
vector would bring each modality’s superiority into 
full play at the small animal level and in turn has the 
potential to translate the application to humans [9]. 
PET/BLI seems to be the most sensible combination. 
PET allows tomographic and three-dimensional 
imaging and quantitative analysis, In addition, BLI 
can easily and economically produce bi-dimensional 
images with high sensitivity [25]. Also, the 
combination of fluorescent protein with NM reporter 
genes allows quantitative assessment of reporter gene 
expression at the macroscopic and microscopic levels 
[141].  

Tian et al. established a transgenic mouse model 
using a knock-in gene targeting approach with a 

fused reporter gene structure for exploring acute liver 
injury and diethylnitrosamine-induced hepatocellular 
carcinoma (HCC). In this multimodality reporter gene 
system, Fluc and HSV1-tk were controlled by the 
mouse alpha fetoprotein promoter (Figure 5A). Alpha 
fetoprotein gene expression is highly specific in 
certain pathological conditions such as acute liver 
injury and liver tumors such as HCC. The authors 
successfully demonstrated that the expression of these 
two reporter markers could be detected in the injured 
hepatocytes and induced HCC tumors with BLI and 
PET (Figure 5B-C). The combination of this model 
with currently available tracers offers a potential new 
means for monitoring liver injury [142].  

Lin et al. [141] transduced a fusion reporter gene 
(eGFP-tk) into a breast tumor model in ZR75-1 cells, 
which allowed noninvasive imaging of tumor growth 
using fluorescence and nuclear imaging platforms 
(Figure 5D, F). The green fluorescence emitted by the 
tumor model bearing eGFP-tk was measured and 
found to be 15-fold higher than that by the wild-type 
tumor. In addition to imaging, HSV1-tk can be also 
treated as a therapeutic gene. By using ganciclovir 
(GCV), HSV1-tk showed therapeutic potential in 
treating tumors; decreased 123I-FIAU uptake in 

 
Figure 4. Multimodality reporter gene imaging strategies. (A) Reporter gene strategy: Expression of the enhanced green fluorescent protein reporter gene (eGFP) leads to 
cytosolic retention of enhanced green fluorescent protein (EGFP), which emits fluorescent light (green λ) when excited with a light source (blue λ). Transcription of the firefly 
luciferase gene (fLuc), followed by its translation, leading to accumulation of firefly luciferase enzyme (FLuc) that catalyzes a photochemical reaction when its substrate D-luciferin 
is present. The resultant fluorescent light (brown λ) emission can be detected by a charge-coupled device camera. Furthermore, the human sodium iodide symporter (hNIS) 
transporter is able to transport radioactive forms of iodide, as well as other anions such as technetium pertechnetate (99mTcO4-); then the decay of the radionuclide is detected 
using SPECT. (B) Reporter gene and contrast agents combination strategy: Cells are genetically modified with the reporter gene(s) and labeled with imaging probes. The 
dopamine 2 receptor (D2R) gene complex is transfected into target cells by a vector. Inside the transfected cell, the D2R gene is transcribed to D2R mRNA and then translated 
to a protein (receptor). After introduction of radiolabeled probes (i.e., 18F-FESP) and recognition of the receptors, the radiolabeled substrate is trapped within the cells. The 
accumulation of the probe gives rise to a radioactive signal. Also, the target cells are incubated with SPIO particles that are taken up by nonspecific endocytosis. Protons 
surrounding each SPIO emit a radiofrequency pulse after excitation that is detected by MRI. Abbreviations: 18F-FESP: 3-(2′-[18F]-fluoroethyl)-spiperone; I: iodine; RF: radio 
frequency; SPIONs: superparamagnetic iron oxide nanoparticles; 99mTcO4-: technetium pertechnetate.  
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eGFP-tk tumor by GCV treatment as well as 
significant decrease in eGFP-tk tumor volume have 
been proven (Figure 5E). In this report, the feasibility 
of eGFP and HSV1-tk expressed in breast tumor cell 
lines to achieve the goal of treating tumor and 
monitoring tumor growth or therapeutic effects in vivo 
simultaneously was demonstrated. However, the 
application of HSV1-tk as a PET marker within the 
central nervous system is limited by the fact that 
marker/reporter probes for this system do not 
significantly penetrate the blood–brain barrier (BBB) 
[143]. Waerzeggers et al. demonstrated that to be able 
to detect C17.2 cells within the brain by specific 
accumulation of 18F-FHBG, these cells have to be 
localized in regions where the BBB is disrupted [134]. 
To overcome the problem of limited BBB penetration, 
several research groups have explored methods to 
improve the transport rates of these marker/reporter 

probes across the BBB, for example, by creating new 
radiolabeled HSVl-tk substrates with increased 
lipophilicity, which facilitates passive diffusion of the 
radiotracer across the BBB [144], or by creating new 
reporter gene/reporter substrate systems, such as the 
xanthine phosphoribosyl transferase reporter enzyme. 
The feasibility, sensitivity, and specificity of this 
system have already been successfully tested in an 
intracranial glioma modal with almost intact BBB 
using 14C-xanthine and quantitative autoradiography 
[145].  

Oncolytic viruses have shown great promise in 
the treatment of cancer. Therefore, noninvasive 
imaging modalities are needed to monitor therapeutic 
effect and assess potential toxicity. Haddad D et al. 
[146] modified GLV-1h68 to prepare GLV-1h153, in 
which hNIS gene and GFP gene were encoded. A 
time-dependent enhanced uptake of 131I was 

 

 
Figure 5. (A) Dual-reporter gene structure diagram. BLI in (B) for luc expression and microPET in (C) for tk expression of a positive and negative control. (A-C adapted with 
[142], copyright 2012 Ivyspring International Publisher) (D) 123I-FIAU SPECT/CT fusion images after distribution of probes for 3 h (left panel) and 16 h (right panel). (E) 123I-FIAU 
SPECT/CT fusion images of the same mouse before (left panel) or after (right panel) 14 days of GCV therapy. (F) In vivo optical imaging of the nude mouse with wild-type and 
eGFP-tk. (D-F adapted with permission from [141], copyright 2008 Elsevier BV) 
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demonstrated in GLV-1h153 infected human 
pancreatic carcinoma cells PANC-1. Viral mediated 
PANC-1 subcutaneous xenografts uptake was 
detected and easily visualized via 99mTc-scintigraphy 
and 124I-PET. These findings indicated that GLV-1h153 
is a promising agent for the noninvasive imaging of 
virotherapy and deserves further investigation of 
long-term monitoring of virotherapy and potential 
radionuclide-based integrated approach of diagnosis 
and treatment. 

FLI and BLI Stem cell therapy is an exciting area 
of research. To investigate the differentiation, 
survival, and function of embryonic stem cell-derived 
endothelial cells (ESC-ECs) for ischemic heart disease, 
Li et al. [147] used a dual-fused reporter gene 
consisting of Fluc-mRFP to track transplanted 
ESC-ECs. VE-cadherin (late EC marker) and eGFP 
double-positive cells (ES cells electroporated with 
pVE-eGFP-IE plasmid) were isolated using 
fluorescence-activated cell sorting. Bioluminescence 
imaging was performed for 8 weeks to assess the 
engraftment of ESC-ECs; cell signal was most robust 
immediately after transplantation. A drastic decrease 
in cell signal activity was observed over time, 
indicating significant donor cell loss. Although 
relatively few cells survived, the ESC-EC group had 
significantly higher fractional shortening compared 
with the control group and enhanced neo-angio-
genesis at the 8th week after left anterior descending 
artery ligation [147]. 

Murine macrophage Raw264.7 cells transduced 
with enhanced firefly luciferase (Raw/effluc) and 
murine colon cancer CT26 cells co-expressing Rluc 
and mCherry (CT26/Rluc-mCherry, CT26/RM) were 
established in a study [148] that successfully imaged 
the migration of tumor-associated macrophages to 
tumors and demonstrated significantly higher tumor 
growth rates in the CT26/RM+Raw/effluc group, 
suggesting tumor-associated macrophages can be an 
important module in the tumor microenvironment. 
After intraperitoneally transferring dexamethasone 
(DEX), effective blockade of Raw/effluc migration 
followed by almost complete suppression of tumor 
growth in the DEX-treated group was confirmed. 

In another study, BLI was used to track the 
survival and homing capacity of dual-reporter gene 
(eGFP/Luciferase)-expressing bone marrow-derived 
stromal cells in a peripheral tissue ischemia mouse 
model in the presence and absence of cyclosporine A 
immunosuppression. The cells were followed for 2 
weeks in vivo using BLI. The signal appeared to be 
stable throughout the first week but then displayed a 
rapid and steep drop in bone marrow-derived stromal 
cell number and density during the second week. 
Massive pulmonary infarction, which led to respire-

tory failure and death, was the consequence of central 
venous injection of bone marrow-derived stromal 
cells, but intra-arterial injection proved to be a feasible 
and safe strategy to bypass the pulmonary circulation. 
Allogeneic bone marrow-derived stromal cells 
transplant survival was limited in an immune- 
competent host and cyclosporine A immuno-
suppression alone was not able to sustain long-term 
survival of the allograft, even at high doses. All above 
the findings were monitored with by BLI [149]. 

OI and MRI Kim et al. [150] developed a 
bimodal lentiviral vector to monitor deep tissue 
events using MRI by myc-tagged human ferritin 
heavy chain (myc-hFTH) expression and FLI by GFP 
expression (Figure 6A). MCF-7 and F-98 cells were 
stably transfected with the transgene construct 
(Figure 6B, D) and then were transplanted by 
subcutaneous injection into mice or rats. No 
differences in cell viability and growth owing to the 
overexpression of exogenous reporter genes were 
observed in MTT and trypan blue exclusion assays. 
Compared with mock-transfected controls, iron 
accumulation was demonstrated in myc-hFTH cells 
and tumors, as well as significantly shorter relaxation 
times on T2-weighted MRI (Figure 6B-C), thus 
directly confirming that myc-hFTH expression can be 
visualized noninvasively with a 1.5 T clinical MR 
scanner. MRI and optical imaging with the fusion 
reporter genes can provide an extra level of 
quantitative and high-resolution information about 
biological processes, such as tumor growth, 
metastasis, and regression and gene-based therapy 
occurring in deep tissues [150] (Figure 6E).  

Rossi et al. [151] constructed a lentiviral vector 
combining OI and MRI together, then successfully 
monitored the specific biological pathway activity 
(Wnt pathway) in glioblastoma cells responding to 
LiCl treatment. After LiCl administration, the 
luminescence signal increased significantly and lower 
T2 values were observed. This multi-reporter system 
introduced a new way to monitor the effect of a 
specific treatment for tumors. By synthesizing 
complementary information and then offering 
synergistic advantages over any modality alone, this 
system has the potential to be extended to other 
pathways and other diseases. 

NMI and MR spectroscopy Gene-directed 
enzyme prodrug therapy has shown promise in 
clinical practice. Xing et al. [152] designed a 
triple-suicide-gene (TK, cytosine deaminase [CD] and 
uracil phosphoribosyltransferase [UPRT]). As an 
effector, TK converts the prodrug GCV into toxic 
products. Similarly, CD and UPRT function as effector 
genes, with CD converting the prodrug 
5-fluorocytosine (5-FC) to the chemotherapeutic drug 
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5-fluorouracil (5-FU) and UPRT converting 5-FU to 
cytotoxic compounds (fluoronucleotides). All three 
genes function simultaneously as effectors for 
gene-directed enzyme prodrug therapy and markers 
for multimodality molecular imaging using PET and 
magnetic resonance spectroscopy (Figure 7A-B). The 
expression of TK and CD both in the TKCD and 
TKCDUPRT cells enhances the cellular sensitivity to 
GCV and 5-FC relative to that of the parental cells. 
Correspondingly, the existing UPRT in the 
TKCDUPRT cells enhanced their drug sensitivity to 
5-FU and 5-FC compared with that of the TKCD cells. 
This preclinical study demonstrated that the 
concomitant expression of these genes significantly 
enhances prodrug radiosensitivity and cytotoxicity in 
vitro and in vivo (Figure 7C-F). This triple-suicide- 
gene approach improves the therapeutic efficacy 

compared with previous methods, and that 
multimodality molecular imaging can be used to 
monitor the delivery and evaluate the distribution 
and function/activity of the triple-suicide-gene.  

FLI, BLI and NMI Since adult cardiomyocytes 
have little capacity for self-regeneration [153], a 
method of transplanting stem cells to regenerate heart 
tissue and enhance cardiac function is under 
investigation in myocardial infarction patients [154]. 
Our group [27] explored multimodality molecular 
imaging to monitor transplanted bone marrow- 
derived stem cells with a triple-fused reporter gene 
[TGF; HSV1-tk, eGFP, and Fluc] in acute MI rat 
models. In the heart, high signal was observed in 
infarcted rats injected with Ad5-TGF-transfected bone 
marrow-derived stem cells, whereas no signals were 
detected in the negative controls (Figure 8A). The 

 
Figure 6. (A) Schematic of lentiviral vector with dual promoter, myc-hFTH, and GFP. (B) Analysis of in vitro MRI of agarose phantom suspended F-98 cells transfected with 
Lenti-myc-hFTH vector. (C) Prussian blue staining of iron deposits in mock and myc-hFTH tumors collected at 3 wk. (D) Immunofluorescence staining of myc-hFTH and GFP 
in mock and myc-hFTH tumors with anti-myc and anti-GFP antibodies. (E) In vivo FLI (left) and T2-weighted images (right) of MCF-7 tumors bearing myc-hFTH reporter gene 
after 21 days of subcutaneous transplantation. (A-E adapted with permission from [150], copyright 2010 American Association for Cancer Research)  
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heart/lung ratio of 18F-FHBG uptake of the 
experimental group was 31-fold higher than that of 
the control group (p = 0.043). It is interesting to note 
that all three imaging techniques in this study of the 
semi-quantitative analysis of TGF expression showed 
the same trend with gradual decrease of signals with 
time (Figure 8B-D). This study suggests that TGF 
reporter gene imaging may provide a practical 
multipurpose approach for in vivo monitoring of 
transplanted stem cells for the treatment of ischemic 
heart disease. 

By using tri-modal reporter imaging, another 
team [155] monitored bone marrow-derived dendritic 
cells’ (BMDCs) migration and demonstrated a 
noticeable tumor protection phenomenon in the 
group immunized with BMDCs induced by mouse 
cervical cancer cell line TC-1 cells with no adverse 
effects. These findings provide a possible platform to 
image the location, migration, and antitumor immune 
responses of BMDCs. 

BLI, NMI and CLI Wolfs et al. [156] optimized a 
lentiviral vector carrying dual-reporter genes, Fluc 
and hNIS, transducing in murine MSCs. When 
healthy C57BL/6 mice were injected in the tail vein 
with varying numbers of cells carrying the vector, the 
in vivo imaging information captured by BLI or small 
animal PET offered proof-of-principle for cell 
visualization. The injected amounts of cells correlated 
significantly with total photon flux. In addition, the 
Cerenkov signal obtained by 124I accumulation was 
monitored over 8 days in the xenograft expressing 
Fluc-hNIS. The results of this study indicated that 
hNIS is an appropriate tool for PET and CLI reporter 
gene imaging, and that CLI has the potential to form a 
translational bridge between the information acquired 
from nuclear and optical imaging. 

*Single reporter gene for multimodality imaging  
Some of single reporter genes can also be used in 

multimodality imaging. The single reporter gene 

 
Figure 7. (A) A “map” of the acquired FNuc spectra, displayed in a mouse bearing TKCDUPRT tumor xenograft as a matrix overlaid on the corresponding 1H-MR images. (B) 
MicroPET imaging of TK function at 16–18 h after i.v injection of 124I-FIAU. Coronal (left panel) and transverse (right panel) images are shown. The dashed line in the coronal image 
indicated the position of the transverse image. (C) Immunohistochemistry staining of Ki-67 and cleaved caspase-3 performed in TKCDUPRT-expressing and TKCD-expressing 
tumors. (D) Surviving fractions of TKCD and TKCDUPRT cells after a 24-h exposure to different concentrations of GCV, 5-FU or 5-FC. (E) Surviving fractions of TKCDUPRT 
(left panel) or TKCD (right panel) cells treated with different doses of GCV, 5-FC or GCV + 5-FC for 24 h. (F) Tumor growth kinetics in mice bearing TKCDUPRT tumors or 
TKCD tumors untreated or treated with different doses of GCV and 5-FC. (A-D adapted with permission from [152], copyright 2013 Nature Publishing Group) 
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system is more simple, stable, and convenient than the 
fused reporter gene, which requires complicated 
construction and verification [57, 157, 158].  

NMI and MRI A variety of imageable small 
molecules can be transported across the plasma 
membrane by Oatp1. It also serves as a reporter gene 
by transferring MRI contrast agent (e.g., gadolinium 
ethoxybenzyl-DTPA [Gd-EOB-DTPA]) to produce a 
reversible, intense, and positive contrast in 
T1-weighted MR imaging [159, 160]. The oatp1-based 
reporters have a wide range of applications in 
tracking implanted stem cells and monitoring 
expression of gene therapy vectors with maximum 
signal enhancement. The Gd3+-based contrast agent 
has the ability to be detected with MRI. And SPECT 
imaging can be achieved by exchanging Gd3+ for 111In 
[160]. 

Photoacoustic imaging (PAI), MRI and NMI 
Tyrosinase (TYR) is the key enzyme in melanin 
production [161]. Melanin production is induced by 
introducing the TYR gene into non-melanin- 
expressing tissues (Figure 9A) [26, 162]. Melanin is an 
outstanding contrast that can be imaged with three 
different modalities including PET, MRI, and PAI 
(Figure 9A). PET imaging can be achieved with 

benzamide and its analogues such as N-[2- 
(diethylamino) ethy1]-6-18F-fluoropicolinamide (18F- 
MEL050) or N-(2-(diethylamino)ethyl)-18F-5-fluoro-
picolinamide (18F-P3BZA) [75, 163]. Because of its 
affinity for metal ions, MRI T1-weighted images are 
possible [164]. Melanin’s significant absorption at 
near-infrared wavelengths enables its use in PAI 
[165-167].  

Our group first explored TYR as a stand-alone 
reporter gene for in vitro and in vivo PAI/MRI/PET 
imaging [26]. In this study, MCF-7 human breast 
cancer cells transfected with a plasmid that encodes 
TYR (named MCF-7-TYR), B16F10 (a mouse 
melanoma cell line), and non-transfected MCF-7 (a 
breast cancer cell line) cells were used as positive and 
negative control cells, respectively (Figure 9B). 
Experimental results verified that photoacoustic 
signal increased with increasing concentrations of 
melanin in cells. For MRI, T1-weighted images of 
MCF-7-TYR tumors displayed significantly higher 
signal compared with control tumors (Figure 9C). 
This TYR system enjoyed high sensitivity for both PAI 

and PET (Figure 9D-E); moreover, MCF-7-TYR 
tumors were clearly visualized with satisfactory 
tumor-to-background ratios at all time points, 

 
Figure 8. Multimodality molecular imaging of Ad5-TGF-transfected bone marrow-derived stem cells after transplanted into the myocardial infarction rats model. (A) Images of 
microPET (upper row), fluorescence (middle row) and bioluminescence (lower row) in the heart region after transplantation at day 2, 3 and 7. Semi-quantitative analysis results 
obtained by regions of interest (ROIs) analysis of the heart region from 18F-FHBG microPET (B), fluorescence (C) and bioluminescence (D) imaging. (A-D adapted with 
permission from [27], copyright 2014 Public Library of Science)  
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whereas for MCF-7 tumors, uptake was hardly 
detected (Figure 9E). MRI compensates for the low 
spatial resolution of PET and also features good 
contrast on T1-weighted images (Figure 9C). Our 
study successfully validated the feasibility of using a 
stand-alone reporter TYR for multimodality imaging 
and suggests the possibility of using a single reporter 
gene for multimodality molecular imaging [26]. In 
another study [162], a novel TYR tracer, 18F-5- 
fluoro-N-(2-[diethylamino]ethyl)picolinamide (18F-5- 
FPN) was developed and tested. We demonstrated 
that transfected TYR can be accurately regulated by 
the Tet-on system and subsequently can induce the 
production of melanin. This positron probe showed 
specific targeted ability to melanin with favourable 
pharmacokinetics and high affinity in vitro PET, MRI 
and PAI study. The above experiment indicated that 
this TYR - 18F-5-FPN system has a great application 
prospect. 

Reporter gene and contrast agent 
combination strategy  

This strategy combines reporter genes with 
contrast agents for multimodality imaging. It also 

allows visualization of cellular processes in individual 
cells and tissues by two or more modalities, more 
conveniently than pure fusion reporter genes. 
However, target cells cannot be tracked longitudinally 
via this strategy vs. single gene and fusion gene 
multimodality imaging systems, because the 
concentration of the contrast agents will decrease 
quickly with subsequent cell death and phagocytosis 
[13, 150, 168]. 

For example, in stem cell transplantation 
therapy, De Vocht et al. established a combined 
labeling strategy for bone marrow-derived stem cells 
based on physical labeling with blue fluorescent 
micron-sized iron oxide particles (GB MPIO) and 
genetic modification with the reporter genes 
luciferase and eGFP (BMSC-Luc/eGFP) for the 
purpose of unambiguously identify bone marrow- 
derived stem cell survival, localization, and 
differentiation following engraftment in the central 
nervous system of mice by using in vivo BLI/MRI 
[66]. As compared with unlabeled bone 
marrow-derived stem cell-Luc/eGFP, the results 
demonstrated a significantly higher in vitro BLI signal 
intensity (ratio 1.4–1.5) from GB MPIO-labeled bone 

 

 
Figure 9. (A) Schematic description of the TYR reporter gene system for multimodality molecular imaging. (B) Photographic images of tumor bearing mice (arrows point to the 
grafted tumor). (C) MRI images of MCF-7-TYR (left) and MCF-7 (right) tumors. Top row shows black and white images, and bottom row shows the pseudo-colored images. (D) 
PAI (top), ultrasound (middle), and PAI/US images (bottom) of the tumor mice. (E) Representative decay-corrected coronal (top) and transaxial (bottom) microPET images of 
MCF-7-TYR (left three images) and MCF-7 (right three images) tumors obtained at 0.5, 1 and 2 h after 18F-P3BZA injection. (A-E adapted with permission from [26], copyright 
2013 Nature Publishing Group) 
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marrow-derived stem cell-Luc/eGFP. In addition, 
they concluded that the internalization of particles by 
cells is the necessary condition to increase the BLI 
signal in vitro. Moreover, both at weeks 1 and 2 
post-implantation, the results showed a 2.9 ratio of in 
vivo BLI signal amplification due to GB MPIO labeling 
of bone marrow-derived stem cell-Luc/eGFP. Daadi 
et al. demonstrated that animals receiving human 
neural stem cell (hNSC) grafts (labeled with SPIO) 
showed less hyperintensity in stroke size on 
T2-weighted images [169]; also, the current evidence 
tends to suggest that SPIO does not alter the 
physiological properties of the NSCs either in vitro or 
in vivo [169-174]. Higuchi et al. retrovirally transduced 
the sodium iodide symporter (NIS) gene into human 
endothelial progenitor cells for reporter gene imaging 
with 124I-PET and labeled them with iron oxides for 
visualization on MRI [158]. Owing to the dilution of 
MRI contrast agents, it can only offer cell biology 
information soon after transplantation. However, the 
signal intensity generated by the NIS reporter gene 
did not decrease with time, thus confirming that it is a 
good complement to MRI. Thus, versatile imaging of 
transplanted cells in vivo by this multimodality 
imaging strategy would offer comprehensive 
information about cell biology behavior and 
therapeutic effects. 

Clinical applications of reporter gene 
imaging 

One expectation of reporter gene imaging is its 
straightforward translation from laboratory animal 
models to human clinical practice [175]. The 
advantages of PET imaging make it a suitable 
modality for use in translational research [176]. 
Recently, some clinical studies have incorporated 
nuclear-based reporter genes to monitor cancer gene 
therapy. Yaghoubi et al. [177] reported a study to 
measure the pharmacokinetics, stability, and safety of 
18F- FHBG in healthy volunteers. The results indicated 
that FHBG exhibited low background signal, rapid 
clearance, and biosafety suitable for applications in 
humans. Penuelas et al. [178, 179] demonstrated that 
18F-FHBG PET may be used to monitor HSV1-tk gene 
expression in patients with hepatocellular carcinoma 
after intratumoral injection of recombinant adeno-
virus (AdCMVtk) (Figure 10). Transgene expression 
was detectable in all patients with doses > 1012 viral 
particles [179]. These findings indicate that 18F-FHBG 
PET may be used to monitor viral vector-mediated 
transgene expression in clinical trials of cancer 
patients, and also could be a useful tool to predict the 
efficacy of gene-therapy strategies. Jacobs et al. [180] 
demonstrated liposomal-mediated HSV1-tk gene 
delivery in five patients with recurrent glioblastoma. 

Specific 124I-FIAU uptake was only observed in one 
patient. This may be due to the relatively poor gene 
transduction efficiency of liposomes. In another 
study, Dempsey et al. [181] attempted to image herpes 
simplex virus 1716 expression during oncolytic viral 
therapy in human malignant glioma. Regrettably, no 
increased 123I-FIAU accumulation was detected in any 
of the eight patients by SPECT imaging. The authors 
discussed the possible reasons for this result, 
including the impermeability and inconsistent 
disruption of the BBB, the use of weak promoters, and 
the short half-life of 123I. Moreover,

 
these suicide genes 

can be regarded as reporter genes without showing 
significant defect if imaging is performed before 
treatment, and can be used to determine the best time 
point to initiate treatment. During treatment, due to 
the pharmacological competition from the therapy 
prodrugs, sometimes it may be difficult to image 
suicide gene expression with the same reporter gene 
[182]. In addition to gene therapy, cell-mediated 
immunotherapy [183] or stem cells [184] can also be 
imaged via reporter genes. Yaghoubi et al. [185] 
demonstrated the first clinical use of reporter 
gene-based cell therapy imaging in patients with 
glioma. This study showed higher 18F-FHBG signal at 
the site of HSV1-tk-transduced autologous cytolytic T 
lymphocytes. 

Although several studies have been performed 
in patients with brain tumors, the radiotracer-based 
molecular probes for the HSV1-tk enzyme barely 
penetrate the intact BBB [186], hence they may not be 
suitable to monitor the kinetics of therapeutic 
transgenes or stem cells targeted to the central 
nervous system [187]. LeMay et al. [188] showed that 
the vasodilatory bradykinin analog RMP-7 
successfully enhanced the permeability of the BBB to 
ganciclovir. This study suggests it may be an 
important adjunctive treatment for suicide gene 
therapy and chemotherapeutic drug delivery to brain 
tumors.  

A limitation of non-human reporter genes like 
HSV1-tk and its mutants is their potential 
immunogenicity. One approach to reduce this risk is 
to use mammalian species reporter gene constructs 
[187, 189]. These include sodium iodide symporter 
(NIS) [176, 189-191], human norepinephrine 
transporter (hNET) [189, 192, 193], human type 2 
somatostatin receptor (hSSTr2) [194, 195], dopamine 
type 2 receptor (D2R) [196, 197], recombinant carcino-
embryonic antigen (CEA) [198], mutant deoxycytidine 
kinases [199], human mitochondrial thymidine kinase 
type 2 (hmtk2) [200, 201], anti-polyethylene glycol 
(anti-PEG) [202], and human estrogen receptor ligand 
binding domain (hERL) [203, 204]. However, the use 
of such endogenous human genes has two potential 
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problems: first, the imaging probes can also 
accumulate in tissues that express the endogenous 
gene. Salivary glands, stomach and thyroid gland 
may obstacles for NIS-based imaging or treatment 
[176]. Organs or tissues that express endogenous 
SSTrs may produce elevated background signal, 
reducing diagnostic efficiency [189]. Second, in turn, 
these reporter genes would mimic the function of 
endogenous genes and thus interfere with the cells in 
which they are transduced. Moreover, whether these 
PET reporter genes are immunogenic or not it is still 
unknown. Lee et al. [205] demonstrated that their 
sensitivity and selectivity of each in vivo imaging are 
not identical even if they all belong to human 
nucleoside kinase reporter systems, such as human 
deoxycytidine kinase, deoxycytidine kinase mutant 
(dCKDM), hTK2-N93D/L109F (TK2DM) and dCK- 
R104Q/D133N (dCKep16A). This study indicated the 
necessity for careful and rigorous verification in order 
to select the most suitable candidate for clinical study. 

Since MRI is already a widespread imaging 
technology used in clinical diagnosis and progression 
monitoring, the application of MRI reporter genes 
would greatly promote the development of 
translational medicine. Compared with genes used in 
optical imaging, MRI reporter genes, including Oatp1, 
Lysine Rich-protein (LRP), LacZ, and β-Galactosidase 
are more likely to be converted into clinical 
applications [206]. However, they suffer from modest 
sensitivity, making them slightly inferior to genes 
used in nuclear imaging. In recent years, newer 
hybrid cross-platform PET/MRI technology has 
emerged. It combines the superb soft tissue 
characterization of MRI and the metabolic 
characterization of PET [207, 208]. Since the first 
whole body PET/MRI system was installed in 2010 
[209], PET/MRI dual-imaging systems have been 
widely applied in clinical studies and trials of brain 
tumors [210, 211], head and neck carcinoma [212], 
breast diseases [208, 213], lymphoma [214], ovarian 

 
Figure 10. PET-CT imaging of viral-mediated HSV1-tk transgene expression in liver cancer patients. From left to right, the columns show 5 mm-thick coronal, sagittal, and 
transaxial sections from an 18F-FHBG PET-CT study. All sections are centered on the treated tumor lesion (yellow dotted lines in the CT images) and show 18F-FHBG 
accumulation at the tumor site (arrows, PET and fused images). The white foci in the liver seen on the CT images correspond to lipiodol retention (arrowheads) after transarterial 
embolization of the tumor and a transjugular intrahepatic portosystemic shunt (⋆). Tracer signal can be seen in the treated lesion (arrows, PET and fused images), whereas no 
specific accumulation of the tracer can be seen in the necrotic, lipiodol-retaining regions around it (fused image). H, heart; L, liver; LB, large bowel; RL, right lung; Sp, spleen. 
Adapted with permission from [178], copyright 2005 Springer Verlag) 
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cancer [215], and prostate cancer [216]. These 
encouraging results indicate a future direction for 
clinical applications of multimodality reporter genes. 

We have predicted a bright future for the use of 
reporter genes in clinical research. To date, no clinical 
studies using multimodality reporter genes have 
emerged. Several issues must be resolved to optimize 
the use of reporter genes in clinical protocols: (1) Is 
gene transduction or transfection successful? (2) Is the 
transduced or transfected gene distributed to the 
target organ (or tissue), and is it the best distribution? 
(3) Is the level of gene expression sufficient for 
imaging or treating the target organ or tissue? (4) 
What is the best time to quantify reporter gene 
expression? (5) How long does the reporter gene 
expression last in the target tissue? [189]. The clinical 
application of reporter genes is still in its infancy, and 
there are still many aspects to be perfected. However, 
once we solve the abovementioned problems, the 
development and approval of a multimodality 
reporter gene–reporter probe system for human 
studies will progress. This reporter gene system can 
be applied in many different fields, and will play an 
important role in exploring human physiology and 
pathology [217]. 

Conclusions and perspectives 
The use of imaging reporter genes has developed 

rapidly in the past few decades, and is being set to 
play a leading role in molecular imaging. The main 
applications such as tracking cells, monitoring gene 
therapy, imaging endogenous gene expression, 
visualization of specific biological process, imaging 
interaction between proteins, and drug screening 
have been widely used in preclinical and clinical 
studies [1, 8-10]. With the development of various 
imaging modalities, remarkable achievements are 
being made in monitoring metastasis [66], immune 
cell trafficking [103, 218], the biological behavior of 
transgenic mouse models [82, 142, 219], and stem cell 
therapy [102]. Although numerous molecular and 
cellular behaviors can be demonstrated noninvasively 
and objectively in vivo, there are still many events that 
cannot be imaged by existing methodologies. Changes 
in intracellular pH, electrical impulses from nerve 
cells, and reactive oxygen species generation are some 
examples of molecular events that still require 
dedicated probes and advanced imaging approaches 
to be imaged in the condition of intact cells in vivo 
[131]. The limitations of reporter genes include 
immunogenicity and gene mutation, uncertainty of 
timing of the reporter gene expression, the success 
rate of gene transduction or transfection, and probe 
targeting performance. Subsequent exploration and 

optimization research of reporter modality genes will 
concentrate on these limitations. 

Since multimodality reporter gene imaging 
integrates the strengths from two or more imaging 
modalities while minimizing their limitations, it can 
provide overall structural, functional, and molecular 
information to monitor complex biological processes 
both spatially and temporally and also offers the 
prospect of improved diagnostic and therapeutic 
monitoring abilities [4, 14]. Through continuous 
improvement in instrumentation, development of 
new reporter genes and probes, identification of novel 
targets, and advances in software tools, multimodality 
reporter gene imaging can become an indispensable 
tool for biomedical research.  
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Fluc: firefly luciferase; GB MPIO: blue fluorescent 
micron-sized iron oxide particles; GCV: ganciclovir; 
GDEPT: Gene-directed enzyme prodrug therapy; 
Gd-EOB-DTPA: gadolinium ethoxybenzyl-DTPA; 
GFP: green fluorescent protein; HCC: hepatocellular 
carcinoma; HSV1-tk: herpes simplex virus type-1; 
hFTH: human ferritin heavy chain; hNIS: human 
sodium−iodine symporter; IA: intra-arterial; IRES: 
internal ribosome entry site; LTRs: long terminal 
repeats; MPIO: Micron-sized particles of iron oxide; 
MRI: magnetic resonance imaging; myc-hFTH: 
myc-tagged human ferritin heavy chain; NIS: 
sodium−iodine symporters; NMI: nuclear medicine 
imaging; OI: optical imaging; PAI: photoacoustic 
imaging; PET: positron emission tomography; RFP: 
red fluorescent protein; RLuc: Renilla luciferase; 
SPECT: single photon emission computed 
tomography; SPIO: superparamagnetic iron oxide; 
TfR: transferrin receptors; TK: thymidine kinase; TYR: 
Tyrosinase; UPRT: uracil phosphoribosyltransferase; 
USPIO: ultrasmall superparamagnetic iron oxide 
particles. 
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