Theranostics 2018; 8(22):6101-6110. doi:10.7150/thno.29223 This issue Cite

Research Paper

Liver segment imaging using monocyte sequestration: a potential tool for fluorescence-guided liver surgery

Baifeng Qian1, Daisuke Kyuno1,2, Michael Schäfer1, Wolfgang Gross1, Arianeb Mehrabi1, Eduard Ryschich1✉

1. Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.
2. Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan.

Citation:
Qian B, Kyuno D, Schäfer M, Gross W, Mehrabi A, Ryschich E. Liver segment imaging using monocyte sequestration: a potential tool for fluorescence-guided liver surgery. Theranostics 2018; 8(22):6101-6110. doi:10.7150/thno.29223. https://www.thno.org/v08p6101.htm
Other styles

File import instruction

Abstract

Graphic abstract

Background: The accurate determination of liver segment anatomy is essential to perform liver resection without complications and to ensure long-term outcomes after this operation. There are several perioperative methods for segment identification and surgical navigation, such as intraoperative ultrasound, indigo carmine and near-infrared imaging with indocyanine green. The present study experimentally analyzed the usefulness of monocyte sequestration for liver segment labeling and imaging.

Methods: Human monocytes were isolated from peripheral blood and directly or indirectly labeled with calcein or IRDye 800CW. Potential toxicity, labeling stability, and adhesion to ICAM-1 were analyzed in vitro. Monocyte sequestration in the liver microvasculature and liver segment labeling and boundary demarcation were studied using isolated mouse and pig liver perfusion and via intraportal injection in mouse liver tumor models.

Results: The highest monocyte labeling efficiency was achieved using direct labeling with IRDye 800CW. Labeling was stable and did not influence cell viability. The labeled monocytes were highly sequestrated in the liver microvasculature, both after ex vivo perfusion and after injection in vivo , resulting in excellent labeling of selected liver segments and strong segment boundary demarcation. In contrast to results to a normal liver, monocyte sequestration was very low in tumor-associated blood vessels.

Conclusions: The present experimental study shows that sequestration of labeled monocytes after superselective application demarcates the selected liver segment. These results illustrate potential of this technique for surgical navigation during liver surgery.

Keywords: Intraoperative navigation, IRDye 800CW, intravascular sequestration


Citation styles

APA
Qian, B., Kyuno, D., Schäfer, M., Gross, W., Mehrabi, A., Ryschich, E. (2018). Liver segment imaging using monocyte sequestration: a potential tool for fluorescence-guided liver surgery. Theranostics, 8(22), 6101-6110. https://doi.org/10.7150/thno.29223.

ACS
Qian, B.; Kyuno, D.; Schäfer, M.; Gross, W.; Mehrabi, A.; Ryschich, E. Liver segment imaging using monocyte sequestration: a potential tool for fluorescence-guided liver surgery. Theranostics 2018, 8 (22), 6101-6110. DOI: 10.7150/thno.29223.

NLM
Qian B, Kyuno D, Schäfer M, Gross W, Mehrabi A, Ryschich E. Liver segment imaging using monocyte sequestration: a potential tool for fluorescence-guided liver surgery. Theranostics 2018; 8(22):6101-6110. doi:10.7150/thno.29223. https://www.thno.org/v08p6101.htm

CSE
Qian B, Kyuno D, Schäfer M, Gross W, Mehrabi A, Ryschich E. 2018. Liver segment imaging using monocyte sequestration: a potential tool for fluorescence-guided liver surgery. Theranostics. 8(22):6101-6110.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Popup Image