Supplementary Material

Oncogenic MSH6-CXCR4-TGFB1 feedback loop: a novel therapeutic target of photothermal therapy in glioblastoma multiforme

Yaodong Chen¹, Pengfei Liu², Peng Sun², Jian Jiang¹, Yuanbo Zhu², Tianxiu Dong¹, Yingzhe Cui², Yuan Tian², Tingting An¹, Jiuwei Zhang¹, Zizhuo Li^{1, ⊠}, Xiuhua Yang^{1, ⊠}

1. Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China

2. Department of Magnetic Resonance, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China

Corresponding author

Xiuhua Yang
 Email address: yangxiuhua@hrbmu.edu.cn
 Tel: +86-13936516597
 Fax: +86-0451-85555034
 Zizhuo Li
 Email address: lizizhuo@hrbmu.edu.cn
 Tel: +86-15145114052
 Fax: +86-0451-85555033

Figure S1. Pearson correlation analysis of MSH6 and a series of functional genes (GEPIA).

Figure S2. Protein-protein interactions of MSH6 and a series of functional genes (STRING).

Figure S3. (A) Cell viability assays, (B) cell cycle assays, (C) cell apoptosis assays, (D) cell migration assays (scale bar represents 200 μ m), and (E) cell invasion assays (scale bar represents 200 μ m) of U87MG cells after silencing MSH6 with si-MSH6-1. Error bars represent the standard deviation, n = 3. * P < 0.05, ** P < 0.01.

Figure S4. The expression of MSH6 in different GBM cell lines.

Figure S5. The expression of MSH6 after overexpressing MSH6 in U251 and T98G cells.

Figure S6. Colony formation rate of U251 and T98G cells after overexpressing MSH6. Error bars represent the standard deviation, n = 3. ** P < 0.01.

Figure S7. (A) The weights and (B) volumes of tumors from U251-Con/MSH6 or T98G-Con/MSH6 tumor-bearing nude mice. Error bars represent the standard deviation, n = 3. ** P < 0.01.

Figure S8. H&E staining of tumors from U251-Con/MSH6 or T98G-Con/MSH6 tumorbearing nude mice (scale bar represents 50 μm).

Figure S9. USI images of tumors from T98G-Con/MSH6 tumor-bearing nude mice.

Figure S10. MRI images of tumors from T98G-Con/MSH6 tumor-bearing nude mice.

Figure S11. The expression of some typical regulatory factors and markers was detected by western blot assays after silencing MSH6 with si-MSH6-1 in U87MG cells.

Figure S12. E-cadherin, Vimentin, CD133 and SOX2 protein expression and subcellular localization were determined by immunofluorescence assays in T98G cells (scale bar represents 100 μm).

Figure S13. The expression of some signaling pathway-related proteins was evaluated by western blot assays after silencing MSH6.

Figure S14. The expression of some signaling pathway-related proteins was detected by western blot assays after silencing MSH6 with si-MSH6-1 in U87MG cells.

Figure S15. The expression of some signaling pathway-related proteins was evaluated by western blot assays after overexpressing MSH6.

Figure S16. The expression of five EMT regulatory factors was detected by western blot assays after silencing MSH6 with si-MSH6-1 in U87MG cells.

Figure S17. (A) qRT-PCR assays of Snail, Slug, Twist, ZEB1 and ZEB2 after silencing MSH6 or (B) overexpressing MSH6. Error bars represent the standard deviation, n = 3. * P < 0.05, ** P < 0.01.

Figure S18. Slug and ZEB2 protein expression and subcellular localization were determined by immunofluorescence assays in T98G cells (scale bar represents $100 \mu m$).

Figure S19. (A) The number of migratory or (B) invasive cells after silencing Slug or ZEB2, while simultaneously overexpressing MSH6 in U251 and T98G cells. Error bars represent the standard deviation, n = 3. * P < 0.05, ** P < 0.01.

Figure S20. CXCR4 and TGFB1 expression was detected by western blot assays after silencing MSH6 with si-MSH6-1 in U87MG cells.

Figure S21. CXCR4 and TGFB1 protein expression and subcellular localization were determined by immunofluorescence assays in T98G cells (scale bar represents 100 μm).

Figure S22. Signal intensity of Cu₂(OH)PO₄@PAA at different concentrations in T1WI.

Figure S23. Cell viability assays of U87MG and T98G cells after hyperthermia at different temperatures (water bath). Error bars represent the standard deviation, n = 3. ** P < 0.01.

Figure S24. (A) Cell viability assays of HUVECs, LO2 cells and HK2 cells after adding different doses of Cu₂(OH)PO₄@PAA. (B) Cell viability assays of U87MG, U251 and T98G cells after adding different doses of Cu₂(OH)PO₄@PAA. Error bars represent the standard deviation, n = 3.

Figure S25. Cell viability assays of U87MG and T98G cells after different treatments.
Groups: (1) control; (2) Cu₂(OH)PO₄@PAA; (3) NIR; (4) 50 °C (water bath); and (5)
Cu₂(OH)PO₄@ PAA + NIR. Error bars represent the standard deviation, n = 3. ** P < 0.01.

Figure S26. Cell apoptosis assays of U87MG and T98G cells after different treatments. Groups: (1) control; (2) Cu₂(OH)PO₄@PAA; (3) NIR; (4) 50 °C (water bath); and (5) Cu₂(OH)PO₄@ PAA + NIR. Error bars represent the standard deviation, n = 3. ** P < 0.01.

Figure S27. The expression of MSH6-related regulatory factors and markers was evaluated by western blot assay after different treatments in U87MG and T98G cells. Groups: (1) control; (2) Cu₂(OH)PO₄@PAA; (3) NIR; (4) 50 °C (water bath); and (5) Cu₂(OH)PO₄@ PAA + NIR.

Figure S28. (A) B-mode, (B) CPA and (C) USE images of U251 tumor-bearing mice before and 3 days, 7 days and 14 days after different treatments.

Figure S29. H&E staining of tumors from U251 tumor-bearing mice after different treatments (scale bar represents $50 \ \mu m$).

Figure S30. Body weights of U251 tumor-bearing mice after different treatments.

Figure S31. H&E staining of major organs dissected from mice in different treatment groups on the 14th day (scale bar represents 50 μm).

Figure S32. (A) The ability of different siRNA sequences to knock down MSH6, (B) CXCR4,(C) Slug and (D) ZEB2 in U87MG, U251 and T98G cells.

Gene	Cytoband	MSH6 altered	MSH6 unaltered	p-Value	q-Value
PTGS2	1q31.1	-1.6 ± 0.18	-1.09 ± 0.69	4.63E-08	7.50E-06
WWTR	1 3q25.1	$\textbf{-0.33} \pm 0.15$	$\textbf{-0.04} \pm 0.43$	2.93E-05	2.37E-03
SRC_PY4	16 20q12-q13	$\textbf{-0.82} \pm 0.28$	$\textbf{-0.41} \pm 0.67$	6.02E-04	0.0196
EIF4EBF	P1 8p11.23	$\textbf{-1.48} \pm 0.39$	-2.05 ± 0.27	6.02E-04	0.0196
MSH2	2p21-p16.3	$\textbf{-2.26}\pm0.69$	-3.25 ± 0.29	7.28E-04	0.0196
ERBB2_PY	/124	0.05 + 0.52	0.67 + 1.07	0 405 04	0.0106
8	1/q12	-0.05 ± 0.52	0.6/±1.0/	8.40E-04	0.0196
NOTCH	1 9q34.3	$\textbf{-0.68} \pm 0.52$	0.05 ± 0.43	9.32E-04	0.0196
RPS6	9p22.1	0.75 ± 0.38	0.23 ± 0.55	9.70E-04	0.0196
EGFR_PY1	1173 7p12	-1.28 ± 0.44	-0.67 ± 1.33	1.19E-03	0.0214
MAPKS	9 5q35.3	-1.37 ± 0.24	-1.68 ± 0.29	1.51E-03	0.0233
CASP8	2q33.1	-1.02 ± 0.24	-0.71 ± 0.29	1.58E-03	0.0233
CHEK2	2 22q12.1	-0.65 ± 0.7	-1.52 ± 0.36	2.03E-03	0.0274
ACACA	A 17q12	2.17 ± 0.36	1.77 ± 0.62	3.95E-03	0.0486
LCK	1p35.2	-1.47 ± 0.34	-1.08 ± 0.41	4.20E-03	0.0486
STAT3_PY	705 17q21.31	-1.06 ± 0.53	-0.48 ± 0.52	4.59E-03	0.0495
ANXA1	l 9q21.13	0.34 ± 1.96	2.46 ± 1.03	5.01E-03	0.0507
ERBB3	12q13.2	$\textbf{-0.41} \pm 0.47$	0.09 ± 0.76	5.69E-03	0.0512
TGM2	20q11.23	-0.18 ± 0.11	-0.06 ± 0.2	5.75E-03	0.0512
DVL3	3q27.1	$\textbf{-0.57}\pm0.2$	$\textbf{-0.78} \pm 0.34$	6.37E-03	0.0512
CAV1	7q31.2	-0.42 ± 1.21	0.82 ± 1.13	6.70E-03	0.0512

Table S1. The differences in protein expression between MSH6-altered and MSH6-unalteredGBM tissues.

PRKCA_PS657	17q22-	-0.17 ± 1.21	1.07 ± 0.71	6.76E-03	0.0512
	q23.2				
PCNA	20p12.3	$\textbf{-0.96} \pm 0.36$	-1.33 ± 0.3	6.95E-03	0.0512
AKT3_PT308	1q44	$\textbf{-0.57}\pm0.6$	0.04 ± 0.74	7.37E-03	0.0519
MAPK1	22q11.22	0.92 ± 1.31	2.21 ± 0.49	8.52E-03	0.0563
PEA15	1q23.2	-0.11 ± 1.08	0.95 ± 0.62	8.69E-03	0.0563
CDH1	16q22.1	-1.2 ± 0.6	-1.77 ± 0.43	0.0101	0.0614
STK11	19p13.3	0.13 ± 0.33	0.44 ± 0.17	0.0106	0.0614
BCL2	18q21.33	-2.04 ± 0.32	-2.35 ± 0.19	0.0106	0.0614
XRCC1	19q13.31	-1.68 ± 0.3	-1.96 ± 0.13	0.0116	0.0627
MYC	8q24.21	-1.06 ± 0.35	$\textbf{-1.38}\pm0.24$	0.0119	0.0627
YAP1	11q22.1	$\textbf{-1.39}\pm0.15$	$\textbf{-1.24}\pm0.46$	0.0122	0.0627
PRKCA_PS664	17q22- q23.2	-0.91 ± 0.52	-0.43 ± 0.57	0.0126	0.0627
PIK3R1	5q13.1	0.9 ± 0.53	1.39 ± 0.38	0.0128	0.0627
CDKN1B_PT1 98	12p13.1- p12	-1.43 ± 0.14	-1.56 ± 0.2	0.014	0.0669
PRKCA	17q24.2	$\textbf{-0.43}\pm0.9$	0.35 ± 0.7	0.0172	0.0779
CHEK1_PS345	11q24.2	-1.85 ± 0.24	$\textbf{-2.06} \pm 0.16$	0.0173	0.0779
JUN_PS73	1p32-p31	-2.18 ± 0.53	$\textbf{-2.64}\pm0.29$	0.0185	0.081
CCNE1	19q12	$\textbf{-0.97} \pm 0.83$	$\textbf{-1.68}\pm0.39$	0.0192	0.0817
IGFBP2	2q35	-0.6 ± 0.96	0.21 ± 1.08	0.0197	0.0817
BIRC2	11q22.2	0.19 ± 0.49	0.6 ± 0.25	0.0214	0.0866
XIAP	Xq25	-3.17 ± 0.96	$\textbf{-3.94}\pm0.2$	0.0241	0.0953

PTK2	8q24.3	0.42 ± 1.1	1.28 ± 0.73	0.0275	0.101
PTEN	10q23.31	0.8 ± 0.57	1.24 ± 0.39	0.0282	0.101
IRS1	2q36.3	-1.03 ± 0.38	-1.33 ± 0.22	0.0285	0.101
CTNNA1	5q31.2	$\textbf{-0.48} \pm \textbf{0.31}$	-0.24 ± 0.32	0.0285	0.101
ERBB2	17q12	$\textbf{-0.06} \pm 0.43$	0.28 ± 0.6	0.0293	0.101
ARID1A	1p36.11	$\textbf{-0.65}\pm0.39$	-0.95 ± 0.24	0.0294	0.101
BAK1	6p21.31	-2.32 ± 0.51	-2.71 ± 0.25	0.0315	0.102
EEF2	19p13.3	$\textbf{-1.09}\pm0.35$	-1.36 ± 0.27	0.0327	0.102
NCOA3	20q13.12	$\textbf{-1.18}\pm0.35$	-1.44 ± 0.26	0.0327	0.102
SMAD4	18q21.2	$\textbf{-2.02}\pm0.6$	-2.46 ± 0.24	0.0332	0.102
WWTR1_PS89	3q23-q24	$\textbf{-1.36}\pm0.36$	-1.62 ± 0.2	0.0334	0.102
AKT3_PS473	1q44	$\textbf{-0.79} \pm 0.97$	$\textbf{-0.06} \pm 0.86$	0.0335	0.102
FSP 1	6q25.1-	-3.36 ± 1.51	-4.48 ± 0.3	0.034	0.102
ESKI	q25.2				
PARK7	1p36.23	0.92 ± 0.55	1.33 ± 0.43	0.0351	0.104
RAD50	5q31.1	-0.6 ± 0.31	-0.82 ± 0.3	0.0382	0.111
CDKN1B	12p13.1	$\textbf{-0.85} \pm 1.03$	-1.57 ± 0.41	0.0441	0.125

siRNA	Sense (5' to 3')
si-NC (random control sequence)	UUCUCCGAACGUGUCACGUTT
si-MSH6-1	GCCAGACACUAAGGAGGAATT
si-MSH6-2	GCAUUUCAUCAGAAACCAATT
si-MSH6-3	CCACAUGGAUGCUCUUAUUTT
si-CXCR4-1	GGGACUAUGACUCCAUGAATT
si-CXCR4-2	CCGACUUCAUCUUUGCCAATT
si-CXCR4-3	CCCUCAAGACCACAGUCAUTT
si-Slug-1	GAAUGUCUCUCCUGCACAATT
si-Slug-2	CCCAUUCUGAUGUAAAGAATT
si-Slug-3	GCGCCCUGAAGAUGCAUAUTT
si-ZEB2-1	GAAGCUACGUACUUUAAUATT
si-ZEB2-2	GGCAAGGCCUUCAAAUAUATT
si-ZEB2-3	GACCACUCCAGGAGUAAUATT

Table S2. The siRNA sequences for the MSH6, CXCR4, Slug and ZEB2 genes.

Gene	Primer sequences $(5' \text{ to } 3')$
Snail-F	TTCAACTGCAAATACTGCAACAAG
Snail-R	CAGTGTGGGTCCGGACATG
Slug-F	TGGGCTGGCCAAACATAAG
Slug-R	CCGCAGATCTTGCAAACACA
Twist-F	TGAGCAAGATTCAGACCCTCAA
Twist-R	CCATCCTCCAGACCGAGAAG
ZEB1-F	TCCATGCTTAAGAGCGGTAGCT
ZEB1-R	GTATCTTGTCTTTCATCCTGATTTCCA
ZEB2-F	TTCCTGGGCTACGACCATACC
ZEB2-R	CAAGCAATTCTCCCTGAAATCC
β-actin-F	GGGAAATCGTGCGTGACATT
β-actin-R	GGAACCGCTCATTGCCAAT

Table S3. Primer sequences for the Snail, Slug, Twist, ZEB1, ZEB2 and β -actin genes.