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Abstract 

Rationale: Colorectal cancer (CRC) is a malignant tumor with the third highest morbidity rate among all 
cancers. Driven by the host’s genetic makeup and environmental exposures, the gut microbiome and its 
metabolites have been implicated as the causes and regulators of CRC pathogenesis. We assessed human fecal 
samples as noninvasive and unbiased surrogates to catalog the gut microbiota and metabolome in patients with 
CRC.  
Methods: Fecal samples collected from CRC patients (CRC group, n = 50) and healthy volunteers (H group, 
n = 50) were subjected to microbiome (16S rRNA gene sequencing) and metabolome (gas 
chromatography-mass spectrometry, GC-MS) analyses. The datasets were analyzed individually and integrated 
for combined analysis using various bioinformatics approaches.  
Results: Fecal metabolomic analysis led to the identification of 164 metabolites spread across 40 metabolic 
pathways in both groups. In addition, there were 42 and 17 metabolites specific to the H and CRC groups, 
respectively. Sequencing of microbial diversity revealed 1084 operational taxonomic units (OTUs) across the 
two groups, and there was less species diversity in the CRC group than in the H group. Seventy-six 
discriminatory OTUs were identified for the microbiota of H volunteers and CRC patients. Integrated analysis 
correlated CRC-associated microbes with metabolites, such as polyamines (cadaverine and putrescine).  
Conclusions: Our results provide substantial evidence of a novel interplay between the gut microbiome and 
metabolome (i.e., polyamines), which is drastically perturbed in CRC. Microbe-associated metabolites can be 
used as diagnostic biomarkers in therapeutic explorations. 
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Introduction 
Colorectal cancer (CRC) carries the third highest 

burden of morbidity among all malignant tumors 
worldwide [1, 2]. Although several mechanistic 

events have been identified that play key roles during 
colorectal carcinogenesis, only a few of these 
molecular targets are clinically translatable [3]. 
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Identification of previously unrecognized 
mechanism(s) that drive cancer development would 
be of clinical relevance as these would allow 
development of robust biomarkers and effective drug 
targets, which are urgently needed for the diagnosis 
and therapeutic management of CRC. However, the 
underlying mechanisms involved in the occurrence 
and development of CRC are far from being explored. 

There is accumulating evidence that colorectal 
carcinogenesis is driven by the interaction between 
genetic and environmental factors [4, 5]. Notably, the 
gut microbiome has been implicated as a critical 
environmental factor contributing to the 
tumorigenesis and progression of CRC, potentially 
through pro-inflammatory response, microbial 
metabolites, and interference with energy balance in 
cancer cells [6]. Furthermore, the diversity and 
function of the host bacterial community can be 
altered as a response to changes in the host diet or 
physiology [4, 7]. Therefore, the microbiome has come 
to the forefront as a reflection of the tumor 
environment, allowing the microbiome and the 
metabolome to be robust noninvasive targets for 
precision medicine [8].  

Although there are several studies that have 
reported microbial associations with CRC, the profile 
of the gut microbial community and its functional 
contribution to CRC has not been systematically 
characterized [9]. Moreover, it is now clear that some 
important factors that connect intestinal microbiota to 
CRC are microbial metabolites [10]. As biochemical 
converters, gut microbes are capable of converting the 
complex chemical space presented by the dietary and 
host nutrients into a milieu of metabolites [11]. These 
metabolites can exert either genotoxic or 
tumor-suppressive functions through multiple 
mechanisms, such as by providing supportive 
metabolic flux to promote anabolic metabolism, by 
acting as competitive enzyme inhibitors, or by 
modifying signaling proteins [12]. Therefore, the 
disruption in the balance of metabolites by the 
microbiome may result in tumorigenesis. 
Nevertheless, the interplay between gut microbiota 
and metabolites and their roles in CRC development 
have not been effectively addressed, and the study of 
this interplay is limited by invasive and expensive 
sampling techniques that are often biased with 
unidimensional classical approaches. Thus, taking 
advantage of this critical gap in the literature, we 
envisaged this study to systematically and 
comprehensively interrogate the microbiome and 
metabolome of human CRC fecal samples, to identify 
microbial diversity and metabolite abundance and to 
decipher the association of CRC with gut microbiota 
and fecal metabolites.  

Materials and methods 
Study design and fecal sample collection 

A total of 50 patients diagnosed with sporadic 
CRC and 50 healthy (H) volunteers for conventional 
medical examination including fecal occult blood test 
(FOBT) and fibrocolonoscopy examination evaluated 
at Tongji University Affiliated Tenth People’s 
Hospital (Shanghai, China) from January 2014 to 
September 2014 were recruited for inclusion in this 
study. The written informed consents were obtained 
from the CRC patients and the H volunteers. Their 
general clinical data including age, gender, 
educational background, body mass index (BMI), 
waist-to-hip ratio (WHR), and histories of smoking, 
hypertension, appendectomy, and FOBT were 
recorded. All patients and volunteers were Shanghai 
Han Chinese with similar geographic areas and eating 
habits. All patients were diagnosed by postoperative 
pathological examinations. The clinical pathological 
features of CRC, such as tumor stage, tumor location, 
tumor size, tumor differentiation, serum 
carcinoembryonic antigen (CEA) and carbohydrate 
antigen 19-9 (CA19-9), were recorded. The exclusion 
criteria were as follows: patients older than 80 years 
or younger than 25 years; patients with a history of 
familial CRC, inflammatory bowel disease (IBD), or 
irritable bowel syndrome (IBS); individuals who 
received preoperative neoadjuvant 
chemoradiotherapy; patients with other coexisting 
malignant tumors; and patients with complications of 
complete intestinal obstruction. All the H volunteers 
had a normal bowel habit. The H volunteers had no 
history of IBS, IBD, CRC, other malignant tumors or 
other severe gastroenterological diseases. All patients 
and volunteers using antibiotics, probiotics, 
prebiotics, or synbiotics within two months of 
sampling were excluded. The flow chart displaying 
the enrollment and analysis process is illustrated in 
Supplementary Figure S1. Three H volunteers with a 
positive FOBT were further detected by fiber electron 
colonoscopy and confirmed to have stage I internal 
hemorrhoids without neoplasia throughout the entire 
large intestine, thus, the 3 H volunteers were included 
in our study. Four volunteers with colon polyps were 
excluded in our further study after colonic endoscopy. 
All qualified stool samples were self-sampled prior to 
mechanical bowel preparation and were transported 
immediately to the laboratory, divided into two 
portions per sample, packed into two frozen pipes, 
and then frozen in liquid nitrogen overnight and 
preserved under −80°C for further testing. Our 
studies were conducted under the institutional review 
board (IRB) protocols of the participating institutions. 
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Fecal DNA extraction for microbiome analysis 
The genomic DNA of feces was extracted using 

the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s guidelines. 
DNA integrity and size were verified by 1% agarose 
gel electrophoresis, and DNA concentrations were 
determined using NanoDrop spectrophotometry 
(NanoDrop, Germany). 

High-throughput 16S ribosomal RNA gene 
sequencing 

16S ribosomal RNA (rRNA)-based amplification 
was performed using the primers (319F: 
5’-ACTCCTACGGGAGGCAGCAG-3’; 806R: 5’-GGA 
CTACHVGGGTWTCTAAT-3’) directionally targeting 
the V3 and V4 hypervariable regions of the 16S rRNA 
gene. To differentiate each sequenced sample and 
obtain accurate phylogenetic and taxonomic 
information, the gene products were attached with 
forward and reverse error-correcting barcodes. After 
purification, the amplicons were quantified, following 
which the normalized equimolar concentrations of 
amplicons were pooled and sequenced on a MiSeq 
PE300 sequencing instrument (Illumina, Inc., CA, 
USA) using 2 ×300 bp chemistry according to the 
manufacturer’s specifications.  

Sequencing data analysis 
The paired-end reads were generated and 

assigned to each sample based on their barcodes and 
then were merged with FLASH (Fast Length 
Adjustment of SHort reads) software. High-quality 
filtering of the raw tags was conducted to acquire 
clean tags using Qiime (Version 1.7.0) [13]. The 
chimeric sequences were filtered using Usearch 
(Uparse v6.0.307) software. Sequences with more than 
97% similarity thresholds were allocated to one 
operational taxonomic unit (OTU) using CD-HIT 
(v4.6.1). Classification of representative sequences for 
each OTU was applied, and then Ribosomal Database 
Project (RDP) classifier 2.10.1 were used to assign 
taxonomic data to each sequence. The phylogenetic 
differences in the dominant OTUs were performed 
using Python Nearest Alignment Space Termination 
(PyNAST). A rarefaction curve was generated using 
the Mothur package for richness estimations of the 
OTUs. Alpha diversity was performed to identify the 
complexity of species diversity for each sample. To 
assess the diversity in samples for species complexity, 
beta diversity calculations were analyzed by principal 
coordinate analysis (PCoA). The Wilcoxon rank-sum 
test and Welch’s t-test were used to compare bacterial 
abundance and diversity. Heat maps were 
constructed based on the nonparametric Wilcoxon 
test (p < 0.05, q < 0.1) at the genus level. Linear 

discriminant analysis (LDA) coupled with effect size 
(LEfSe) was applied to evaluate the differentially 
abundant taxon.  

Fecal sample preparation for metabolomics 
analysis 

Gas chromatography-mass spectrometry 
(GC-MS) was performed as described [14]. Briefly, 
lyophilized fecal samples (100 mg) were collected in 5 
mL centrifuge tubes, and ddH2O (500 µL at 4°C) was 
added. The mixture was then vortexed for 1 min. 
Then, 1 mL methanol (-20°C) was used for extraction, 
following addition of 30 μL 2-chloro-L- 
phenylalanine (0.2 mg/mL) and 60 μL heptadecanoic 
acid (0.05 mg/mL) as internal standards. The mixture 
was vortexed for 30 s and sonicated for 10 min, kept 
on ice for 30 min, and subsequently centrifuged at 
14000 rpm at 4°C for 30 min. The supernatant (1200 μL) 
was transferred into a 1.5-mL microcentrifuge tube 
and freeze-dried with nitrogen. Methoxyamination 
was performed by adding 60 μL methoxyamine. HCl 
solution (20 mg/mL in pyridine) was added to each 
tube, followed by incubation and shaking at 1200 rpm 
for 120 min at 37°C. Then, 60 μL N,O-bis 
(trimethylsilyl) trifluoroacetamide (BSTFA) with 1% 
trimethylchlorosilane (TMCS) was added into the 
mixture and then incubated at 37°C for 90 min for 
trimethylsilyl derivatization. Pooled samples were 
used as quality control (QC) samples over batches of 
10 samples, and samples were blinded and 
randomized and were served as QC checks by 
injecting at scheduled intervals for monitoring shifts 
in retention indices (RI). Deionized water was used as 
the control sample to account for the background 
noise produced during sample processing and data 
analysis.  
GC-MS data acquisition 

Samples were analyzed with an Agilent Gas 
Chromatography Mass Spectrometer (7890A/5975C 
GC-MS System, Agilent, CA, USA). The GC system 
employed a HP-5MS capillary column coated with 5% 
phenyl methyl silox (Agilent J & W Scientific, Folsom, 
CA, USA). Samples (1 μL) were injected at a split ratio 
of 20:1. As a carrier gas, helium was set to a constant 
flow rate of 1.0 mL/min. The temperatures were set to 
280°C (injection), 250°C (transfer line) and 150°C (ion 
source), respectively. The initial temperature program 
was set at 2 min of isothermal heating at 70°C and 
then increased to 300°C at a rate of 10°C/min. The 
final temperature was maintained for 5 min. Electron 
impact ionization (70 eV) in a full scan mode with an 
m/z range of 35-780 was used for data acquisition.  
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GC-MS-based metabolomics data analysis.  
The GC-MS data obtained in [.D] format from 

the platform were converted to .mzXML format using 
msConvert (ProteoWizard tool) and were 
preprocessed, cleaned, deconvoluted and aligned 
using the Automated Mass Spectral Deconvolution 
and Identification System (AMDIS, National Institute 
of Standards and Technology, USA) interface to 
match against the freely available Mass Spectral (MS) 
and Retention Time Index (RI)  (MSRI) library at the 
Golm Metabolome Database. Metabolites were 
further identified by comparing fragmentation 
patterns available in both the Golm database and the 
National Institute of Standards and Technology Mass 
Spectral Reference Library 2011 (NIST11/2011; 
National Institute of Standards and Technology, 
USA). Peak findings and quantification of selective 
ion traces were accomplished using AMDIS software. 
As a rule, if a compound had an AMDIS match factor 
> 60%, a probability score > 20% and a matching RI to 
a known compound, it was considered “probable”. 
Base peak areas of the mass fragments (m/z) were 
normalized using median normalization and log2 
transformation.  

Fecal metabolomes were obtained, of which a 
total of 12 outliers were detected postanalysis and 
were removed, possibly due to other sources of 
unwanted source of variations. Thus, we obtained 
fecal metabolome data from 42 H volunteers and 46 
CRC patients. Normalized, transformed, imputed, 
outlier removed, and scaled peak areas representative 
of relative metabolite abundances obtained by 
processing using the DeviumWeb package 
(https://github.com/dgrapov/DeviumWeb) are 
presented in the tables and figures. Hierarchical 
clustering analysis (HCA) was applied on Pearson 
distances using PermutMatrix [15]. For heat-maps, the 
fecal metabolome data were normalized using 
z-scores under the peak areas. Principal component 
analysis (PCA) was conducted at DeviumWeb, where 
output consisted of score plots to visualize the 
contrast between sample set and loading plot to 
interpret cluster separation. Orthogonal partial least 
squares discriminant analysis (OPLS-DA) was 
applied to highlight the phenotypic difference 
between the groups used in the study. Pathway 
enrichment was conducted at MetaboAnalyst. For ID 
conversions, a web tool-Chemical Translation Service 
(CTS) was utilized to convert the common compound 
into Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Human Metabolome Database (HMDB) 
metabolite IDs.  

Statistical analyses 
Significant differences in clinical characteristics 

were evaluated with Pearson’s Chi-square test or 
Fisher’s exact test. Pearson’s rank correlation analysis 
was conducted to calculate the correlation between 
metabolites or between species and metabolites. 
Differences were considered significant when p < 
0.05. Two-tailed Student’s t-test was performed and 
the p-value was adjusted by the Benjamini-Hochberg 
(BH) correction. The probability level for statistical 
tests was set at α = 0.05 and was adjusted by the BH 
correction to allow for a maximum 5% probability (q = 
0.05) of false positive detection. All data were 
analyzed with Graph Pad Prism 6 software 
(GraphPad software, Inc., San Diego, California, 
USA), R version 3.3.2 (R Foundation for Statistical 
Computing, Vienna, Austria) and Microsoft Excel 
(Microsoft Corporation, Seattle, WA, USA). 

Results 
Summary of clinical characteristics 

All patients and volunteers were Han Chinese 
from Shanghai area with comparable eating habits to 
exclude dietary differences. The clinicopathological 
variables (Supplementary Table 1) of the two groups 
were generally matched, suggesting that none of the 
established confounding factors influenced group 
discrimination prior to the experimental design and 
sample collection. There was a significant difference 
in positive FOBT results between the CRC and H 
groups (44% versus 6%, p < 0.001).  

Decreased bacterial diversity in fecal 
microbiota associated with CRC 

In our present microbiome investigation, a total 
number of 3087931 high-quality 16S rRNA reads were 
obtained, with a median read count of 29099.5 (range, 
17816 to 49391) per sample. Following taxonomic 
assignment, 1084 OTUs were obtained 
(Supplementary Table S2). The species accumulation 
curve (Supplementary Figure S2A) and the 
rarefaction curve (Supplementary Figure S2B) of all 
samples supported the adequacy of the sampling 
efforts. In addition, the rank abundance distribution 
curves (Supplementary Figure S2C) indicated 
decreased richness and a relative bacterial imbalance 
in the CRC group compared with the H group.  

To evaluate the differences in bacterial diversity 
between the two groups, sequences were aligned to 
estimate alpha diversity and beta diversity. There 
were statistically significant differences in the 
Shannon (3.73 ± 1.39 versus 4.35 ± 0.90, p = 0.0093), 
observed species (204.56 ± 98.32 versus 257.46 ± 64.61 
p = 0.002), and Chao1 (273.70 ± 127.98 versus 333.81 ± 
79.63, p = 0.0058) indexes, whereas the Simpson index 
(0.76 ± 0.23 versus 0.85 ± 0.09, p = 0.0758) was not 
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significantly different between the CRC and H groups 
(Figure 1A). Both the unweighted and the weighted 
PCoA plots revealed a separation of the two groups 

on the basis of the first three PCoA (Figure 1B). These 
results suggest that the diversity of gut microbiota 
could be strongly influenced by the tumor burden. 

 

 
Figure 1. Gut microbiome diversity and structure analysis. (A) Species diversity differences between the CRC and H groups were estimated by the observed species, Shannon, 
Simpson, and Chao1 indices. **p < 0.01; NS, not significant. CRC, CRC patient group; H, H volunteer group. (B) PCoA plot base of the relative abundance of OTUs (97% 
similarity level) showing bacterial structural clustering. (i) Unweighted UniFrac PCoA plots; (ii) Weighted UniFrac PCoA plots. CRC group (red dots); H group (blue dots), where 
dots represent individual samples. (C) Component proportion of bacterial phylum in each group; n = 50 for the CRC group and n = 50 for the H group.  
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Alterations in the composition of fecal 
microflora associated with CRC 

The relative proportions of dominant taxa at the 
phylum level were assessed by microbial taxon 
assignment in both groups. We observed considerable 
variability in gut microbiota across samples in each 
group (Figure 1C). Twelve phyla were identified in 
each group. Bacteroidetes was the most predominant 
phylum, accounting for 46.8% and 46.9% of the OTUs 
in the CRC and H groups, respectively. In addition, 
Proteobacteria (23.9% versus 7.2%) and Fusobacteria 
(6.6% versus 0.1%) were enriched in the CRC group 
compared to the H group, whereas Firmicutes (20.8% 
versus 43.5%) was enriched in the H group. Although 
an upregulated Firmicutes/Bacteroidetes ratio has been 
suggested as an indicator of several pathological 
conditions [16], our results suggested otherwise 
(Supplementary Figure S2D).  

To compare the differences in fecal microflora 
between the two groups, Welch’s t-test was 
performed for different classification levels. At the 
phylum level, Firmicutes (p < 0.001) and Actinobacteria 
(p = 0.00812) were significantly more abundant in the 
H group than in the CRC group; however, Fusobacteria 
(p = 0.00176), Lentisphaerae (p = 0.0313), and 
Proteobacteria (p = 0.00163) were also significantly 
more abundant in the CRC group than in the H group 
(Supplementary Figure S3A). At the genus level, a 
total of 307 genera were found to be significantly 
different between the two groups. Of these 
discriminatory taxa, Escherichia-Shigella (p < 0.001), 
Parvimonas (p = 0.0123), Fusobacterium (p = 0.0196), 
CFT112H7_norank (p = 0.0195), and Porphyromonas (p 
= 0.0329) were found to be significantly more 
abundant in the CRC group than in the H group 
(Supplementary Figure S3B). Given that the left and 
right colon have different physiological functions, we 
further stratified the analysis by tumor location in the 
CRC group but did not find any significant 
differences (all FDR > 0.05) between the proximal and 
distal colon subgroups. When we further stratified the 
analysis at the genus level by lymph node metastasis 
in the CRC group, only Peptostreptococcus (p = 0.0391) 
was found to be abundant in CRC patients with 
positive lymph node metastasis.  

Considering that this discriminant analysis did 
not distinguish the predominant taxon, LEfSe was 
used to generate a cladogram to identify the specific 
bacteria associated with CRC (Figure 2). We identified 
76 discriminatory OTUs as key discriminants. Several 
opportunistic pathogens including Gammapro-
teobacteria (Proteobacteria), Enterobacteriaceae 
(Enterobacteriales), and Fusobacteriales (Fusobacteria) 
were all significantly overrepresented (all LDA scores 

(log10) > 4) in the feces of patients in the CRC group, 
whereas Firmicutes, Clostridiales, Clostridia, 
Lachnospiraceae, Ruminococcaceae, Selenomonadales, 
Negativicutes, and Faecalibacterium were the most 
abundant microbiota in the H group (LDA scores 
(log10) > 3.6). The relative abundances of these 76 
OTUs were further analyzed by clustering analysis 
represented by a heat map (Figure 3). The H group 
was enriched with 58 OTUs, while the CRC group 
was enriched with 18 OTUs (Supplementary Table 
S3). These data suggest that the abundance of 
microbes was much less in the CRC group than in the 
H group, and these differentially abundant 
microbiota were sufficient to differentiate the 
microbiota of H volunteers and CRC patients.  

Global overview of gut metabolism in the fecal 
metabolome of the CRC and H groups 

Since the CRC patients demonstrated signature 
microbiota associated with disease, we hypothesized 
that alterations in metabolic pathways may be at least 
partially affected by gut microbiota in patients with 
CRC. Therefore, we subsequently performed 
metabolome analysis of fecal samples using a 
nontargeted GC-MS-based metabolomics approach. 
We successfully quantified 226 metabolites in both the 
H and CRC groups, of which 164 were shared 
(Supplementary Table S4). These metabolites were 
mapped onto ~40 different KEGG metabolic 
pathways including protein biosynthesis (14 
metabolites), ammonia recycling (5), and galactose 
metabolism (6) (Supplementary Figure S4A). 

CRC and H group-specific fecal metabolomes 
Analysis of the differentially accumulated and 

significantly changed metabolites in the H and CRC 
groups are shown in Supplementary Table S5. In the 
H group, the abundant metabolites were mainly 
sugars (maltose, fructose), sugar alcohols, amines 
(galactosamine) and a large set of organic and fatty 
acids (glycerol, octadecanoic acid, hexanedioic acid, 
benezenepropanoic acid, linoleic acid, and oleic acid). 
In contrast, the CRC group showed a higher 
abundance of polyamines (cadaverine, 
1,4-Butanediamine), amino acids (Pro, Glu) and urea, 
suggesting that the H group is better able to maintain 
carbohydrate metabolism and a more reductive 
environment in the gut than in the CRC group 
(Supplementary Table S6, Figure 4A).  

More importantly, we found several metabolites 
that were uniquely present in either the CRC or H 
groups. For instance, 17 metabolites that potentially 
participate in Asp metabolism, ammonia recycling, 
protein biosynthesis, and Trp metabolism, which 
supports the environment needed for tumorigenesis 
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(Figure 4B), were only quantified in the CRC group, 
i.e., Lys, heptanedioic acid (a precursor of Lys), 
norvaline, and several amino acid and organic acid 
derivatives (Supplementary Table S7). We also found 
42 metabolites (excluding 20 unknown metabolites) 

that were not detectable in the CRC group at all. These 
metabolites are mostly involved in Asp metabolism, 
Ala metabolism, protein biosynthesis, etc. (Figure 4C), 
suggesting that these metabolic pathways are less 
active in CRC patients.  

 
 

 
Figure 2. Linear discriminant analysis (LDA) integrated with effect size (LEfSe). (A) Cladogram indicating the phylogenetic distribution of microbiota correlated with the H or 
CRC groups. (B) The differences in abundance between the H and CRC groups. 
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Figure 3. Heat map of the relative abundances of the 76 OTUs (97% similarity level) that differentiate the H and CRC groups. OTUs are shown from lower abundance (in blue) 
to higher abundance (in red) for the z-transformed data. Data were analyzed by the Wilcoxon rank-sum test (Mann–Whitney U test). All 76 OTUs were assigned to families and 
genera.  

 

Clustering, correlation, and multivariate 
analysis reveal discriminatory metabolites 
between the H and CRC groups 

We further performed HCA analysis on the 
metabolite abundances in the H and CRC groups. The 
results displayed the following three large clusters: (i) 
sugars and fatty acids, which showed higher 
abundances in the H group than in the CRC group, 

and (ii) amino acids and (iii) polyamines, drugs and 
other metabolites, which showed higher abundances 
in the CRC group than in the H group (Figure 5A). 
Consistent with these findings, a metabolite- 
metabolite Pearson correlation analysis also showed a 
significant correlation between the abovementioned 
metabolites and the CRC phenotype (Supplementary 
Figure 4B, Supplementary Table S8). Specifically, 
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higher abundances of sugars and sugar alcohols, such 
as fructose, iditol, sedoheptulose, maltose, glycerol, 
galactosamine, and fatty acids, such as 9, 
12-octadecanoic acid, oleic acid, hexanedioic acid, and 
pentanedioic acid, were observed in the H group. 
Amino acids, such as Phe, Pro, Ala, Lys, 5-oxo-Pro, 
Val, Leu, and Orn, were also overrepresented in the 
CRC group. PCA clearly showed differences between 
the H and CRC groups based on the first two 
principal components, PC1 (6%) and PC2 (4%), 
suggesting CRC group-specific metabolomic 

abundance and signatures (Figure 5B). These claims 
were further supported by OPLS-DA analysis, where 
several specific metabolites such as cadaverine, Pro, 
Ala, 1,4-butanedioic acid, urea, Val, Lys, Leu, glycerol, 
Ile, 5-oxo-Pro, benzenepropanoic acid (i.e., 
hydrocinnamic acid), Phe, sedoheptulose and Tyr, 
were able to differentiate CRC patients from H 
volunteers (Figure 5C). Taken together, our data 
clearly and robustly showed that CRC patients 
presented a specific fecal metabolome. 

 

 
Figure 4. Fecal metabolomics for quantification of metabolites in both the H and CRC groups. (A) Volcano plot showing the differentially accumulated [log2 (fold-change) on 
X-axis] and significantly changed [-log10 (p) on Y-axis] metabolites in the H and CRC groups. (B) Pathway enrichment and statistical significance of the 17 metabolites that were 
only present in CRC patients. (C) Pathway enrichment and statistical significance of the 42 metabolites unique to the H group. 
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Figure 5. Important discriminatory metabolites identified by clustering, correlation and multivariate analysis between the H and CRC groups. (A) Hierarchical clustering analysis 
(HCA) for the H and CRC group metabolites based on their z-normalized abundances. The three large clusters from top to bottom are (i) sugars and fatty acids, (ii) amino acids, 
and (iii) polyamines, drugs and others. (B) OPLS-DA analysis displaying the grouped discrimination of the H and CRC groups by the first two PCs. (C) Variable Importance in 
Projection (VIP) scores of the important discriminatory metabolites obtained from the OPLS-DA models.  

 

Identification of CRC-specific metabolites 
Based on the above fecal microbiome and 

metabolomics data, we performed Pearson’s 
correlation-based clustering analysis to identify 
microbe-associated metabolites in CRC (Figure 6A). 
Interestingly, we observed that the 

metabolite-microbe correlation was stronger in CRC 
patients (Supplementary Table S9) than in H 
volunteers (Supplementary Table S10), suggesting 
that the aberrantly enriched metabolites in CRC are 
highly attributed to an imbalance in gut microflora or 
to interactions thereof. Notably, these data only 
suggest a potential correlation between gut microbes 
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and metabolites without considering the different 
bacterial abundances between the two groups or the 
dietary habits of the subjects. We further explored the 
76-OTUs-associated metabolites (Supplementary 
Table S11). The results revealed positive correlations 
for several microbe-metabolite pairs in the CRC group 
(Figure 6B). Furthermore, several unknown 

metabolites that could not be identified by the 
currently available EI spectral libraries were also 
found to be significantly associated with several 
OTUs, indicating their potential roles as future targets 
for biomarker discovery in CRC patients, pending 
confident annotation. 

 

 
Figure 6. Integrated correlation-based network analysis of microbes and metabolites. Pearson’s correlation analysis from the entire network in the CRC group and H group. (A) 
Firmicutes (Bacillus, Solibacillus and Lactococcus) were grouped with tetradecanoic acid (myristic acid) and methyl-butanedioic acid (methylsuccinic acid) in the CRC group. In the 
H group, Firmicutes (Bacillus, Solibacillus and Lactococcus) were grouped with sugars (d-galactose, sedoheptulose), sugar alcohols, and organic acids, such as nonanoic acid, benzoic 
acid and others (hexane, 1-acetyl-2-methyl-azetidine). (B) Integrated correlation-based network analysis (Pearson’s correlation) of microbes and metabolites. (C) A four-way 
Venn diagram displaying the coefficient of variation (CV) of four groups of metabolites in the CRC (< 0.25), CRC (> 0.75), H (< 0.25), and H (> 0.75) groups. CVs were obtained 
ranging from 0-1, in which 0-0.25 was classified as the least variable, and 0.75-1 was classified as highly variable. (D) Biomarker analysis for metabolite abundance showing the high 
AUCs for cadaverine and putrescine. 
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When we calculated the coefficient of variation 
(CV) of the abundances of the fecal metabolites, we 
obtained CVs ranging from 0-1, where we classified 
0-0.25 as least variable (less noisy and serve as good 
biomarkers) and 0.75-1 CV as highly variable 
metabolites (Figure 6C). We observed that 
metabolites showing lowest CV (and least variability) 
in CRC samples were cholan-24-oic acid, Val, 
aminomalonic acid, 3-pyridinecarboxylic acid, and 
Ala, whereas those showing higher CV (and higher 
variability) were unknowns (five of them), glycerol, 
and phosphoric acid. For the H samples we observed 
that, metabolites showing lowest CV were 
arachidonic acid, Lys, heptadecanoic acid, butanoic 
acid, pentanedecanoic acid, propenoic acid, 
hexanedioic acid, Orn, propanoic acid, octadecanoic 
acid, benzoic acid, Phe among others. On the other 
hand, the higher CV metabolites belonged to the 
unknowns (six of them), Asp, sedoheptulose, valeric 
acid, and ribose. It is also important to note that, Glu 
is highly variable in both CRC and H cases, while 
norLeu, 5-oxo-Pro, Trp, hydroxylamine are least 
variable in the fecal metabolomes and hence, may not 
serve as good biomarkers for defining the healthy and 
disease status. 

According to this analysis, we focused on 
polyamines as potential biomarkers, as these were the 
abundant metabolites identified in the CRC group. A 
receiver operating characteristic (ROC) curve analysis 
indicated that cadaverine (area under the curve 
(AUC), 0.764; p = 5.4512E-5) and putrescine (AUC, 
0.672; p = 0.015449) were significantly associated with 
CRC samples (Figure 6D). Thus, the diagnostic value 
of polyamines was equivalent to or better than that of 
FOBT (AUC, 0.681; p = 0.002), which is a conventional 
method for CRC screening. 

Discussion 
Akin to an anaerobic bioreactor, the colorectum 

harbors an enormous diversity of microbiota, more 
than a trillion cells, which are capable of producing an 
extraordinarily wide range of small molecules (i.e., 
metabolites) that influence many vital pathways 
associated with energy homeostasis, nutritional 
intake, and immune balance [17]. Additionally, 
accumulating evidence suggests that the microbiome 
and its metabolome contribute to tumorigenesis in 
CRC [18]. Therefore, using the gut microbiome and its 
metabolites as screening tools for early detection of 
carcinoma is a promising field [19]. Omics approaches 
show great promise for the development of 
biomarkers as they generate large scale data sets 
containing thousands of variables in a 
high-throughput manner that may be predictive and 
thus offer a lucrative approach when presented with a 

biological system with extremely high complexity, 
i.e., CRC disease diagnosis from fecal matter [19]. 
Compared with omics approaches using biofluids, 
such as serum and urine, the fecal metabolome 
reflects direct interactions among genetic, 
environmental, and dietary factors [20]. Thus, 
metabolomics research efforts involving fecal samples 
may be more effective at identifying biomarkers. 
Given that > 80% of fecal metabolites overlap with 
mucosal metabolites, only < 50% of CRC-specific 
metabolites can be found in feces, which poses a 
challenge in correlating CRC with fecal metabolite 
abundance [21]. Thus, the global nontargeted 
metabolomics analysis applied herein on fecal sample 
provides insights into the association between 
bacterial populations from a microbiome sequencing 
approach and may allow identification of 
CRC-derived metabolic biomarkers.  

Following an untargeted approach, our study 
identified a larger number of decreasing metabolites 
(sugars and long chain fatty acids) than increasing 
ones (amino acids and polyamines) in the CRC group. 
Previous studies have also documented increases in 
the amino acids Pro and Glu and decreases in 
glycerol, linoleic, and oleic acids in CRC patients [22, 
23]. The increased concentration of Glu independent 
of Gln in stool samples from CRC patients indicates 
that cancer cells may display hyperactivity of 
glutaminase and result in conversion of Gln to Glu 
[24]. Interestingly, polyamines, such as putrescine and 
cadaverine, which showed a higher abundance in the 
CRC group than in the H group, have been previously 
implicated in cancer [25]. In addition, we found 
mannitol exclusively in the H subjects, which was also 
recently found in the colonic mucosa adjacent to CRC 
[21]. Further, we detected greater amounts of poly- 
and monounsaturated fatty acids and deoxycholic 
acid in the H group, which are known to be present in 
fecal samples from healthy adults [26, 27]. For 
instance, acetate, an important short-chain fatty acid 
(SCFA) for keeping gut health and a precursor for 
endogenous cholesterol production, was also 
increased in the H group. Hydrocinnamic acid, which 
regulates the breakdown of branched-chain amino 
acids, was only detected in the stool metabolomes of 
healthy adults, suggesting its protective role in 
tumorigenesis in the gut [28]. In general, our global 
nontargeted metabolomics efforts in fecal samples 
from CRC patients and H individuals showed unique 
and differential metabolic signatures. 

Low gut bacterial richness is a common hallmark 
of chronic disease [29]. Some genera (Roseburia and 
Bifidobacterium) are associated with protective effects, 
while others (Streptococcus and Escherichia/Shigella) 
are detrimental to the gut mucosa [30]. It has 
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generally been observed in the diverse structure of 
stool microbiota between the Chinese and Americans 
at the species level [31]. In our study based on a Han 
Chinese population, we observed strongly correlated 
Lachnospiraceae OTUs in the H cohort, which was in 
accordance with the findings of previous reports in 
which several chronic diseases (including liver 
cirrhosis and IBD) were independently associated 
with lower levels of Lachnospiraceae [32]. However, in 
CRC patients, a 3-fold increase in Proteobacteria, a 
60-fold increase in Fusobacteria and a 0.5-fold decrease 
in Firmicutes were observed compared with the H 
group; this demonstrates a staggering shift in the 
complex yet consistent dynamics of the human fecal 
microbiome. Indeed, a previous study has shown that 
genera such as Faecalibacterium, Bifidobacterium, and 
Blautia were reduced while Fusobacterium and 
Porphyromonas were increased in CRC tissues, which is a 
trend that is consistent with our findings.[33]. Therefore, 
the tumor-promoting effects of the microbiome in 
patients with CRC may be probably caused by holistic 
dysbiosis, rather than by a specific pathogen [34].  

The species richness in the microbial flora of the 
H subjects was strongly associated with the observed 
metabolic diversity. For instance, as observed in the 
LEfSe analysis, Selenomonadales was one of the most 
abundant genera in the H group and was correlated 
very well with enriched selenoamino acid metabolism 
for metabolites that were detected only in the H 
group. Furthermore, Firmicutes (Lactobacillus) was 
enriched in the H group, which aligns well with the 
increased lactose in this group. The microbiome also 
helps in converting complex carbohydrates into 
reabsorbable substrates, such as simple sugars [35]. 
The higher diversity and amounts of simple sugars in 
the H group are indicative of a metabolically healthy 
status of the gut microbiome. In patients with CRC, 
we clearly observed reduced microbial and metabolic 
diversity. We observed increases in amino acids in the 
CRC group, indicating their association with disease 
phenotype. In summary, the use of an integrative 
analysis has the potential to be applied to 
personalized and predictive medicine. 

Nonetheless, it is extremely challenging to 
evaluate fecal metabolites, a majority of which can be 
contributed by diet (and microbiota therein) and 
lifestyle, and to differentiate host-derived metabolites 
from those of the microbial metabolites without 
isotope-labeled diet studies, which are difficult to 
perform in human subjects. Moreover, without a 
controlled diet and for the simplicity of the study 
design, we could only associate metabolites with 
disease phenotypes at one timepoint in both groups. 
Additionally, the simple aqueous-methanolic sample 
extraction technique used failed to capture most of the 

nonpolar fatty acids, i.e., SCFAs, unconjugated 
secondary bile acids and other specialized metabolites 
and volatiles that are typically released by the gut 
microbiome and the host’s gut cellular landscape [36]. 
This study has some limitations but opens new 
avenues to explore the gut microbiome-metabolome 
associations for biomarker discovery.  

Conclusions 
We demonstrated the capabilities of a 

nontargeted GC-MS-based metabolomics approach to 
successfully discriminate between H and CRC 
volunteers and associated different metabolites with 
health status or disease phenotype. Furthermore, fecal 
microbiome data displayed the signature microbiota 
representing the H and CRC patient groups, i.e., 
enrichment of Proteobacteria, Fusobacteria in CRC and 
Firmicutes in H groups as well as an uneven and lesser 
microbial diversity in CRC. Given that all the patients 
were from a single ethnicity, i.e., Han Chinese, 
identifying specific biomarkers for CRC prediction in 
a global population may not be straightforward. 
However, polyamines (cadaverine, putrescine) in 
CRC are potential biomarkers for discriminating CRC 
versus H status, pending further validation studies 
across georacial landscapes in larger cohorts 
performed over a longer time. This integrated analysis 
of the putative microbial metabolism based on the 
identified microbes and fecal metabolites provides 
more functional insights than either of the single 
datasets. Nonetheless, individual metabolites, i.e., 
polyamines, and OTU differences among individuals 
are helpful in differentiating between CRC and H 
status.  
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