## **Supplementary Material**

Nuclear entry of CRTC1 as druggable target of acquired pigmentary disorder

Cheong-Yong Yun<sup>1,\*</sup>, Seung Deok Hong<sup>1,\*</sup>, Young Hee Lee<sup>2</sup>, Jiyeon Lee<sup>1</sup>, Da-Eun Jung<sup>1</sup>, Ga Hyun Kim<sup>1</sup>, Song-Hee Kim<sup>1</sup>, Jae-Kyung Jung<sup>1</sup>, Ki Ho Kim<sup>3</sup>, Heesoon Lee<sup>1</sup>, Jin Tae Hong<sup>1</sup>, Sang-Bae Han<sup>1</sup>, Youngsoo Kim<sup>1</sup><sup>⊠</sup>

<sup>1</sup>College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; <sup>2</sup>Samjin Pharmaceutical Company, Seoul 04054, Korea; <sup>3</sup>Kihobio Company, Cheongju 28160, Korea

## Contents

- Tables S1 to S3
- Figures S1 to S12

| Target              | Nucleotide sequence (amplicon) |                                          |  |
|---------------------|--------------------------------|------------------------------------------|--|
|                     |                                |                                          |  |
| β-Catenin (B16-F0)  | Forward                        | 5'-TGCAGATCTTGGACTGGAC-3'                |  |
|                     | Reverse                        | 5'-CATGCTCCATCATAGGGTCCA-3' (133 bp)     |  |
| CRTC1 (B16-F0)      | Forward                        | 5'-TCCCCAACATCATCCTCAC-3'                |  |
|                     | Reverse                        | 5'-GGTCAATCTTCAGCTCGTC-3' (138 bp)       |  |
| KPNA1 (MNT1)        | Forward                        | 5'-GTGATCTCCTCACGGTCATG-3'               |  |
|                     | Reverse                        | 5'-CATAGGAGCCTCACACTG-3' (314 bp)        |  |
|                     | Forward                        |                                          |  |
| KPINAZ (IVINTT)     | Forward                        |                                          |  |
|                     | Reverse                        | 5-TGCAGGAGCCGAACTAAG-3 (365 bp)          |  |
| KPNA4 (MNT1)        | Forward                        | 5'-ATGCTTCAAGTGATAACCAAGG-3'             |  |
|                     | Reverse                        | 5' CAAGACAATGGACTAAAATGG-3' (135 bp)     |  |
|                     | Forward                        |                                          |  |
|                     | Reverse                        | 5'-CCATCAAGCCCAAAATTTCTT-3' (404 bp)     |  |
| MITE-M (quinea pig) | Forward                        | 5'-GGTGCCGATGGAAGTCCTTA-3'               |  |
| (guillou p.g)       | Reverse                        | 5'-CCATCAAGCCCAGAATTTCTT-3' (384 bp)     |  |
|                     |                                |                                          |  |
| MITF-M (HEM, MNT1)  | Forward                        | 5'-TCTACCGTCTCTCACTGGATTGG-3'            |  |
|                     | Reverse                        | 5'-GCTTTACCTGCTGCCGTTGG-3' (142 bp)      |  |
| SOX10 (B16-F0)      | Forward                        | 5'-CAGACTGGAGGAGAGGTCGG-3'               |  |
|                     | Reverse                        | 5'-GGTCTTGTTCCTCGGCCATG-3' (122 bp)      |  |
| SOX10 (MNT1)        | Forward                        | 5'- AGTACCCGCACCTGCACA-3'                |  |
| · · · ·             | Reverse                        | 5'- GAAGGGGCGCTTGTCACT-3' (86 bp)        |  |
| TYR (B16-F0)        | Forward                        | 5'-CATTTTGATTTGAGTGTCT-3'                |  |
|                     | Reverse                        | 5'-TGTGGTAGTCGTCTTTGTCC-3' (1 211 bp)    |  |
|                     | 11070100                       |                                          |  |
| TYR (guinea pig)    | Forward                        | 5'-CATCTTTGATTTGAGTGTC-3'                |  |
|                     | Reverse                        | 5'-CTTTTACAAATGGCTTTGAT-3' (1,231 bp)    |  |
| β-Actin (B16-F0)    | Forward                        | 5'-TGGAATCCTGTGGCATCCATGAAAC-3'          |  |
| · · · · /           | Reverse                        | 5'-TAAAACGCAGCTCAGTAACAGTCCG-3' (349 bp) |  |

## Table S1. Nucleotide sequence of RT-PCR primer

| β-Actin (B16-F0)           | Forward | 5'-TGCAGATCTTGGACTGGAC-3'            |  |
|----------------------------|---------|--------------------------------------|--|
|                            | Reverse | 5'-CATGCTCCATCATAGGGTCCA-3' (134 bp) |  |
| $\beta$ -Actin (HEM, MNT1) | Forward | 5'-GAGACCTTCAACACCCCAGCC-3'          |  |
|                            | Reverse | 5'-GGCCATCTCTTGCTCGAAGTC-3' (312 bp) |  |

| Target           | Nucleotid | ChIP                                 |                |
|------------------|-----------|--------------------------------------|----------------|
|                  |           |                                      |                |
| CREB-responsive  | Forward   | 5'-TGGGGACTTGGCCTTGATCT-3'           | Anti-CRTC1     |
| Element (CRE)    | Reverse   | 5'-ATATCAGTTTCCCTGCTGGCT-3' (114 bp) |                |
|                  |           |                                      |                |
| LEF1-responsive  | Forward   | 5'-TGGGGACTTGGCCTTGATCT-3'           | Anti-β-catenin |
| element          | Reverse   | 5'-ATATCAGTTTCCCTGCTGGCT-3' (114 bp) |                |
|                  |           |                                      |                |
| SOX10-responsive | Forward   | 5'-TCTGAAGAGGGCATCCAGCT-3'           | Anti-SOX10     |
| element          | Reverse   | 5'-AGATCAAGGCCAAGTCCCCA-3' (102 bp)  |                |
|                  |           |                                      |                |
|                  |           |                                      |                |

## Table S2. Nucleotide sequence of PCR primer in ChIP assay

Quantitative PCR was designed to encompass CREB-, LEF- or SOX10-responsive *cis*acting element at the MITF-M promoter in mice. CRTC1 and  $\beta$ -catenin assemble to CREB and LEF1 on the DNA motifs, respectively.

| Target         | Nucleotide sequence         |
|----------------|-----------------------------|
|                |                             |
| CRTC1 (B16-F0) | 5'-UGGACAGAGUAUAUCGUGA-3'   |
| KPNA1 (MNT1)   | 5'-AAUGUGCUUUCCUGGUUGCUG-3' |
| KPNA2 (MNT1)   | 5'-CAGUGUUCCGAGACUUGGUUA-3' |
| KPNA4 (MNT1)   | 5'-CAACUUAUGUCGCCACAAA-3'   |
|                |                             |

Dorsal skins of brown-colored guinea pigs



**Figure S1. Experimental protocol of UV-B-induced skin hyperpigmentation.** Dorsal skins of guinea pigs were topically treated with DACE (0.03-0.1%) in a twice-daily regimen for four weeks, and irradiated with UV-B (350 mJ/cm<sup>2</sup>) once every two days for three weeks. Skin hyperpigmentation was measured at one week after the end of the UV-B radiation.



Figure S2. Effect of DACE on ET-, db-cAMP- or WH-4-023-induced melanin production. B16-F0 cells were stimulated with ET-1 (A), db-cAMP (B) or WH-4-023 (C) for 72 h in the presence of DACE. Melanin pigments were quantified by measuring absorbance values at 405 nm, and are represented as relative fold change. Data are mean  $\pm$  SEM (n = 5).  $^{\#}P < 0.05$  vs. medium alone.  $^{*}P < 0.05$  vs. ET-1, db-cAMP or WH-4-023 alone.



Figure S3. Effect of DACE on cell viability. (A) B16-F0 cells were incubated with DACE for 72 h in the presence of  $\alpha$ -MSH. The cells were reacted with 0.5 mg/ml MTT for 1 h. Formazan crystals were dissolved in 99% DMSO, and measured absorbance values at 590 nm (A<sub>590</sub>). (B) MNT1 cells were incubated with DACE for 72 h in the presence of  $\alpha$ -MSH. Cell numbers were counted after exclusion with trypan blue dye. Data are mean ± SEM (n = 3)



**Figure S4. Effect of DACE on α-MSH-, ET-1- or db-cAMP-induced MITF-M transcription.** (A) MNT1 cells were pretreated with DACE for 2 h and stimulated with α-MSH for indicated time points in the presence of DACE. (B) B16-F0 cells were pretreated with DACE for 2 h and stimulated with α-MSH, ET-1 or db-cAMP for another 2 h in the presence of DACE. Total RNAs were subjected to RT-PCR analysis of MITF-M with the internal control β-actin. Data are mean ± SEM (n = 3).  $^{\#}P < 0.05$  vs. medium alone.  $^{*}P < 0.05$  vs. α-MSH, ET-1 or db-cAMP alone.



Figure S5. Effect of DACE on  $\alpha$ -MSH-induced transcriptional ability of CREB/CRTC1 heterodimer, SOX10 or LEF1/ $\beta$ -catenin heterodimer. Schematic representation of CREB-, LEF1- or SOX10-responsive *cis*-acting elements at the MITF-M promoter in mice. CRTC1 or  $\beta$ -catenin assembles to CREB or LEF1 on the DNA motif. B16-F0 cells were pretreated with DACE for 2 h, stimulated with  $\alpha$ -MSH for 20 min (B, D) or 1 h (C) in the presence of DACE, and subjected to chromatin immunoprecipitation (ChIP) analysis. After cross-linked between DNA and proteins, chromatin fragments were precipitated with anti-CRTC1 (B), anti-SOX10 (C) or anti- $\beta$ -catenin antibody (D). Input and precipitated DNAs were subjected to quantitative PCR encompassing CREB-responsive CRE motif (B), SOX10- (C) or LEF1-responsive *cis*-acting element (D) at the MITF-M promoter. Data are mean  $\pm$  SEM (n = 3). <sup>#</sup>P < 0.05 vs. medium alone. \*P < 0.05 vs.  $\alpha$ -MSH alone.



Figure S6. Effect of DACE on TYR expression. (A, B) Dorsal skins of guinea pigs were exposed to UV-B radiation (350 mJ/cm<sup>2</sup>) and treated topically with DACE according to the protocol in Figure S1. Skin tissues were biopsied. B16-F0 cells were stimulated with  $\alpha$ -MSH for 48 h (C) or 18 h (D) in the presence of DACE. (A, C) Protein extracts were subjected to Western blot analysis (WB) with anti-TYR or anti-GAPDH antibody. (B, D) Total RNAs were subjected to RT-PCR analysis of TYR with the internal control  $\beta$ -actin. (E) B16-F0 cells were transfected with TYR-Luc reporter construct in combination with *Renilla* control vector. The transfected cells were pretreated with DACE for 2 h and stimulated

with  $\alpha$ -MSH for 20 h in the presence of DACE. Firefly luciferase activity, reporting promoter activity of TYR gene, is represented as relative fold change after normalizing to *Renilla* activity as a reference of transfection efficiency. Data are mean  $\pm$  SEM (n = 3).  $^{\#}P < 0.05$  vs. normal skin (A, B) or medium alone (C-E).  $^{*}P < 0.05$  vs. UV-B alone (A, B) or  $\alpha$ -MSH alone (C-E).



Figure S7. Effect of DACE on the  $\alpha$ -MSH-binding to receptor, the phosphorylation of CREB, the dephosphorylation of CRTC1 or the tethering of CRTC1 by 14-3-3 proteins. (A) B16-F0 cells were incubated with 500 nM TAMRA-NDP- $\alpha$ -MSH, a fluorescent  $\alpha$ -MSH probe, for 30 min in the presence of DACE, and subjected to flow cytometric analysis. B16-F0 cells were pretreated with DACE for 2 h and stimulated with  $\alpha$ -MSH for indicated time points (B, C) or 15 min (D) in the presence of DACE. Cell extracts were subjected to Western blot analysis (WB) with

anti-p-CREB, anti-CREB or anti-GAPDH antibody (B) and with anti-p-CRTC1, anti-CRTC1 or anti-GAPDH antibody (C). (D) For immunoprecipitation (IP), cell extracts were precipitated with the pan antibody against 14-3-3 proteins, and probed with anti-CRTC1 or anti-14-3-3 antibody to detect the co-precipitates. Data are mean  $\pm$  SEM (n =3). <sup>#</sup>*P* < 0.05 vs. medium alone.



Figure S8. Effect of DACE on the phosphorylation or expression of  $\beta$ -catenin. B16-F0 cells were pretreated with DACE for 2 h and stimulated with  $\alpha$ -MSH for indicated time points in the presence of DACE. (A) Cell extracts were subjected to Western blot analysis (WB) with anti-p- $\beta$ -catenin, anti- $\beta$ -catenin or anti-GAPDH antibody. (B) Total RNAs were subjected to RT-PCR analysis of  $\beta$ -catenin with the internal control  $\beta$ -actin, Data are mean  $\pm$  SEM (n = 3). <sup>#</sup>*P* < 0.05 vs. medium alone.



Figure S9. Effect of DACE on the nuclear retention of CREB. B16-F0 cells were pretreated with DACE for 2 h and stimulated with  $\alpha$ -MSH for indicated time points in the presence of DACE. Cell extracts were partitioned between the cytosol and the nucleus, and subjected to Western blot analysis (WB) with anti-CREB, anti-GAPDH or anti-histone H1 antibody. Data are mean  $\pm$  SEM (n = 3).



Figure S10. Effect of DACE on  $\alpha$ -MSH-, ET-1- or WH-4-023-induced nuclear import of CRTC1. (A) B16-F0 cells were pretreated with DACE for 2 h and stimulated with  $\alpha$ -MSH for indicated time points (A), ET-1 for 20 min (B) or WH-4-023 for 20 min (C) in the presence of DACE. Cell extracts were partitioned between the cytosol and the nucleus, and subjected to Western blot analysis (WB) with anti-CRTC1, anti-GAPDH or anti-histone H1 antibody. Data are mean  $\pm$  SEM (n = 3). \**P* < 0.05 vs.  $\alpha$ -MSH, ET-1 or WH-4-023 alone. \**P* < 0.05 vs. medium alone.







Figure S11. Effects of phosphatase inhibitor and kinase inhibitor on the nuclear import of CRTC1. B16-F0 cells were pretreated with each inhibitor for 2 h and stimulated with  $\alpha$ -MSH (A, B), ET-1 (C) or WH-4-023 (D) for 20 min in the presence of each inhibitor. Cell extracts were

partitioned between the cytosol and the nucleus, and subjected to Western blot analysis (WB) with anti-CRTC1, anti-GAPDH or anti-histone H1 antibody. Data are mean  $\pm$  SEM (n = 3).  $^{\#}P < 0.05$  vs. medium alone.  $^{*}P < 0.05$  vs.  $\alpha$ -MSH, ET-1 or WH-4-023 alone.



Figure S12. Effects of importazol and ivermectin on melanin production. B16-F0 cells were stimulated with  $\alpha$ -MSH for 72 h in the presence of importazol or ivermectin. Melanin pigments were quantified by measuring absorbance values at 405 nm, and are represented as relative fold change. Data are mean  $\pm$  SEM (n = 3). <sup>#</sup>*P* < 0.05 vs. medium alone. \**P* < 0.05 vs.  $\alpha$ -MSH alone.