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Abstract 

We aimed to evaluate whether radiomic feature-based fluorine 18 (18F) fluorodeoxyglucose (FDG) 
positron emission tomography (PET) imaging signatures allow prediction of gastric cancer (GC) 
survival and chemotherapy benefits.  
Methods: A total of 214 GC patients (training (n = 132) or validation (n = 82) cohort) were 
subjected to radiomic feature extraction (80 features). Radiomic features of patients in the training 
cohort were subjected to a LASSO cox analysis to predict disease-free survival (DFS) and overall 
survival (OS) and were validated in the validation cohort. A radiomics nomogram with the radiomic 
signature incorporated was constructed to demonstrate the incremental value of the radiomic 
signature to the TNM staging system for individualized survival estimation, which was then assessed 
with respect to calibration, discrimination, and clinical usefulness. The performance was assessed 
with concordance index (C-index) and integrated Brier scores.  
Results: Significant differences were found between the high- and low-radiomic score (Rad-score) 
patients in 5-year DFS and OS in training and validation cohorts. Multivariate analysis revealed that 
the Rad-score was an independent prognostic factor. Incorporating the Rad-score into the 
radiomics-based nomogram resulted in better performance (C-index: DFS, 0.800; OS, 0.786; in the 
training cohort) than TNM staging system and clinicopathologic nomogram. Further analysis 
revealed that patients with higher Rad-scores were prone to benefit from chemotherapy.  
Conclusion: The newly developed radiomic signature was a powerful predictor of OS and DFS. 
Moreover, the radiomic signature could predict which patients could benefit from chemotherapy. 
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Gastric cancer (GC) is the fifth most common 
cancer and the third leading cause of cancer death 
worldwide [1]. Surgical resection remains the main 
curative method for GC, but the high rate of relapse in 
patients with advanced gastric cancer makes it 
important to consider adjuvant treatments [2-4]. 
Recent studies showed that GC patients who received 
chemotherapy have improved survival [2, 4, 5]. 
However, the survival rates for many patients were 
still low despite initial high response rates [4, 6]. 
Therefore, there is an urgent need for a precise 
classification of GC that can be used to better predict 
patient outcomes and chemotherapy responses. The 
current prognostic model used by clinicians for risk 
stratification and treatment management of GC relies 
mainly on the tumor node metastasis (TNM) staging 
system. However, large variations in clinical 
outcomes have been reported among patients even 
with the same stage and similar treatment because of 
tumor heterogeneity, suggesting the current 
prognostic model could not provide full prognostic 
information. 

Imaging with fluorine 18 (18F) 
fluorodeoxyglucose (FDG) positron emission 
tomography (PET) is a well-established method for 
staging GC, because it allows detection of distant 
metastases and lymph nodes involved [7]. 
Conventional PET imaging metrics such as maximum 
standardized uptake value (SUVmax) and total lesion 
glycolysis (TLG) have been reported to be valuable 
prognostic factors in patients with GC [8, 9]. Recent 
studies showed that metabolically active tumor 
volume (MATV) is a prognostic factor in patients with 
GC [10]. However, despite intensive investigation of 
these and other imaging metrics, the predictive value 
of these metrics to allow accurate discrimination of 
different risk groups appears to be limited. More 
sophisticated tools that improve on existing imaging 
metrics are needed. 

Radiomics is an emerging approach that 
converts imaging data into a high-dimensional 
mineable feature space using a large number of 
automatically applied data-characterization 
algorithms [11, 12]. By extracting a large number of 
putative imaging features, radiomics enables the 
noninvasive profiling of tumor heterogeneity, which 
may ultimately correlate with clinical outcomes 
[11-16]. This approach has provided insights for 
personalized medicine in oncological practices 
associated with tumor detection, prognosis, subtype 
classification, lymph node metastasis, distant 
metastasis, and therapeutic response evaluation in 
many types of cancer with widely available imaging 
data such as CT or 18F-FDG PET [11, 12, 15, 17-20]. 

We hypothesize that automated analysis of 

quantitative imaging features coupled with 
appropriate statistical modeling may lead to 
improved prognostic value compared with that of 
conventional imaging metrics. Here, we adopt a 
quantitative radiomic approach to extract imaging 
features from pretreatment 18F-FDG PET scans. The 
purpose of this study was to identify quantitative 
imaging biomarkers from 18F-FDG PET for predicting 
survival and chemotherapy benefit in patients with 
GC. 

Methods 
Patient population 

Under approval from the institutional review 
board, we retrospectively reviewed records and 
images of patients with gastric cancer (n = 214) who 
underwent total or partial radical gastrectomy at 
Nanfang Hospital of Southern Medical University 
(Guangzhou, China) between January 2010 and 
December 2014. Tumor staging was performed on the 
basis of the American Joint Committee on Cancer 
TNM Staging Manual, 8th Edition. Inclusion criteria 
were biopsy-confirmed primary GC, PET/CT 
performed fewer than 15 days before surgery, 
availability of follow-up data and clinicopathologic 
characteristics, no history of cancer treatment, and 
appropriate patient informed consent. We excluded 
patients if they had received previous treatment with 
any anticancer therapy. The end points of this study 
were DFS and OS. DFS was defined as the time from 
the time of surgery until either the date of disease 
progression, which refers to tumor relapse, distal 
metastasis, or death, or until the date that the patient 
was last known to be free of progression. OS was 
defined as the time to death from any cause. The 
minimum follow-up period was 42 months after 
surgery, while the maximum follow-up time was 98 
months. Patients were postoperatively followed up 
with abdomen CT every 6-12 months for the first 2 
years and then annually, according to the follow-up 
protocol of our institution. Baseline information for 
each patient with GC, including age, sex, TNM stage, 
tumor size, location, differentiation, lauren type, CEA, 
CA199, postsurgical chemotherapy and follow-up 
data (follow-up duration and survival), and time of 
baseline PET/CT imaging and surgery, were obtained 
from medical records (Table 1). Ethical approval was 
obtained for this retrospective analysis, and the need 
to obtain informed consent was waived. 

PET/CT imaging 
GC patients who underwent PET/CT were 

imaged after a 6-8 h fast and checked for a blood 
glucose level in the range of 3.6–10 mM. The blood 
glucose level was monitored by finger stick 
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immediately before the injection of 18F FDG. 18F FDG 
with a radiochemical purity greater than 95% was 
manufactured automatically using the tracer 
synthesis system of a Tracerlab FXF-N (GE 
Healthcare). Patients were injected with 161–361 MBq 
(4.35–9.76 mCi, 150 μCi/kg), and imaging was 
performed 60 min (59 ± 3 min, range 53–62 min) later 
with a PET/CT scanner (GE Discovery LS PET/CT 
scanner (GE Healthcare, Waukesha, Wisconsin, USA) 
or Biograph mCT scanner (Siemens, Germany)). CT 
images were collected in the helical acquisition mode. 
In the same scanning locations and generally in 6-8 
bed positions, PET data were acquired with 3-5 min of 
acquisition time per bed position. The complete 
PET/CT examination required approximately 1.5 h, 
including patient setup, tracer uptake, and image 
acquisition. We defined 132 patients imaged with the 
GE Discovery LS PET/CT scanner as the training 
cohort and 82 patients imaged with the Biograph mCT 
PET/CT scanner as the validation cohort. 

PET images were reconstructed using standard 
ordered-subset expectation maximization (OSEM). 
The reconstruction thicknesses of the CT images were 
4.25 mm (GE Healthcare) and 3.0 mm (Siemens). The 
fields of views (FOV) were 500 mm (Siemens) and 700 
mm (GE Healthcare), and matrix sizes were 512×512 
for Siemens and GE systems. The OSEM algorithm (3 
iterations and 21 subsets) was used for PET image 
reconstruction, resulting in voxel sizes of 4.07×4.07×2 
mm3 (Siemens) and 4.3×4.3×4.25 mm3 (GE 
Healthcare). The CT image voxel sizes were 
0.97×0.97×3 mm3 (Siemens) and 1.95×1.95×5 mm3 (GE 
Healthcare). Images were corrected for attenuation 
with a CT-based attenuation correction method. The 
PET and CT images were individually transferred to 
Xeleris (GE Healthcare) or Syngo MMWP (Siemens) 
workstations, respectively, to display frame-on-frame 
fusion images. Tumor manual segmentation was then 
performed based on consensus reached by two expert 
physicians, and checked by authors Q.Y. and Q.W. on 
the PET/CT images with ITK-SNAP software 
(www.itksnap.org) [21, 22]. To verify whether the 
features extracted from these two machines on the 
same patients were not significant different, we 
selected 30 patients’ images from the two machines 
firstly. The inter-scanner agreement of feature 
extraction was evaluated by using an intraclass 
correlation coefficient (ICC) [23]. The strength of 
agreement was evaluated as follows: an ICC value of 
less than 0.20 indicated poor agreement; 0.21–0.40, fair 
agreement; 0.41–0.60, moderate agreement; 0.61–0.80, 
good agreement; and 0.81–1.0, excellent agreement 
[24]. 

Image feature extraction 
We calculated a total of 80 quantitative features 

from each volume of interest (VOI) of each patient’s 
PET image to characterize intratumor heterogeneity 
and complexity. The feature pool included 14 
first-order intensity features, 9 shape features, and 57 
second- and higher-order textural features, which are 
summarized in Table S1. In this work, we 
investigated four types of texture features on the basis 
of gray-level co-occurrence matrices (GLCM), 
gray-level run length matrix (GLRLM), gray-level size 
zone matrix (GLSZM), and neighborhood gray-tone 
difference matrix wavelet decompositions (NGTDM). 
26, 13, 13 and 5 features were extracted from GLCM, 
GLRLM, GLSZM and NGTDM, respectively. The 
detailed mathematical definitions of all imaging 
features listed in Supplementary Materials. All 
radiomic features were extracted in Matlab R2012a 
(The MathWorks Inc.) using an available radiomic 
analysis package (https://github.com/mvallieres/ 
radiomics/). 

The SUV image was discretized by 0.1 SUV unit 
bin width according to the following equation [25]: 
SUVDis(x) = | SUV(x)/0.1| – min(|SUV(x)/0.1|) + 1, 
where SUV(x) is the SUV of voxel x and SUVDis(x) is 
the discretized value of voxel x. The discretization 
step is necessary to generate matrices whose size 
(defined by the maximum SUVDis(x)) highly impacts 
computation, and is used to reduce image noise and 
generate a constant intensity resolution so that 
textural features from different patients are 
comparable. 

Feature selection 
We applied the least absolute shrinkage and 

selection operator (LASSO) algorithm jointly with the 
Cox survival model to implement a nested feature 
selection scheme based on the association between 
every feature and patients' DFS in the training cohort, 
and then a multiple-feature-based radiomic signature, 
the radiomic score (Rad-score), was constructed for 
predicting patients' DFS in the training cohort [3, 26, 
27]. The “glmnet” package was used to perform the 
LASSO Cox regression model analysis [28, 29]. 
Complete details are provided in Supplementary 
Materials. 

Validation of radiomic signature 
The potential association of the radiomic 

signature with DFS and OS was first assessed in the 
training cohort and then validated in the validation 
cohorts by using Kaplan-Meier survival analysis. The 
optimum cutoff score of the Rad-score was selected on 
the basis of the association with the patients’ DFS 
using X-tile software (version 3.6.1) in the training 
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cohort [3, 30], and patients were classified into high- 
or low-Rad-score groups for DFS and OS analyses. 
Then, the same threshold values were applied to the 
validation cohorts. Stratified analyses were 
performed to explore the potential association of the 
radiomic signature with DFS and OS using subgroups 
within TNM stage from all patients. Evaluation of the 
radiomic signature as an independent biomarker was 
performed by integrating clinicopathologic risk 
factors into the multivariable Cox proportional 
hazards model using a backward stepwise approach. 

Assessment of incremental value of radiomic 
signature in individual DFS and OS estimation 

To demonstrate the incremental value of the 
radiomic signature to the TNM staging system and 
other clinicopathologic risk factors for individualized 
assessment of DFS and OS, both a radiomics 
nomogram and a clinicopathologic nomogram were 
developed in the training cohort. The radiomics 
nomogram incorporated the radiomic signature and 
the prognostic clinicopathologic risk factors. The 
clinicopathologic nomogram incorporated only the 
prognostic clinicopathologic risk factors. The 
incremental value of the radiomic signature to the 
TNM staging system and other clinicopathologic risk 
factors was assessed with respect to calibration, 
discrimination, reclassification, and clinical 
usefulness. The performance of the radiomics 
nomogram was compared with that of both the TNM 
staging system and the clinicopathologic nomogram. 

To compare the predicted survival with the 
actual survival, calibration curves were generated. To 
quantify the discrimination performance, Harrell’s 
concordance index (C-index) was measured [31]. The 
Akaike information criterion (AIC) was calculated to 
assess the risk of overfitting. Finally, a decision curve 
analysis determined the clinical usefulness of the 
radiomics nomogram by quantifying the net benefits 
at different threshold probabilities [32]. 

The overall model performance of the radiomic 
model was also assessed by calculating prediction 
errors over time from all patients by using the 
integrated Brier score (IBS) (prediction error curves 
function of the “pec” package in R software used with 
the “Boot- 632plus” split method with 1000 iterations) 
[33, 34], which represents a weighted average of the 
squared distances between the observed survival 
status and the predicted survival probability of a 
model and can range from 0, for a perfect model, to 
0.25, for a noninformative model with a 50% incidence 
of the outcome. The IBS of the radiomic model was 
compared with the IBS of the clinicopathologic model 
and TNM stage. 

Table 1. Demographics and clinicopathologic characteristics of 
patients with gastric cancer. 

Variables Training cohort 
 (n = 132) 

Validation cohort 
 (n = 82) 

N % N % 
Gender     
 Male 88 66.7% 61 74.4% 
 Female 44 33.3% 21 25.6% 
Age (years)     
 ＜60 65 49.2% 47 57.3% 
 ≧60 67 50.8% 35 42.7% 
Tumor size (cm)     
 ＜4 47 35.6% 27 32.9% 
 ≧4 85 64.4% 55 67.1% 
Tumor location     
 Upper 47 35.6% 29 35.4% 
 Middle 25 18.9% 9 11.0% 
 Lower 46 34.8% 29 35.4% 
 Whole 14 10.6% 15 18.3% 
Differentiation status     
 Well  17 12.9% 18 22.0% 
 Moderate 25 18.9% 10 12.2% 
 Poor and 
undifferentiated 

90 68.2% 54 65.9% 

Lauren type      
 Intestinal type 60 45.5% 33 40.2% 
 Diffuse or mixed type  72 54.5% 49 59.8% 
CEA     
 Elevated 19 14.4% 16 19.5% 
 Normal 113 85.6% 66 80.5% 
CA199     
 Elevated 25 18.9% 23 28.0% 
 Normal 107 81.1% 59 72.0% 
Depth of invasion     
 T1  29 22.0% 8 9.8% 
 T2 4 3.0% 10 12.2% 
 T3  10 7.6% 5 6.1% 
 T4a 71 53.8% 49 59.8% 
 T4b 18 13.6% 10 12.2% 
Lymph node metastasis     
 N0 45 34.1% 27 32.9% 
 N1 16 12.1% 9 11.0% 
 N2 20 15.2% 15 18.3% 
 N3a 35 26.5% 22 26.8% 
 N3b 16 12.1% 9 11.0% 
Distant metastasis     
 M0 116 87.9% 75 91.5% 
 M1 16 12.1% 7 8.5% 
TNM stage     
 I 29 22.0% 12 14.6% 
 II 19 14.4% 18 22.0% 
 III 68 51.5% 45 54.9% 
 IV 16 12.1% 7 8.5% 
Chemotherapy     
 No 60 45.5% 35 42.7% 
 Yes 72 54.5% 47 57.3% 

 

Statistical analysis 
We compared two groups using the t-test for 

continuous variables and chi-square test for 
categorical variables. All radiomic features were 
normalized by transforming the data into new scores 
with a mean of 0 and a SD of 1 (z-score 
transformation). The Kaplan-Meier method and 
log-rank test were used to estimate DFS and OS. 
Multivariate analyses were performed using the Cox 
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proportional hazards model. Calibration plots were 
generated to explore the performance characteristics 
of the nomograms. The decision curve analysis (DCA) 
was used to evaluate the clinical usefulness of the 
nomograms. Nomograms and calibration plots were 
done with the rms package of R software [35]. 
Statistical analysis was conducted with R software 
(version 3.1.0) and SPSS software (version 19.0). A 
two-sided P value < 0.05 was considered significant. 

Results 
Patient characteristics and radiomic signature 
construction 

The clinicopathologic characteristics of patients 
are listed in Table 1. Of the 214 patients included in 
the study, 149 (69.6%) were men, and the median 
(interquartile range, IQR) age of all patients was 58.0 
(52.5-68.0) years. Patients in the training (132 of 214 
(61.7%)) and validation (82 of 214 (38.3%)) cohorts 
were balanced for survival, with a median (IQR) DFS 
and OS of 36.0 (12.0-51.25) months and 38.0 
(18.75-60.0) months for the training cohort and 37.5 
months (14.75-65.25) and 42.0 months (21.0-66.5) for 
the validation cohort (log-rank P = 0.316 and 0.716, 
respectively), and for baseline clinicopathologic 
characteristics (Table 1). The inter-scanner 
agreements of all metrics calculated on the basis of the 
reader’s two measurements were good to excellent, 
with ICCs ranging from 0.72 to 0.98.  

We used the LASSO Cox regression model to 
build a prognostic classifier, which selected 3 
potential predictors from the 80 features identified in 
the training cohort (Figures S1-3). The radiomic 
signature was constructed, including a Rad-score 
calculation formula: Rad-score = -0.10385119 × 
Hist_Var – 0.00885129 × Hist_Entropy – 0.01904336 × 
LGRE_GLRLM. 

The optimum cutoff generated by the X-tile plot 
was 0.06 (Figure S4). Accordingly, patients were 
classified into a low-Rad-score group (Rad-score < 
0.06) and a high-Rad-score group (Rad-score ≥ 0.06). 
We assessed the prognostic accuracy of the Rad-score 
in the training cohort using time-dependent receiver 
operator characteristics (ROC) analysis at different 
follow-up times (Figure 1A). The 5-year DFS and OS 
were 28.8% and 37.5%, respectively, for the 
low-Rad-score group and 3.8% and 9.6%, respectively, 
for the high-Rad-score group (hazard ratios (HRs) 
3.354 (2.177-5.167) and 3.303 (2.067-5.276), all 
P<0.0001; Figure 1A). We then performed the same 
analyses in the validation cohort and similar results 
were observed (HRs 4.453 (2.498-7.936) and 4.357 
(2.413-7.867), all P<0.0001; Figure 1B). Meanwhile, we 
also performed time-dependent ROC analysis and 
survival analysis for SUVmax, MATV, TLG, and TNM 
stage (Figures S5-8). Table S2 lists the relationships 
between the Rad-score and clinicopathological 
characteristics (Table S2). 

 

Table 2. Multivariate Cox regression analyses for disease-free survival and overall survival in the training, validation, and combined 
cohorts of patients with gastric cancer. 

Variables Disease-free survival Overall survival 
HR (95%CI) p HR (95%CI) p 

Training cohort     
 TNM stage 1.483 (1.247-1.763) <0.0001 1.570 (1.288-1.915) <0.0001 
 Rad-score 3.995 (2.560-6.234) <0.0001 4.087 (2.502-6.676) <0.0001 
 CA199 1.912 (1.135-3.219) 0.015 1.932 (1.108-3.369) 0.020 
Validation cohort     
 TNM stage 1.739 (1.253-2.413) 0.001 1.650 (1.184-2.299) 0.003 
 Rad-score 5.197 (2.646-10.207) <0.0001 4.942 (2.459-9.930) <0.0001 
 Location  0.002  0.002 
 Upper Reference  Reference  
 Middle 2.550 (0.841-7.735) 0.098 1.757 (0.528-5.845) 0.358 
 Lower 0.929 (0.420-2.055) 0.855 1.171 (0.519-2.640) 0.704 
 Whole 4.497 (1.956-10.341) <0.0001 5.029 (2.164-11.690) <0.0001 
CA199 2.753 (1.454-5.210) 0.002 2.435 (1.289-4.601) 0.006  
Training + validation cohort     
 TNM stage 1.544 (1.323-1.801) <0.0001 1.553 (1.309-1.842) <0.0001 
 Rad-score 4.169 (2.868-6.062) <0.0001 3.954 (2.655-5.889) <0.0001 
 Chemotherapy 0.638 (0.451-0.901) 0.011 0.665 (0.461-0.961) 0.030 
 CA199 2.169 (1.463-3.215) <0.0001 2.182 (1.446-3.294) <0.0001 
 Location  0.036  0.040 
 Upper Reference  Reference  
 Middle 1.530 (0.880-2.661) 0.132 1.265 (0.690-2.320) 0.448 
 Lower 1.128 (0.735-1.730) 0.581 1.143 (0.730-1.792) 0.559 
 Whole 2.021 (1.240-3.294) 0.005 2.158 (1.297-3.591) 0.003 
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Figure 1. Rad-score measured by time-dependent ROC curves and Kaplan-Meier survival in the training and validation cohorts. (A) Training 
cohort. (B) Validation cohort. We used AUCs at 1, 3, and 5 years to assess prognostic accuracy in the training and validation cohorts. We calculated P-values using 
the log-rank test. Data are AUC or P-value. AUC: area under the curve; HR: hazard ratio; ROC: receiver operator characteristic; RS: radiomic score. 

 
We also assessed the distribution of Rad-score, 

recurrence and survival statuses, and the expression 
of the 3 radiomic features in the training and 
validation cohorts (Figure 2 and Figures S9-10). 
Patients with higher Rad-scores were more likely to 
have recurrence and death. Multivariate Cox 
regression analysis after adjustment for 
clinicopathological variables revealed that the 
Rad-score remained a powerful and independent 
prognostic factor for DFS and OS in the training and 
validation cohorts (Table 2 and Table S3). In 
addition, the selected 3 features were significantly 
associated with DFS and OS (Figure S11); however, 
the AUC (area under the curves) values of the 
radiomic signature were higher than any single 
feature in the training and validation cohorts (Figure 
S12). 

To further determine whether Rad-score could 
stratify patients by TNM stage, we evaluated the 
prognostic value of Rad-score in GC patients with 
TNM stage I + II and stage III + IV disease (Figure 
S13). High-Rad-score patients with stage I + II or stage 
III + IV disease had a significantly shorter DFS and OS 

than patients with low Rad-scores. 

Assessment of incremental value of radiomic 
signature in individual DFS and OS 
performance 

To provide the clinician with a quantitative 
method to predict patients’ probability of 1-, 3- and 
5-year DFS and OS, and to demonstrate the 
incremental value of the radiomic signature to the 
TNM staging system for individualized assessment of 
DFS and OS, both a radiomics nomogram and a 
clinicopathologic nomogram were built in the training 
cohort (Figure 3A and Figure S14A). We selected 5 
clinicopathologic risk factors in the models, including 
tumor location, CA199, depth of invasion, lymph 
nodes metastasis, and distal metastasis, which were 
significantly associated with survival. The radiomics 
nomograms for DFS and OS are presented in Figure 
3A. The calibration curves of the nomograms at 1, 3, 
or 5 years showed good agreement between the 
estimations with the radiomics nomogram and actual 
observations in the training and validation cohorts 
(Figure 3B-E). We also constructed two 
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clinicopathologic nomograms for DFS and OS only 
using these clinicopathologic risk factors (Figure 
S14A). C-index, IBS and AIC estimates for the 
different models are listed in Table S4. Compared 
with either the TNM staging system or the 
clinicopathologic nomogram, the radiomics 
nomogram showed a better discrimination capability 
in the training and validation cohorts (Table S4). The 
radiomics nomogram, as assessed according to both 
the IBS (lower values indicating better model 
performance), the C-index (higher values indicating 
better discriminative ability) and AIC (lower values 
indicating better model performance) performed 
better (DFS: IBS 0.132, C-index 0.800, AIC 665.15; OS: 
IBS 0.117, C-index 0.786, AIC 576.61; in the training 
cohort) than the TNM staging system (DFS: IBS 0.169, 
C-index 0.717, AIC 704.44; OS: IBS 0.144, C-index 

0.710, AIC 605.59) or the clinicopathologic nomogram 
(DFS: IBS 0.152, C-index 0.762, AIC 686.87; OS: IBS 
0.128, C-index 0.761, AIC 593.37; Table S4). The 
corresponding prediction error curves of all Cox 
models are shown in Figure 4. The C-indexes of the 
radiomic signature to predict DFS and OS were 
significantly higher than those of SUVmax and MATV 
in the training and validation cohorts (all P<0.001 for 
DFS and OS in the training and validation cohorts). 
The C-indexes of the radiomic signature were not 
higher than those of TNM stage, but the C-indexes 
of the radiomic nomogram were significantly higher 
than those of TNM stage (all P<0.001 for DFS and OS 
in the training and validation cohorts). 

 
 

 

 
Figure 2. Rad-score analysis of 214 GC patients in the combined training and validation cohorts (n = 214). (A) Rad-score distribution. (B) Recurrence 
status of GC patients. (C) Survival status of GC patients. (D) Color-gram of the expression profiles of 3 radiomic features in GC patients. Rows represent 3 radiomic 
features and columns represent patients. Magenta dotted line represents the Rad-score cutoff dividing the patients into high- and low-Rad-score groups. 
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Figure 3. Use of the constructed radiomics nomogram to estimate DFS and OS for GC, along with the assessment of the model calibration. (A) 
Radiomics nomogram to estimate DFS (left) and OS (right). To determine how many points toward the probability of DFS and OS the patient receives for his or her 
Rad-score, locate the patient’s Rad-score on the Rad-score axis, draw a line straight upward to the point axis, repeat this process for each variable, sum the points 
achieved for each of the risk factors, locate the final sum on the Total Point axis, and draw a line straight down to find the patient’s probability of DFS and OS. 
Calibration curves for the radiomics nomograms of DFS (left, (B, D)) and OS (right, (C, E)) show the calibration of each model in terms of the agreement between 
the estimated and the observed 1-, 3-, and 5-year outcomes. Nomogram-estimated DFS or OS is plotted on the x-axis; the observed DFS or OS is plotted on the 
y-axis. The diagonal dotted line is a perfect estimation by an ideal model, in which the estimated outcome perfectly corresponds to the actual outcome. The solid line 
is the performance of the nomogram: a closer alignment with the diagonal dotted line represents a better estimation. 
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Figure 4. Prediction error curves for each model in the study for stratifying DFS and OS in the training and validation cohorts. Prediction error 
curves for the (A, C) training cohort and the (B, D) validation cohort (lower prediction errors indicate higher model accuracy). 

 
In addition, we also developed nomograms 

combining PET conventional metrics (SUVmax/ 
MATV/TLG) and Rad-score with clinical features, 
and only combining PET conventional metrics 
(SUVmax/MATV/TLG) with clinical features, for 
DFS and OS respectively (Figures S15-16). We also 
found that the combination of PET conventional 
metrics, Rad-score, and clinical features (C-index, 
training cohort: DFS 0.803 (0.760-0.846), OS 0.791 
(0.739-0.842); validation cohort: DFS 0.792 
(0.728-0.857), OS 0.801 (0.740-0.863)) did not improve 
the classification results even more compared with the 
radiomics nomogram (training cohort: DFS P=0.460, 
OS P=0.461; validation cohort: DFS P=0.396, OS 
P=0.488). However, the C-indexes of the radiomics 
nomogram were higher than the C-indexes of 
nomograms only combining PET conventional 
metrics with clinical features (C-index, training 
cohort: DFS 0.778 (0.732-0.824), OS 0.773 (0.720-0.826); 
validation cohort: DFS 0.761 (0.695-0.827), OS 0.754 
(0.688-0.821)). 

Clinical use 
The decision curve analysis showed that the 

radiomics nomogram had a faintly higher net benefit 
than the clinicopathologic nomogram and the TNM 

staging system across the majority range of reasonable 
threshold probabilities, especially for threshold 
probabilities 0.1-0.3 and >0.7 (Figure S17). 

Radiomic signature and chemotherapy 
Previous data suggest that image features are 

associated with chemotherapy efficacy; thus, we 
evaluated the benefit of chemotherapy according to 
the level of Rad-score in patients who received 
postsurgical chemotherapy. For patients who did or 
did not receive chemotherapy, Rad-score was 
associated with DFS and OS in training and validation 
cohorts (Figure S18). High Rad-score seemingly had a 
greater association with the prognosis of patients who 
received chemotherapy than patients who did not 
receive chemotherapy (Figure S18). Therefore, we 
performed a subset analysis according to Rad-score. A 
test for an interaction between Rad-score and 
chemotherapy indicated that, both in the training and 
validation cohorts, the benefit from chemotherapy 
was greater among patients with high Rad-scores 
(training cohort: DFS 0.369 (0.199-0.686) HR 0.001, OS 
0.354 (0.182-0.685) HR 0.001; validation cohort: DFS 
0.423 (0.191-0.936) HR 0.026, OS 0.399 (0.180-0.885) HR 
0.019; combined cohort: DFS 0.411 (0.258-0.655) HR 
<0.001, OS 0.372 (0.227-0.609) HR <0.001; all P < 0.0001 
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for interaction; Table 3) than among those with low 
Rad-scores. The corresponding Kaplan-Meier survival 
curves for patients with GC, which comprehensively 
compared low with high Rad-scores by treatment, are 
shown in Figure 5. The results from the subset 
analysis using Rad-score classifier revealed that 
chemotherapy significantly increased OS and DFS in 

the high-Rad-score group (training cohort: P=0.001 
and P=0.001; validation cohort: P=0.026 and P=0.019; 
combined cohort: P<0.0001 and P<0.0001), but had no 
significant effect in the low-Rad-score group (Figure 
5). Consequently, these results suggested that GC 
patients with high Rad-scores could benefit from 
chemotherapy. 

 

Table 3. Treatment interaction with Rad-score for disease-free survival and overall survival in patients with gastric cancer. 

Rad-score CT No CT Disease-free survival Overall survival 
CT vs. No CT, 
HR (95% CI) 

P P value for 
interaction 

CT vs. No CT, 
HR (95% CI) 

P P value for 
interaction 

Training cohort (n = 132) 
High Rad-score 26 26 0.369 (0.199-0.686) 0.002 <0.0001 0.354 (0.182-0.685) 0.002 <0.0001 
Low Rad-score 46 34 1.352 (0.699-2.615) 0.371 1.403 (0.670-2.938) 0.369 
Validation cohort (n = 82) 
High Rad-score 13 17 0.423 (0.191-0.936) 0.034 <0.0001 0.399 (0.180-0.885) 0.024 <0.0001 
Low Rad-score 34 18 1.163 (0.469-2.882) 0.745 1.027 (0.410-2.577) 0.954 
Combined cohort (n = 214) 
High Rad-score 39 43 0.411 (0.258-0.655) 0.0002 <0.0001 0.372 (0.227-0.609) 0.0001 <0.0001 
Low Rad-score 80 52 1.242 (0.729-2.118) 0.425  1.195 (0.673-2.123) 0.554  
CT: chemotherapy. 

 

 
Figure 5. Chemotherapy benefits in gastric cancer compared using disease-free survival (DFS) and overall survival (OS). Kaplan-Meier survival 
curves for patients with gastric cancer in different Rad-score subgroups, which were stratified by the receipt of chemotherapy. (A) Training cohort (n=132), (B) 
validation cohort (n=82), (C) combined cohort (n=214). CT: chemotherapy; RS: radiomic score. 
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Furthermore, we analyzed the association of 
SUVmax, MATV and TNM stage with survival 
benefits from chemotherapy (Figures S19-20). 
However, the survival benefits of chemotherapy were 
not obviously different for low and high SUVmax or 
MATV. Additionally, the signature based on SUVmax 
and MATV didn’t significantly improve the predictive 
value and was not associated with survival benefits of 
chemotherapy (Figures S21-22). 

Discussion 
Accurate prognostic assessment is essential for 

the selection of appropriate treatment. Because GC is 
a clinically heterogeneous disease with large 
variations in clinical outcomes even among patients 
with the same stage [6, 36, 37], we sought to improve 
the prediction of GC prognosis by developing a novel 
radiomic signature to categorize patients into low- 
and high-Rad-score groups with large differences in 
5-year OS and DFS. Cox regression analysis showed 
the radiomic signature was an independent 
prognostic factor for OS and DFS, even after 
adjustment for TNM stage and clinicopathologic 
characteristics. Although TNM staging is crucial to 
assess prognosis and establish a treatment strategy, 
the staging is performed mainly on the basis of 
anatomical information [3, 4]. In contrast, Radiomics 
refers to the comprehensive quantification of tumor 
phenotypes by applying a large number of 
quantitative image features, which may reflect 
changes of human tissues at the cellular and genetic 
levels and provide different information from TNM 
staging [11, 12, 38-41]. In stratified analyses with TNM 
stage, radiomic signature can distinguish patients into 
low- and high-risk groups with significant differences 
in OS and DFS, supporting the prognostic value of the 
signature and allowing clinicians to potentially 
identify candidates for systemic approaches with 
greater effectiveness to improve treatment outcomes. 
Moreover, incorporation of radiomic signature into 
TNM staging system could add some prognostic 
information to better identify patients with different 
outcomes, and the radiomic nomogram is a good 
witness. These results suggested that the radiomic 
signature reinforced the prognostic ability of TNM 
stage, thereby adding prognostic value to TNM 
staging. Ultimately, patients with the same stage 
might be classified into different risk groups on the 
basis of the radiomic models, and thus be treated with 
different approaches to improve their survival 
outcomes. 

Current guidelines recommend advanced GC 
patients receive chemotherapy as a standard 
component, whereas respectable studies have 
reported that a subset of patients can’t obtain benefit 

from current chemotherapy [2-4]. Therefore, 
accurately identifying candidates for chemotherapy 
would improve the survival rate and lead to more 
personalized therapy. Several studies have evaluated 
the potential of texture features for treatment 
response assessment [18, 20, 42-45]. Ahn et al. showed 
that CT texture analysis is useful for prediction of 
therapeutic response after cytotoxic chemotherapy in 
patients with liver metastasis from colorectal cancer 
[18]. Also, heterogeneous texture features on CT 
images were associated with better survival in 
HER2-positive patients who received 
trastuzumab-based treatment [42]. Kickingereder et 
al. developed a radiomic signature of MRI images for 
the identification of patients who may derive the most 
benefit from antiangiogenic therapy [43]. Recently, 
Jiang et al. developed a radiomic signature consisted 
of 19 features from CT images, which could predict 
which patients with stage II and III GC benefit from 
chemotherapy [20]. Furthermore, a multiparametric 
approach using fully integrated 18F-FDG PET/MRI 
was feasible for patients with unresectable gastric 
cancers [44]. In addition, K (trans) and iAUC values 
can be used as early predictive markers for 
chemotherapy response [44]. Pinker et al. deemed 
multiparametric 18F-FDG PET/MRI enables insights 
into tumor biology on multiple levels and provides 
information on tumor heterogeneity, which has the 
potential to improve planning of chemo-radiation 
therapy [45]. In the present study, we showed that 
chemotherapy provided a better survival benefit to 
patients classified as high Rad-score, which was 
developed based on multiparametric 18F-FDG PET; 
thus, further use of Rad-score enabled more accurate 
identification of patients who might benefit from 
chemotherapy. For patients with low Rad-scores, 
more effective systemic approaches to improve 
treatment outcomes need to be identified. Assignment 
of treatment based in part on tumor molecular 
signatures is an increasingly promising approach [3, 
46, 47]. Previous studies have shown that tumor 
infiltrated immune cells, microRNA and gene 
signatures were associated with chemotherapeutic 
response in GC [3, 48, 49]. However, these signatures 
have not been widely introduced into clinical practice 
as initially expected due to the difficulty of 
pre-operative use and repeated detection, the 
variability of measurements in microarray assays etc., 
and the requirement for analytical expertise [3, 48, 49]. 
The radiomic signature is a reliable non-invasive 
approach, which could be repeatedly detected at 
different stages of the disease. For these reasons, 
non-invasive methods, such as molecular imaging, for 
predicting chemotherapy sensitivity have great 
clinical relevance; they have the potential to evaluate 
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the effect of neoadjuvant chemotherapy. The 
mechanism of the relationship between radiomic 
features and chemotherapy has not been researched 
thoroughly, but it may be associated with the strong 
correlation of intratumor heterogeneous radiomic 
features with tumor cell cycling pathways and 
infiltration of immune cells [12, 50], and further 
radio-genomics studies may provide additional 
information and strategies for treatment [51]. 

Intratumor heterogeneity has been suggested to 
correlate with worse patient outcome and to manifest 
on multiple spatial scales (e.g., at molecular or 
genetic, cellular, and tissue levels) [6, 19, 36, 52]. In 
this study, the extraction of advanced PET imaging 
features allowed us to assess intratumor 
heterogeneity quantitatively on a macroscopic tissue 
scale. For predicting survival, the radiomic signature 
allowed quantification of regional heterogeneity of 
the PET image. Whether these radiomic imaging 
features have clear underlying biologic relevance 
must be investigated further. 

Previous studies have explored the relations 
between SUVmax and GC outcomes. Celli et al. 
showed that patients with a high SUVmax 
demonstrated a worse overall survival, and metabolic 
signature of 18F-FDG PET/CT is a better predictor of 
biologic tumor aggressiveness than histologic 
signature [8]. Also, SUVmax was significantly higher 
in the HER2-negative group than in the 
HER2-positive group [53]. Furthermore, nodal 
SUVmax measured by preoperative 18F-FDG PET/CT 
is an independent prognostic factor for OS and 
combining nodal SUVmax with pT/pN staging can 
improve survival prediction precision in GC patients 
[9]. Additionally, a radiomic signature for either CT, 
PET, or PET/CT images has been identified and 
validated for the prediction of disease-free survival in 
patients with non-small cell lung cancer treated by 
surgery [54]. However, the prognostic value of 
SUVmax, SUVmean, MATV and TLG for patients 
with GC remains controversial [55, 56]. Both SUVmax 
and SUVmean can reflect the SUV values of the tumor 
lesions [55, 57, 58]. Although SUVmax and SUVmean 
are highly correlated, there are still some differences 
between their prognostic values [55, 57, 58]. A 
meta-analysis including eight studies with 1080 
patients showed that there was a significant 
relationship between high SUVmax and poor 
prognosis, however, the relationship was not 
significant between SUVmean and poor prognosis 
[55]. This may be explained by that when using the 
SUVmean, it is more likely for us to neglect the larger 
SUVs among the regions of interest [55, 59]. In this 
study, SUVmean was not associated with survival in 
patients of training cohort, validation and total 

cohorts, respectively. Although SUVmax was also not 
significantly associated with survival in patients of 
either training cohort or validation cohort, 
respectively, SUVmax was significantly associated 
with survival in all patients (n=214) of total cohort 
including training and validation cohorts (DFS, 
P=0.036; OS, P=0.01; Table S3). MATV and TLG of 
tumor were also not significantly associated with DFS 
and OS in this study. Additionally, we found that the 
combination of Rad-score, PET conventional metrics 
(SUVmax/MATV/TLG), and clinical features did not 
improve the classification results even more 
compared with the radiomics nomogram combining 
Rad-score and clinical features. In addition, to our 
knowledge, the association between radiomic features 
of PET images and survival or chemotherapy benefit 
of GC patients has not been evaluated. In this study, 
we developed a radiomic feature of PET images that 
could successfully stratify GC patients into high- and 
low-Rad-score groups with significant differences in 
DFS and OS. The radiomics nomograms performed 
better than the traditional staging system and 
clinicopathologic nomograms, demonstrating well the 
incremental value of the radiomic signature for 
individualized DFS and OS estimation. 

The limitations of this study are the multistep 
postprocessing workflow and statistical processing. 
With the use of customized high-performance and 
parallel computing, postprocessing time is expected 
to be shortened substantially in the future. Although 
the LASSO Cox analysis appears promising, further 
improvement and validation of tailored feature 
selection methods is required for the novel type of 
data that arise in radiomic analyses. The limitations of 
the study also include the relatively small sample size 
and the retrospective nature of the data collection. As 
the relatively small number of patients in the training 
cohort, we may not be able to screen out the most 
valuable and stable features, and the developed 
radiomic signature may not be the best and most 
effective. Clearly, we should include more patients to 
adjust and validate the model in prospective studies 
of multicenter clinical trials. Other predictive features 
may be included to improve performance of this 
model. Additionally, as more specific patients and 
tumor information becomes routinely collected in the 
future, such as genetic information and other 
molecular tumor markers, use of these types of 
predictive models will become increasingly important 
[3, 37, 47, 60]. Besides, in subsequent studies, we also 
will focus on a subgroup of patients without 
significant clinicopathologic predictors for survival 
and collect more patients to reduce overfitting, and 
then validate our findings from similar patients from 
other medical centers. Still, the radiomic signature 
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was a powerful predictor of OS and DFS, and patients 
with higher Rad-scores were prone to benefit from 
chemotherapy, both in the training and validation 
cohorts. To justify the clinical usefulness, we also 
assessed whether the radiomic models-assisted 
decisions would improve patient outcomes, and 
decision curve analysis was applied in this study. In 
the future, prospective multicenter validation of the 
risk model proposed here will be required to confirm 
its value for survival stratification of patients with 
newly diagnosed GC. Furthermore, relationships 
among imaging signatures and genomic sequencing 
should be assessed in the future and are currently not 
available on the same scale as are imaging and clinical 
data. 

In conclusion, we identified a radiomic signature 
that can effectively predict survival and add 
prognostic value to the traditional staging system. 
Moreover, the radiomic signature might be a useful 
predictive tool to predict patient benefit from 
chemotherapy. Additionally, the radiomics 
nomogram may serve as a potential tool to guide 
individual care. 
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