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Ⅰ.  The patient inclusion and exclusion criteria 26 

The patient inclusion criteria included the following: (1) All patients were surgically resected with 27 

pathologically confirmed ICC. (2) Lymph node dissection was performed during operation. (3) T1-weighted 28 

contrast-enhanced MRI scan was performed within one month before the operation. (4) Preoperative clinical 29 

records were complete.  30 

The patient exclusion criteria included the following: (1) The disease was diagnosed to be mixed 31 

hepatocellular cholangiocarcinoma. (2) The patient underwent chemotherapy before contrast-enhanced MRI 32 

scan. 33 

 34 

Figure S1. Patient data inclusion/exclusion pathway  35 

Ⅱ.  MR acquisition parameters 36 

All patients underwent preoperative abdominal T1-weighted contrast-enhanced MRI scans. The MRI scans 37 

were performed on an MRI scanner (3.0T, GE Medical Systems, Milwaukee, USA) with liver acceleration 38 

volume acquisition (LAVA) sequence. By using the abdominal coil, the scan range was defined from the 39 

diaphragmatic dome to the lower pole of the kidney. The contrast-enhanced MR imaging acquisition 40 



parameters included: flip angle: 10°; repetition time: 2.75-3.20 ms; echo time: 1.25-1.50 ms; reverse time: 5 41 

ms; bandwidth: 390.63-488.28 kHz; field of view: 380×304 mm; pixel spacing: 0.7031-0.8203 mm; slice 42 

thickness: 4-6 mm. Each patient was rapid intravenous injected with 15 ml of Gadopentetate Dimeglumine 43 

(2.5 ml/s). The arterial phase was scanned at 14s, then portal vein phase and delayed phase were 55s and 44 

120s after the injection, respectively. Finally, we used the T1-weighted arterial phase enhanced MR images 45 

in this radiomics study.  46 

Ⅲ.  Determination of hepatitis B, number of the primary tumors, and the MR-reported 47 

LNM factor 48 

All patients involved in this study were diagnosed with chronic hepatitis B. We divided the patients into 49 

cirrhosis group (F4) and non-cirrhosis group (F0-3), according to their clinical and liver imaging 50 

characteristics. Due to the absence of liver biopsy data, we did not perform accurate liver fibrosis grading.  51 

We used the terminology “number of the primary tumors (single or multiple)” to refer to the case with the 52 

number of solid primary tumors. “Single” refers to the case with only 1 solid tumor, while “multiple” refers 53 

to the case with the number of solid tumors more than 2.  54 

The MR-reported LNM factor was defined by an agreement of 3 radiologists based on the preoperative MR 55 

images. The presence of the maximum short-axis diameter of regional LN ≥ 10mm and/or lymph node 56 

margin hyperintense in diffusion MRI images, and/or marginal enhancement was scored as positive LNM, 57 

while the absence of enlarged or lymph node margin hyperintense or marginal enhancement was scored as 58 

negative LNM, consistent with the definition for LN status evaluation criteria in most previous studies.  59 

Ⅳ. The feature set developed in this study 60 

In this study, a number of 491 image features was extracted for each patient. These features comprised of 61 

four groups; the detailed descriptions of the image features were provided in Table S1-S4. The histogram 62 



statistics features described the voxel intensities statistical distribution within the tumors. The geometry 63 

features described the 3D volume and shape characteristics of the tumors. The texture features described the 64 

spatial intensity correlation and distributions of the voxels.  65 

The gray-level co-occurrence matrix (GLCM) is a 𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑔𝑔matrix defined as 𝐶𝐶(𝑚𝑚,𝑛𝑛; 𝛿𝛿,𝛼𝛼), where m and n 66 

represent gray levels, 𝛿𝛿(𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑) is the given distance and 𝛼𝛼 indicates the certain direction which has 13 67 

potential value for 3-dimension. The entry 𝐶𝐶(𝑚𝑚,𝑛𝑛) represents the repetition of the correlation of the gray 68 

levels 𝑚𝑚 and 𝑛𝑛 . 𝑁𝑁𝑔𝑔 represents the maximum gray level value within the volume of interest (VOI). The gray-69 

level run length matrix (GLRLM) is used to quantify run length matrices within the VOI. It is a 𝑁𝑁𝑔𝑔 ×70 

𝑁𝑁𝑔𝑔matrix defined as 𝑅𝑅(𝑚𝑚,𝑛𝑛|𝜃𝜃). The element 𝑅𝑅(𝑚𝑚,𝑛𝑛) describes the frequency value that the VOI includes a 71 

run of length m, consisting of points of gray level n in the certain direction 𝜃𝜃. The gray level size zone 72 

matrix (GLSZM) is used to quantify size zone matrices within the VOI. It is a 𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑔𝑔 matrix defined as 73 

𝑆𝑆(𝑚𝑚,𝑛𝑛). The element 𝑆𝑆(𝑚𝑚,𝑛𝑛) specifies the frequency of block of size 𝑛𝑛 with the gray level 𝑚𝑚. The 74 

neighborhood gray-tone difference matrix (NGTDM) is a column matrix of 𝑁𝑁𝑔𝑔. It is a sum of the absolute 75 

difference values between central voxel and the average value of its neighborhood. The neighborhood is 76 

defined as the certain distance of 2 voxels. The detailed feature names and abbreviations are presented 77 

below. The feature extraction program was implemented based on MATLAB (Version 2017b; MathWorks, 78 

Natick, MA, USA).  79 

Table S1 Histogram feature  
Histogram feature Feature names and abbreviations 
 Variance,  

Skewness,  
Kurtosis,  
Mean,  
Energy,  
Entropy 

 80 

Table S2 Geometry features  
Geometry feature Feature names and abbreviations 
 Max Diameter 

Uniformity,  
Surface Volume Ratio(SVR),  
Compactness1(Cpt1),  
Compactness2(Cpt2), 



Surface Area,  
Spherical Disproportion(SphDisp),  
Sphericity   

 81 

Table S3 Texture features  
Feature type Feature names and abbreviations 
GLCM 
(Grey-level co-occurrence matrix)  
 

 
 

Autocorrelation(autoc),  
Contrast(contr),  
Correlation(corrm),  
Correlation2(corrp),  
Cluster Prominence(cprom),  
Cluster Shade(cshad),  
Dissimilarity(dissi),  
Energy(energ),  
Entropy(entro),  
Homogeneity(homom),  
Homogeneity2(homop),  
Maximum probability(maxpr),  
Sum of squares Variance(sosvh),  
Sum average(savgh),  
Sum variance(svarh),  
Sum entropy(senth),  
Difference variance(dvarh),  
Difference entropy(denth),  
Information measure of correlation1(inf1h),  
Information measure of correlation2(inf2h),  
Inverse difference normalized (INN) (indnc),  
Inverse difference moment normalized(idmnc) 

GLRLM 
(Grey-level run-length matrix) 
 

Short Run Emphasis (SRE),  
Long Run Emphasis (LRE),  
Grey-Level Non-uniformity (GLN),  
Run-Length Non-uniformity (RLN),  
Run Percentage (RP),  
Low Grey-Level Run Emphasis (LGRE),  
High Grey-Level Run Emphasis (HGRE),  
Short Run Low Grey-Level Emphasis (SRLGE),  
Short Run High Grey-Level Emphasis (SRHGE),  
Long Run Low Grey-Level Emphasis (LRLGE),  
Long Run High Grey-Level Emphasis (LRHGE),  
Grey-Level Variance (GLV),  
Run-Length Variance (RLV) 

GLSZM 
(Grey-level size zone matrix) 

 
 

Small Zone Emphasis (SZE),  
Large Zone Emphasis (LZE),  
Grey-Level Non-uniformity (GLN),  
Zone-Size Non-uniformity (ZSN),  
Zone Percentage (ZP),  
Low Grey-Level Zone Emphasis (LGZE),  
High Grey-Level Zone Emphasis (HGZE),  
Small Zone Low Grey-Level Emphasis (SZLGE),  
Small Zone High Grey-Level Emphasis (SZHGE),  
Large Zone Low Grey-Level Emphasis (LZLGE),  
Large Zone High Grey-Level Emphasis (LZHGE),  
Grey-Level Variance (GLV),  
Zone-Size Variance (ZSV) 

NGTDM 
(Neighbourhood grey-tone difference 
matrix)  

Coarseness,  
Contrast,  
Busyness,  
Complexity,  
Strength 
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Wavelet features:  We use the discrete undecimated wavelet transform for decomposing the original 83 



images. The high-pass and low-pass wavelet functions were used in three axials; then, the original image 84 

could be decomposed into eight decompositions. We marked the original 3D images as 𝐺𝐺, the high-pass 85 

wavelet function as 𝐻𝐻 and the low-pass wavelet function as 𝐿𝐿. Them, the decompositions could be express 86 

as 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿, 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿, 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿, 𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻, 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿, 𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻, 𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻, 𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻. Specificity, the decomposition 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 indicated that the 87 

original image was processed by using a low-pass filter, a high-pass filter and a low-pass filter in the x-axis, 88 

y-axis and z-axis, respectively. Based on these 8 decomposed images, histogram and textural features are 89 

extracted again. A number of 424 features could be obtained through wavelet transform. The filters used for 90 

wavelet transform satisfy the perfect reconstruction conditions.  91 

Table S4 Wavelet features  
Wavelet type Feature names  
LLL (low, low, low)  
 

 
 

LLL_GLCM_autoc, LLL_GLCM_contr, LLL_GLCM_corrm, 
LLL_GLCM_corrp, LLL_GLCM_cprom, LLL_GLCM_cshad, 
LLL_GLCM_dissi, LLL_GLCM_energ, LLL_GLCM_entro, 
LLL_GLCM_homom, LLL_GLCM_homop, LLL_GLCM_maxpr, 
LLL_GLCM_sosvh, LLL_GLCM_savgh, LLL_GLCM_svarh, 
LLL_GLCM_senth, LLL_GLCM_dvarh, LLL_GLCM_denth, 
LLL_GLCM_inf1h,  LLL_GLCM_inf2h,  LLL_GLCM_indnc,  
LLL_GLCM_idmnc, LLL_GLRLM_SRE, LLL_GLRLM_LRE, 
LLL_GLRLM_GLN, LLL_GLRLM_RLN, LLL_GLRLM_RP, 
LLL_GLRLM_LGRE, LLL_GLRLM_HGRE, LLL_GLRLM_SRLGE, 
LLL_GLRLM_SRHGE, LLL_GLRLM_LRLGE, LLL_GLRLM_LRHGE, 
LLL_GLRLM_GLV, LLL_GLRLM_RLV, LLL_GLSZM_SZE, 
LLL_GLSZM_LZE, LLL_GLSZM_GLN, LLL_GLSZM_ZSN, 
LLL_GLSZM_ZP, LLL_GLSZM_LGZE, LLL_GLSZM_HGZE, 
LLL_GLSZM_SZLGE, LLL_GLSZM_SZHGE, LLL_GLSZM_LZLGE, 
LLL_GLSZM_LZHGE, LLL_GLSZM_GLV, LLL_GLSZM_ZSV, 
LLL_Coarseness, LLL_Contrast, LLL_Busyness, LLL_Complexity, 
LLL_Strength 

LLH (low, low, high) 
 

LLH_GLCM_autoc, LLH_GLCM_contr, LLH_GLCM_corrm, 
LLH_GLCM_corrp, LLH_GLCM_cprom, LLH_GLCM_cshad, 
LLH_GLCM_dissi, LLH_GLCM_energ), LLH_GLCM_entro, 
LLH_GLCM_homom, LLH_GLCM_homop, LLH_GLCM_maxpr, 
LLH_GLCM_sosvh, LLH_GLCM_savgh, LLH_GLCM_svarh, 
LLH_GLCM_senth, LLH_GLCM_dvarh, LLH_GLCM_denth, 
LLH_GLCM_inf1h,  LLH_GLCM_inf2h,  LLH_GLCM_indnc,  
LLH_GLCM_idmnc, LLH_GLRLM_SRE, LLH_GLRLM_LRE, 
LLH_GLRLM_GLN, LLH_GLRLM_RLN, LLH_GLRLM_RP, 
LLH_GLRLM_LGRE, LLH_GLRLM_HGRE, LLH_GLRLM_SRLGE, 
LLH_GLRLM_SRHGE, LLH_GLRLM_LRLGE, LLH_GLRLM_LRHGE, 
LLH_GLRLM_GLV, LLH_GLRLM_RLV, LLH_GLSZM_SZE, 
LLH_GLSZM_LZE, LLH_GLSZM_GLN, LLH_GLSZM_ZSN, 
LLH_GLSZM_ZP, LLH_GLSZM_LGZE, LLH_GLSZM_HGZE, 
LLH_GLSZM_SZLGE, LLH_GLSZM_SZHGE, LLH_GLSZM_LZLGE, 
LLH_GLSZM_LZHGE, LLH_GLSZM_GLV, LLH_GLSZM_ZSV, 
LLH_Coarseness, LLH_Contrast, LLH_Busyness, LLH_Complexity, 
LLH_Strength 

LHL (low, high, low) 
 

 

LHL_GLCM_autoc, LHL_GLCM_contr, LHL_GLCM_corrm, 
LHL_GLCM_corrp, LHL_GLCM_cprom, LHL_GLCM_cshad, 
LHL_GLCM_dissi, LHL_GLCM_energ), LHL_GLCM_entro, 
LHL_GLCM_homom, LHL_GLCM_homop, LHL_GLCM_maxpr, 
LHL_GLCM_sosvh, LHL_GLCM_savgh, LHL_GLCM_svarh, 



LHL_GLCM_senth, LHL_GLCM_dvarh, LHL_GLCM_denth, 
LHL_GLCM_inf1h,  LHL_GLCM_inf2h,  LHL_GLCM_indnc,  
LHL_GLCM_idmnc, LHL_GLRLM_SRE, LHL_GLRLM_LRE, 
LHL_GLRLM_GLN, LHL_GLRLM_RLN, LHL_GLRLM_RP, 
LHL_GLRLM_LGRE, LHL_GLRLM_HGRE, LHL_GLRLM_SRLGE, 
LHL_GLRLM_SRHGE, LHL_GLRLM_LRLGE, LHL_GLRLM_LRHGE, 
LHL_GLRLM_GLV, LHL_GLRLM_RLV, LHL_GLSZM_SZE, 
LHL_GLSZM_LZE, LHL_GLSZM_GLN, LHL_GLSZM_ZSN, 
LHL_GLSZM_ZP, LHL_GLSZM_LGZE, LHL_GLSZM_HGZE, 
LHL_GLSZM_SZLGE, LHL_GLSZM_SZHGE, LHL_GLSZM_LZLGE, 
LHL_GLSZM_LZHGE, LHL_GLSZM_GLV, LHL_GLSZM_ZSV, 
LHL_Coarseness, LHL_Contrast, LHL_Busyness, LHL_Complexity, 
LHL_Strength 

HLL (high, low, low) 
 

HLL_GLCM_autoc, HLL_GLCM_contr, HLL_GLCM_corrm, 
HLL_GLCM_corrp, HLL_GLCM_cprom, HLL_GLCM_cshad, 
HLL_GLCM_dissi, HLL_GLCM_energ), HLL_GLCM_entro, 
HLL_GLCM_homom, HLL_GLCM_homop, HLL_GLCM_maxpr, 
HLL_GLCM_sosvh, HLL_GLCM_savgh, HLL_GLCM_svarh, 
HLL_GLCM_senth, HLL_GLCM_dvarh, HLL_GLCM_denth, 
HLL_GLCM_inf1h,  HLL_GLCM_inf2h,  HLL_GLCM_indnc,  
HLL_GLCM_idmnc, HLL_GLRLM_SRE, HLL_GLRLM_LRE, 
HLL_GLRLM_GLN, HLL_GLRLM_RLN, HLL_GLRLM_RP, 
HLL_GLRLM_LGRE, HLL_GLRLM_HGRE, HLL_GLRLM_SRLGE, 
HLL_GLRLM_SRHGE, HLL_GLRLM_LRLGE, HLL_GLRLM_LRHGE, 
HLL_GLRLM_GLV, HLL_GLRLM_RLV, HLL_GLSZM_SZE, 
HLL_GLSZM_LZE, HLL_GLSZM_GLN, HLL_GLSZM_ZSN, 
HLL_GLSZM_ZP, HLL_GLSZM_LGZE, HLL_GLSZM_HGZE, 
HLL_GLSZM_SZLGE, HLL_GLSZM_SZHGE, HLL_GLSZM_LZLGE, 
HLL_GLSZM_LZHGE, HLL_GLSZM_GLV, HLL_GLSZM_ZSV, 
HLL_Coarseness, HLL_Contrast, HLL_Busyness, HLL_Complexity, 
HLL_Strength 

HHL (high, high, low) 
  

HHL_GLCM_autoc, HHL_GLCM_contr, HHL_GLCM_corrm, 
HHL_GLCM_corrp, HHL_GLCM_cprom, HHL_GLCM_cshad, 
HHL_GLCM_dissi, HHL_GLCM_energ), HHL_GLCM_entro, 
HHL_GLCM_homom, HHL_GLCM_homop, HHL_GLCM_maxpr, 
HHL_GLCM_sosvh, HHL_GLCM_savgh, HHL_GLCM_svarh, 
HHL_GLCM_senth, HHL_GLCM_dvarh, HHL_GLCM_denth, 
HHL_GLCM_inf1h,  HHL_GLCM_inf2h,  HHL_GLCM_indnc,  
HHL_GLCM_idmnc, HHL_GLRLM_SRE, HHL_GLRLM_LRE, 
HHL_GLRLM_GLN, HHL_GLRLM_RLN, HHL_GLRLM_RP, 
HHL_GLRLM_LGRE, HHL_GLRLM_HGRE, HHL_GLRLM_SRLGE, 
HHL_GLRLM_SRHGE, HHL_GLRLM_LRLGE, HHL_GLRLM_LRHGE, 
HHL_GLRLM_GLV, HHL_GLRLM_RLV, HHL_GLSZM_SZE, 
HHL_GLSZM_LZE, HHL_GLSZM_GLN, HHL_GLSZM_ZSN, 
HHL_GLSZM_ZP, HHL_GLSZM_LGZE, HHL_GLSZM_HGZE, 
HHL_GLSZM_SZLGE, HHL_GLSZM_SZHGE, HHL_GLSZM_LZLGE, 
HHL_GLSZM_LZHGE, HHL_GLSZM_GLV, HHL_GLSZM_ZSV, 
HHL_Coarseness, HHL_Contrast, HHL_Busyness, HHL_Complexity, 
HHL_Strength 

HLH (high, low, high) 
 

HLH_GLCM_autoc, HLH_GLCM_contr, HLH_GLCM_corrm, 
HLH_GLCM_corrp, HLH_GLCM_cprom, HLH_GLCM_cshad, 
HLH_GLCM_dissi, HLH_GLCM_energ), HLH_GLCM_entro, 
HLH_GLCM_homom, HLH_GLCM_homop, HLH_GLCM_maxpr, 
HLH_GLCM_sosvh, HLH_GLCM_savgh, HLH_GLCM_svarh, 
HLH_GLCM_senth, HLH_GLCM_dvarh, HLH_GLCM_denth, 
HLH_GLCM_inf1h,  HLH_GLCM_inf2h,  HLH_GLCM_indnc,  
HLH_GLCM_idmnc, HLH_GLRLM_SRE, HLH_GLRLM_LRE, 
HLH_GLRLM_GLN, HLH_GLRLM_RLN, HLH_GLRLM_RP, 
HLH_GLRLM_LGRE, HLH_GLRLM_HGRE, HLH_GLRLM_SRLGE, 
HLH_GLRLM_SRHGE, HLH_GLRLM_LRLGE, HLH_GLRLM_LRHGE, 
HLH_GLRLM_GLV, HLH_GLRLM_RLV, HLH_GLSZM_SZE, 
HLH_GLSZM_LZE, HLH_GLSZM_GLN, HLH_GLSZM_ZSN, 
HLH_GLSZM_ZP, HLH_GLSZM_LGZE, HLH_GLSZM_HGZE, 
HLH_GLSZM_SZLGE, HLH_GLSZM_SZHGE, HLH_GLSZM_LZLGE, 
HLH_GLSZM_LZHGE, HLH_GLSZM_GLV, HLH_GLSZM_ZSV, 
HLH_Coarseness, HLH_Contrast, HLH_Busyness, HLH_Complexity, 



HLH_Strength 
LHH (low, high, high) 
 

LHH_GLCM_autoc, LHH_GLCM_contr, LHH_GLCM_corrm, 
LHH_GLCM_corrp, LHH_GLCM_cprom, LHH_GLCM_cshad, 
LHH_GLCM_dissi, LHH_GLCM_energ), LHH_GLCM_entro, 
LHH_GLCM_homom, LHH_GLCM_homop, LHH_GLCM_maxpr, 
LHH_GLCM_sosvh, LHH_GLCM_savgh, LHH_GLCM_svarh, 
LHH_GLCM_senth, LHH_GLCM_dvarh, LHH_GLCM_denth, 
LHH_GLCM_inf1h,  LHH_GLCM_inf2h,  LHH_GLCM_indnc,  
LHH_GLCM_idmnc, LHH_GLRLM_SRE, LHH_GLRLM_LRE, 
LHH_GLRLM_GLN, LHH_GLRLM_RLN, LHH_GLRLM_RP, 
LHH_GLRLM_LGRE, LHH_GLRLM_HGRE, LHH_GLRLM_SRLGE, 
LHH_GLRLM_SRHGE, LHH_GLRLM_LRLGE, LHH_GLRLM_LRHGE, 
LHH_GLRLM_GLV, LHH_GLRLM_RLV, LHH_GLSZM_SZE, 
LHH_GLSZM_LZE, LHH_GLSZM_GLN, LHH_GLSZM_ZSN, 
LHH_GLSZM_ZP, LHH_GLSZM_LGZE, LHH_GLSZM_HGZE, 
LHH_GLSZM_SZLGE, LHH_GLSZM_SZHGE, LHH_GLSZM_LZLGE, 
LHH_GLSZM_LZHGE, LHH_GLSZM_GLV, LHH_GLSZM_ZSV, 
LHH_Coarseness, LHH_Contrast, LHH_Busyness, LHH_Complexity, 
LHH_Strength 

HHH (high, high, high) 
 

HHH_GLCM_autoc, HHH_GLCM_contr, HHH_GLCM_corrm, 
HHH_GLCM_corrp, HHH_GLCM_cprom, HHH_GLCM_cshad, 
HHH_GLCM_dissi, HHH_GLCM_energ), HHH_GLCM_entro, 
HHH_GLCM_homom, HHH_GLCM_homop, HHH_GLCM_maxpr, 
HHH_GLCM_sosvh, HHH_GLCM_savgh, HHH_GLCM_svarh, 
HHH_GLCM_senth, HHH_GLCM_dvarh, HHH_GLCM_denth, 
HHH_GLCM_inf1h,  HHH_GLCM_inf2h,  HHH_GLCM_indnc,  
HHH_GLCM_idmnc, HHH_GLRLM_SRE, HHH_GLRLM_LRE, 
HHH_GLRLM_GLN, HHH_GLRLM_RLN, HHH_GLRLM_RP, 
HHH_GLRLM_LGRE, HHH_GLRLM_HGRE, HHH_GLRLM_SRLGE, 
HHH_GLRLM_SRHGE, HHH_GLRLM_LRLGE, HHH_GLRLM_LRHGE, 
HHH_GLRLM_GLV, HHH_GLRLM_RLV, HHH_GLSZM_SZE, 
HHH_GLSZM_LZE, HHH_GLSZM_GLN, HHH_GLSZM_ZSN, 
HHH_GLSZM_ZP, HHH_GLSZM_LGZE, HHH_GLSZM_HGZE, 
HHH_GLSZM_SZLGE, HHH_GLSZM_SZHGE, HHH_GLSZM_LZLGE, 
HHH_GLSZM_LZHGE, HHH_GLSZM_GLV, HHH_GLSZM_ZSV, 
HHH_Coarseness, HHH_Contrast, HHH_Busyness, HHH_Complexity, 
HHH_Strength 

 92 

Ⅴ. The detailed descriptions of clinical net benefit, the “treat-all plan”, and the “treat-93 

none plan”  94 

The net benefit was defined using the following formula: 95 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  
𝑇𝑇𝑇𝑇𝑇𝑇
𝑁𝑁

−
𝐹𝐹𝐹𝐹𝐹𝐹
𝑁𝑁

×
𝑃𝑃𝑡𝑡

1 − 𝑃𝑃𝑡𝑡
 

In this formula, 𝑁𝑁 was the sample size, 𝑃𝑃𝑡𝑡 was the threshold probability to stratify patients as the predicted 96 

synchronous lymph node metastasis (LNM) or non-LNM. Patients with the predicted LNM probabilities 97 

greater than 𝑃𝑃𝑡𝑡 were predicted as synchronous LNM, while patients with the predicted LNM probabilities 98 

lower than 𝑃𝑃𝑡𝑡 were predicted as non-LNM. For patients with predicted synchronous LNM, the lymph node 99 

dissection (LND) were recommended. While for patients with predicted non-LNM, the LND was not 100 



recommended. 𝑇𝑇𝑇𝑇𝑇𝑇 was the true positive rate. TPR was defined as the ratio of patients with predicted 101 

synchronous LNM in the patients with actual LNM. FPR was the false positive rate. FPR was defined as the 102 

ratio of patients with predicted synchronous LNM in the patients without LNM.  103 

The “treat-none plan” was defined that no patients were predicted as LNM. In this case, the TPR and FPR 104 

equaled to zero, and the net benefit was zero. The “treat-all plan” was defined that all patients were 105 

predicted as LNM. In this case, the TPR and FPR equaled to one, and the net benefit calculation formula 106 

was changed: 107 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
1 − 2 × 𝑃𝑃𝑡𝑡
𝑁𝑁 × (1 − 𝑃𝑃𝑡𝑡)

 

Ⅵ. Demographic comparison of baseline clinical features between the training and 108 

validation groups 109 

While a temporal interval existed between the training and validation groups, there were no significant 110 

differences in the baseline clinical features between the training group and the validation group neither for 111 

patients with LNM (P = 0.9773 for age, 0.0923 for gender, 0.4419 for primary hepatic lobe site, 0.9590 for 112 

number of the primary tumors 0.9464 for hepatitis, 0.9044 for cirrhosis, 0.8684 for cholelithiasis, 0.1904 for 113 

CA 19-9 level, 0.4974 for CEA level, 0.4419 for the MR-reported LNM factor) and patients with non-LNM 114 

(P = 0.8829 for age, 0.1900 for gender, 0.3374 for primary hepatic lobe site, 0.6015 for number of the 115 

primary tumors 0.8749 for hepatitis, 0.9202 for cirrhosis, 0.8050 for cholelithiasis, 0.0525 for CA 19-9 level, 116 

0.5401 for CEA level, 0.5523 for the MR-reported LNM factor). Thus, the baseline clinical features for 117 

patients in the training and validation groups justify their use as the training and validation groups. 118 

Ⅶ. Calculation formulas for SVM model and combination nomogram  119 

𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  0.3386 + 0.0988 × 𝐻𝐻𝐻𝐻𝐻𝐻_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 0.1524 × 𝐿𝐿𝐿𝐿𝐿𝐿_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ − 0.2111

× 𝐻𝐻𝐻𝐻𝐻𝐻_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 0.4333 × 𝐿𝐿𝐿𝐿𝐿𝐿_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ − 0.2087 × 𝐻𝐻𝐻𝐻𝐻𝐻_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 



𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=  −3.4872 + 4.1198 × 𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1.4461 × 𝐶𝐶𝐶𝐶 19˗9 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1.0490

× 𝑀𝑀𝑀𝑀˗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐿𝐿𝐿𝐿𝐿𝐿 

Ⅷ. Predictive performances of different feature selection methods 120 

To find the optimal feature selection algorithm for the problem here, we compared the performances of 121 

several feature selection methods, including mRMR, least absolute shrinkage and selection operator 122 

(LASSO), Random forest, Elastic net, Wilcoxon, and Gini index, and the results were summarized in Table 123 

S5 below. In the training group, the P values calculated based on the Delong test showed that the mRMR, 124 

LASSO, Elastic net, and Random forest were all less than 0.0001. Using the AUC value as an evaluation 125 

index, the mRMR method and LASSO method showed the best performances. In the validation group, the P 126 

value for the mRMR method was the lowest, while its AUC was the highest. Therefore, the mRMR was 127 

chosen as the optimal method in this paper. 128 

Ⅸ. Histograms regarding the distributions of AUCs for the SVM mode and 129 

combination nomogram 130 

Table S5. Predictive performances of different feature selection methods 

Methods Training group  Validation group 

Sensitivity Specificity AUC (95% CI) P  Sensitivity Specificity AUC (95% CI) P 

mRMR 65.96% 79.66% 0.788 (0.698-0.862) <0.0001  52.63% 91.30% 0.787 (0.634-0.898) <0.0001 
LASSO  70.21% 71.19% 0.773 (0.692-0.857) <0.0001  63.16% 60.87% 0.714 (0.554-0.843) 0.0077 

Elastic Net 82.98% 55.93% 0.737 (0.643-0.818) <0.0001  73.68% 43.48% 0.629 (0.467-0.773) 0.1385 

Random Forest 65.96% 79.66% 0.759 (0.666-0.837) <0.0001  42.11% 73.91% 0.673 (0.511-0.809) 0.0396 

Wilcoxon 57.45% 79.66% 0.689 (0.592-0.775) 0.0004  57.89% 78.26% 0.693 (0.532-0.826) 0.0238 

Gini Index 49.15% 80.85% 0.679 (0.581-0.766) 0.0006  43.48% 78.95% 0.719 (0.559-0.846) 0.0074 

Note: AUC: area under the curve; CI: confidence interval. P value was calculated using the Delong test.  



 131 

Figure S2. Histograms regarding the distributions of AUCs from the bootstrap method for SVM model and combination 132 

nomogram in both training and validation groups. (A) Histogram for SVM model in the training group; (B) histogram for 133 

SVM model in the validation group; (C) histogram for combination nomogram in the training group; (B) histogram for 134 

combination nomogram in the validation group. 135 

Ⅹ. The multivariable analysis for model construction 136 

In the multivariable analysis, we used the Akaike information criterion (AIC) and the independence analysis 137 

to select the optimal factors. The detailed AIC values in the model construction procedure were showed in 138 

Table S6. Firstly, a combination with the minimum AIC value of 117.49 was selected, involving SVM score, 139 

CA 19-9 level, number of the primary tumors, primary hepatic lobe site, and the MR-reported LNM factor 140 

was selected. By using the independence analysis for features in the model, three features of SVM score, CA 141 

19-9 level, and the MR-reported LNM factor were reported independent with P-values < 0.05, while two 142 

features of primary hepatic lobe site and number of the primary tumors were reported non-independent with 143 

P-values > 0.05. Table S8 showed the P-values for these five features. Then, we removed these two 144 

redundant features and construct a new model with the independent features only. Table S9 showed the P-145 

values for the selected factors in the new prediction model. Thus, we used the model with the SVM score, 146 



CA 19-9 level, and the MR-reported LNM factor in this study.  147 

 148 
Table S6. AIC value changes in the model construction 
Variable AIC 
SVM score & Gender & Age & Cholelithiasis & Hepatitis B & Cirrhosis & Primary hepatic 
lobe site & Number of the primary tumors &CA 19-9 level & CEA level & MR-reported LNM 

127.41 

SVM score & Gender & Age & Cholelithiasis & Cirrhosis & Primary hepatic lobe site & 
Number of the primary tumors &CA 19-9 level & CEA level & MR-reported LNM 

125.43 

SVM score & Gender & Age & Cholelithiasis & Cirrhosis & Primary hepatic lobe site & 
Number of the primary tumors &CA 19-9 level & MR-reported LNM 

123.45 

SVM score & Gender & Age & Cholelithiasis & Primary hepatic lobe site & Number of the 
primary tumors &CA 19-9 level & MR-reported LNM 

121.53 

SVM score & Age & Cholelithiasis & Primary hepatic lobe site & Number of the primary 
tumors &CA 19-9 level & MR-reported LNM 

119.76 

SVM score & Cholelithiasis & Primary hepatic lobe site & Number of the primary tumors &CA 
19-9 level & MR-reported LNM 

118.19 

SVM score & Primary hepatic lobe site & Number of the primary tumors &CA 19-9 level & 
MR-reported LNM 

117.49 

Note: SVM, support vector machine; LNM, lymph node metastasis; CA19-9, serum 
carbohydrate antigen 19-9; CEA, serum carcinoembryonic antigen. 

 

 149 
Table S7. VIFs for all the candidate variables in the logistic regression analysis 
Variable VIF 
SVM score 5.9610 
Gender 2.3877 
Age 47.8974 
Cholelithiasis 1.4593 
Hepatitis B 1.6686 
Cirrhosis 1.0680 
Primary hepatic lobe site 1.8118 
Number of the primary tumors 1.4319 
CA 19-9 level 4.1702 
CEA level 1.9743 
MR-reported LNM 0.0772 
Note: LNM, lymph node metastasis; CA19-9, serum carbohydrate antigen 19-9; 
CEA, serum carcinoembryonic antigen.  
 150 
Table S8. Multivariable analysis for five features selected 
Variable P 
SVM score 0.0003 
CA 19-9 level 0.0078 
MR-reported LNM 0.0249 
Primary hepatic lobe site 0.0546 
Number of the primary tumors 0.0772 
Note: LNM: lymph node metastasis; CA19-9: serum carbohydrate antigen 19-9. 
 151 
Table S9. Multivariable analysis for features used in the nomogram 
Variable Coefficients P OR (95% CI) 
SVM score 4.1198 <0.0001 61.5448 (7.8097-485.0073) 
CA 19-9 level 1.4461 0.0081 4.2467 (1.4569-12.3785) 
MR-reported LNM 1.0490 0.0307 2.8548 (1.1022-7.3941) 
Note: SVM, support vector machine; OR, odds ratio; CI, confidence interval.  
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