## Supplementary figure legends



**Figure S1.** The IHC staining was scored semi-quantitatively based on the staining intensity of positive tumor cells. Negative (–) and weak (+) samples were scored as low DKK2, while moderate (++) and strong (+++) samples were scored as high DKK2.



**Figure S2.** RKO cells were infected with DKK2 overexpressed LV-DKK2 and the transfection efficency was assessed by detecting the expression of GFP under fluorescence microscope.



Figure S3. Relative expression of DKK2 was detected by real-time qPCR in indicated cells to confirm the successful construction of DKK2 overexpression and silencing vectors (mean  $\pm$  SD, n = 3). The asterisk (\*) indicates P < 0.05. The asterisk (\*\*) indicates P < 0.01.



**Figure S4.** (A) The representative figures of cell migration were measured by transwell migration assay using LV-DKK2 RKO cells and siDKK2 LS174T cells. Bars represent the number of migrated cells. (B) The representative figures of cell migration were measured by wound-healing assay using LV-DKK2 RKO cells and siDKK2 LS174T cells. Bars represent the migration rate.



Figure S5. (A) CCK-8 assay was used to detect the effects of DKK2 on CRC cell proliferation (mean  $\pm$  SD, n = 3). (B) The representative IHC images of Ki-67 index in DKK2 overexpressing or silenicng subcutaneous tumors. (#) indicates P > 0.05. Bars in the right panel represents the rate of Ki-67 positive cells.



**Figure S6.** Real-time qPCR detects the effects of DKK2 on the expression of classical angiogenic factors including ANG2, HIF1 $\alpha$ , TGF $\beta$ , DLL4, VEGF, PLGF and bFGF-1 in indicated cells (mean ± SD, n = 3). (#) indicates P > 0.05.



**Figure S7.** (A) The representative figures of HUVECs migration treated with DKK2 overexpressed RKO culture medium was measured by transwell assay. Bars in the right panel represent the number of migrated cells (mean  $\pm$  SD, n=3). (B) The representative figures of HUVECs migration treated with DKK2 silencing LS174T culture medium were measured by transwell assay. Bars in the right panel represent the number of migrated cells (mean  $\pm$  SD, n=3). (C&D) The representative figures of HUVECs migration treated RKO (C) and DKK2 silencing LS174T (D) culture medium were measured by wound-healing assay. Bars in the right panel represent the migration rate (mean  $\pm$  SD, n=3).



**Figure S8.** (A) The apoptosis of control and DKK2 overexpressed RKO cells were detected by flow cytometry with or without the absence of 5-Fu and LY294002 treatment (mean  $\pm$  SD, n = 3), (#) indicates P > 0.05. (B) The secretion of lactate in the culture medium of control and DKK2 overexpressed RKO cells with or without the absence of IWR-1 (mean  $\pm$  SD, n = 3), (\*\*) indicates P < 0.01.



**Figure S9.** Real-time PCR analysis of DKK2 expression in control, miR-493-5p, and miR-128 transfected LS174T and RKO cells (mean  $\pm$  SD, n = 3). (\*) indicates P < 0.05, (\*\*) indicates P < 0.01. Only miR-493-5p was verified as an upstream regulator of DKK2.



**Figure S10.** (A) Transwell assay on miR-493-5p overexpressing or silencing RKO cells. Bars of the right panel represent the number of invaded cells (mean  $\pm$  SD, n = 3). (B) Wound-healing assay on miR-493-5p overexpressing or silencing RKO cells. Bars of the right panel represent the migration rate (mean  $\pm$  SD, n = 3).



Figure S11. Real-time PCR analysis of miR-493-5p expression in control and 5-Aza treated LS174T and SW620 cells (mean  $\pm$  SD, n = 3). (\*\*) indicates P < 0.01.