## Supporting Information

## TRAIL acts synergistically with iron oxide nanoclusters-mediated magneto- and photothermia

Hanene Belkahla<sup>a,b,c</sup>, Eva Mazarío<sup>a</sup>, Anouchka Plan Sangnier<sup>d</sup>, John S. Lomas<sup>a</sup>, Tijani Gharbi<sup>b</sup>, Souad Ammar<sup>a</sup>, Olivier Micheau<sup>c</sup>‡, Claire Wilhelm<sup>d</sup>‡, and Miryana Hémadi<sup>a</sup>‡





**Figure S1: A.** X-ray photoelectron spectroscopy survey spectra of NC, NC@APTES & NC@TRAIL **B**. The high-resolution N1s spectra of NC, NC@APTES & NC@TRAIL **C**. FTIR spectra of NC and NC@TRAIL, **D**. Thermogravimetric analysis of NC and NC@TRAIL, **E**. Zeta potential measured as a function of pH on aqueous suspension of NC@APTES and NC@TRAIL **F**. DLS profile of NC@TRAIL in PBS, 10% and 55% FCS. **G**. Magnetization curves at 5K for NC and NC@TRAIL.



**Figure S2**: Plot of temperature versus time for NC and NC@TRAIL induced by MHT (471 kHz, 180 G) of MDA-MB-231-DKO cells incubated in 10% FCS with NC and NC@TRAIL **at [Fe]=12 mM**.



**Figure S3: Determination of the light-to heat photothermal efficiency conversion parameter**  $\eta$ **.** A bsorbance (A) spectra at different concentrations of the nanoclusters ([Fe]). **B**. Plot of the absorbance at 808 nm with respect to iron concentration. The molar extinction coefficient ( $\varepsilon$ ) was determined from these data according to the Beer-Lambert equation: A=  $\varepsilon$ .I.[Fe] with I the length of the cuvette (1 cm):  $\varepsilon$  = 475±50 M<sup>-1</sup>cm<sup>-1</sup>. **C**. Typical curves of the temperature increase  $\Delta$ T over time showing the temperature evolution during photothermal measurements. Laser was turned on after 10 sec of recording. As soon as the plateau temperature  $\Delta$ T<sub>plateau</sub> was reached, the laser was turned off, and the heat relaxation phase was recorded, in order to calculate the light-to-heat conversion coefficient. **D**. Light-to-heat conversion coefficient ( $\eta$ ) extracted from the heating curves shown in C for the three different sample concentrations, according to the formula:  $\eta = \frac{\Delta T_{plateau}.m.C.B}{P_{0}.(1-10^{-A})}$ , with  $\Delta$ T<sub>plateau</sub>, the final temperature increase; P<sub>0</sub> the incident power of the laser (here 0.12 W, corresponding to a power density of 0.3 W/cm<sup>2</sup> and a sample surface area of 0.4 cm<sup>2</sup>); A the

absorbance of the sample (provided by the  $\varepsilon$  value); m the mass of the sample, C the specific heat capacity (4185 J/g/K), and B the constant rate of heat dissipation. B was calculated from the

relaxation phase as:  $e^{-Bt} = \frac{\Delta T(t)}{\Delta T_{plateau}}$ , leading to B=0.01 ± 0.002 s<sup>-1</sup>. This led to an average  $\eta$  value of 23±3%.



**Figure S4:** A) PT-mode temperature increment for NC@TRAIL in MDA-MB-231-DKO cells with different iron concentrations. B) MDA-MB-231-DKO cell death in PT mode with different iron concentrations. C) Temperature scale bar.

## MDA-MB-231 WT



**Figure S5:** Early and late apoptosis and/or necrosis were determined by annexin V and propidium iodide (PI) staining of MDA-MB-231-WT treated by NC, TRAIL, NC+TRAIL and NC@TRAIL at 37 °C and after PT treatment. Total cell death is given in bold as a percentage.



**Figure S6:** MDA-MB-231-DKO cell death after incubation with TRAIL alone, NC and NC@TRAIL ([Fe]=4 mM) at different temperatures: 45, 55, 60 and 70 °C.



**Figure S7:** TEM images of MDA-MB-231 cells incubated with NC@TRAIL at [Fe]= 4 mM, immediately after the incubation. Nanoclusters are all located at the cell membranes.



**Figure S8**: TEM images of MDA-MB-231 cells incubated with NC@Tf (left) and NC@HSA (right) at [Fe]= 4 mM, immediately after the PT treatment. Nanoclusters are all located at the cell membranes, with none internalized, evidencing local membrane-delimited action.



**Figure S9**: Early and late apoptosis and/or necrosis were determined by annexin V and propidium iodide (PI) staining of MDA-MB-231-DKO treated by NC, TRAIL, NC@TF, NC@HSA and NC@TRAIL at 37 °C and after PT treatment, and their comparison with MDA-MB-231-WT results after PT mode. Cell death is given in bold as a percentage for each measurement.



**Figure S10**: Left: Identification by flow cytometry of the presence of TRAIL receptors DR4 and DR5 in parental cell line (WT) and TRAIL-deficient one (DKO). Right: TRAIL-DR4 and TRAIL-DR5 immunoblots obtained from parental (WT) and DKO cell lysates.