Genome-wide interaction target profiling reveals a novel *Peblr20*-eRNA activation pathway to control stem cell pluripotency

Cong Wang^{1,2}, Lin Jia^{1,2}, Yichen Wang^{1,2}, Zhonghua Du^{1,2}, Lei Zhou¹, Xue Wen¹,

Hui Li¹, Shilin Zhang^{1,2}, Huiling Chen^{2,3}, Naifei Chen^{1,2}, Jingcheng Chen^{1,2}, Yanbo

Zhu^{1,2}, Yuanyuan Nie¹, Ilkay Celic², Sujun Gao^{1†}, Songling Zhang^{1†}, Andrew R.

Hoffman^2*†, Wei Li
1*†, Ji-Fan Hu^{1,2}*†, Jiuwei Cui^{1†}*

¹ Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun,
Jilin 130061, P.R. China
² Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto,
CA 94304, USA

³ Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China

Supplementary materials:

Figure S1. The genome-wide target analysis of Peblr20 by RAT-Seq.

- A. Profiling pluripotent lncRNAs by integrating RNA-Seq and RAT-Seq. The conventional RNA-Seq approach identifies thousands of lncRNAs that are differentially expressed during pluripotent reprogramming. A modified RAT-seq approach was performed to map the genome wide interacting target genes for the selected lncRNA. It was hypothesized that as a pluripotent lncRNA, it should not only be activated in reprogramming, but also be able to blind to and thereby regulate multiple gene targets of core stem cell factors. Using this strategy, we identified Peblr20 as a pluripotent lncRNA, because it is activated in iPSCs and binds to multiple stemness gene targets.
- B. Genetic features of Peblr20 RAT sequencing. More than 50% of Peblr20 binding sites were genomic intergenic regions and 1.78% was promoter elements.
- C. Interaction of Peblr20 at the Pou5F1 locus. The RAT-seq data were uploaded onto UCSC genome browser by CYVERSE. Control: the RAT library was constructed with random oligo primers. Peblr20: the RAT library was constructed using Peblr20 complementary primers; 5'-Enh: 5'-enhancer; E1-E5: Pou5F1 exons 1-5; 3'-Enh: 3'-enhancer. Note the enriched binding of Peblr20 lncRNA at Pou5F1 3' enhancer, 5' enhancer, and exon5.
- D. Interaction of Peblr20 at the Sox2 locus. Peblr20 binds to the Sox2 5'-enhancer. area.
- E. Binding of Peblr20 to the CpG islands of the KLF4 gene.

Figure S2. Peblr20 lncRNA gene structure.

- A. The 5'- and 3- RACE results. The Peblr20 5'- and 3'-ends were amplified by nested PCR, cloned into pJet vector, and sequenced. The 5'-end was different from 1700097N02Rik lncRNA (shown in red). GSP: gene specific primer.
- B. Sequences of 1700097N02Rik and Peblr20. Peblr20 lncRNA is an alternative splicing variant of 1700097N02Rik, but with only two exons (746bp).

Figure S3. Differential expression of Peblr20 RAT-seq genes.

- A. Activation of lncRNA Peblr20 in iPSCs.
- B. Differential expression of Peblr20 RAT-seq target gene Pou5F1 between iPSCs and fibroblasts.
- C. Differential expression of Peblr20 RAT-seq target gene Sox2 between iPSCs and fibroblasts.
- D. Differential expression of Peblr20 RAT-seq target gene Tfcp2I1 between iPSCs and fibroblasts.
- E. Differential expression of Peblr20 RAT-seq target gene Etl4 between iPSCs and fibroblasts.
- F. Differential expression of Peblr20 RAT-seq target gene Tgm1 between iPSCs and fibroblasts.

Figure S4. Peblr20 overexpression and knockdown.

- A. The Peblr20 shRNA plasmid. Peblr20 was knocked down by two Peblr20 shRNAs under the control of the H1 and U6 promoters, respectively, in a lentiviral pGreen vector.
- B. Single colony selected after Peblr20 knocked down in iPSCs. After Peblr20 shRNA lentiviral transfection, iPSCs were selected by puromycin. Single colonies emitting green signal were picked up and collected for RT- Q-PCR.
- C. The Peblr20 overexpression plasmid. Peblr20 was amplified by PCR according to 5'- and 3'-RACE and was cloned into lentiviral pCMV-DsRed/Puro vector. DsRed was used as the tracking marker.
- D. Transfection of lenti pCMV-DsRed/Puro-Peblr20 in fibroblasts. fibroblasts were transfected by lenti DsRed-Peblr20 plasmid and selected by puromycin for 12 days. Note that nearly 90% of Fib were successfully transfected and emitted red signal.

Figure S5. Peblr20 induces DNA demethylation in the Pou5F1 promoter.

- A. CpG sites in the Pou5F1 promoter. The status of DNA methylation at CpG3 site can be quantitated by restriction enzyme HpyCH4IV to separate the methylated and unmethylated DNAs. The restriction enzyme will not cut the unmethylated ACGT when the treatment of sodium bisulfite converts it into ATGT.
- B. The methylation status of CpG3 (site 6). CpG3 was amplified by specificPCR primers, digested by HpyCH4IV, and quantitated by density scanning.Band A: unmethylated products that were not cut by the enzyme; Bands Band C: methylated products that were cut into two bands. Gray values (GV)

4

of these gel bands were measured by ImageJ and used for quantitation of methylation level(right). Methylation level=GV(B+C)/GV(A+B+C). Measurements were performed three times and statistically significant differences by Student's t test are indicated by *** indicating P < 0.001.

Table S1. Oligonucleotide primers used for PCR					
ID	Oligo Name	Oligo Sequence	Prod uct Size		
Peblr20	1H4838		104bp		
	114030				
R_Actin	1880		135bp		
p-Actin	1001		13300		
			170bp		
Pousri			17 app		
00		GGCTGAACACCTTTCCAAAGAGA	1006-		
50X2	JH118		193bp		
	JH119		450		
Nanog	JH120		150bp		
	JH121	TGCTGGGATACTCCACTGGTGCT			
U6	JH4061	GTGCTCGCTTCGGCAGCACATATA	103bp		
	JH4062	ATATGGAACGCTTCACGAATTTGCG			
RAT					
Peblr20 specific primers	JH4839	ACTCCACAACCCCGCCAGCT			
	JH4841	GATGATTCTACCCAGGATGCT			
Random primer	JH5849	ATGGACTGATGATCTTATGC			
	JH5850	TACATAGTAGATCAGATACT			
Pou5F1					
A	JH4348	CTGAGTCCTCTGCAAGATGC	137bp		
	JH4349		· ·		
В	JH4350	CAGATGAGCCAACAGGTCTG	125bp		
	JH4351	CAGCAACTTTGTCTGAAGTCC			
С	JH4352	AGTTGTCCCCAGGGGAGCCAT	140bp		
-	JH4353	AAGGGGCCTGGGAGGGACTG	P		
D	JH5932	GGTTGGAGCCCAACCTATAG			
	JH5933	GAAGGCGGCTGCCAGACAAT			
E	JH5934	TGCTGCTGAATGTCAGCCCT	159bp		
	JH5935				
F	JH4407	GTGGAGCAGGCGAAACTTGC	123bn		
-	JH4408	ATTCCATCGGCAGCCTCAGC	.2000		
-		1	L		

Table S1. Oligonucleotide primers

Sox2				
Dinaing A	IH2036	TGCATTTCCCTGTCGTCATCTG		
Λ	JH5037		1510p	
D	JII3937 JII5029			
В	JI13938		1330p	
C	JHJ5054		220hm	
C	JH5055		2290p	
	JH2022	GIGCGCGTAGCIGICCATGC		
3'- and 5'-RACE				
3' GSP	JH5292	GATGGGTCCAGTCCTGTATGA		
3' nested	JH5293	ACCTGTGAATGTGCCATCCAC		
GSP				
5' GSP	JH5291	GAGACCTGTCAATCCACGTC		
5' nested GSP	JH4839	ACTCCACAACCCCGCCAGCT		
I outi				
Lenti RsRed-Peblr 20				
Peblr20 F	JH5416	TCGGGCGCCAGATATCGAGAGTTCAAAGG AAGTTGGGCGA	852bp	
Peblr20 R	JH5417	AGAATCGAAGAATTCCAGCATGGAAGCAG TTTATTTAGC		
shDN A				
shRNA1		GCCGTTGAGAGTTCAAAGGAAGTTG		
shRNA2				
shCT				
Enhancer RNA				
5' eRNA1	JH4662	CAGCCCCTAGCCTTGGACCT	133bp	
	JH4663	ACACGTCCCCAGCCAGAGATG		
5' eRNA2	JH4350	CAGATGAGCCAACAGGTCTG	124bp	
	JH4351	CAGCAACTTTGTCTGAAGTCC		
3' eRNA1	JH5932	GGTTGGAGCCCAACCTATAG	112bp	
	JH5933	GAAGGCGGCTGCCAGACAAT		
3' eRNA2	JH5934	TGCTGCTGAATGTCAGCCCT	159bp	
	JH5935	CACCATGGAGGGAACCAACT		
DNA methvlation				
CpG1	JH4878	TTTAGGGAGGTTGAGAGTTTTGGGT	242bp	

	JH4879	CATACTCACCTCCCAATTTCTATAC	
CpG2	JH5896	TATTTTAGGGAAGTTTAGGGTAGGT	190bp
	JH5897	TCCCCAACTCTCCACCTCTCCTCA	
CpG3	JH4880	GGATAGGTCGAGAGGGTGTAGTGTT	285bp
	JH4881	CACCCTCTAACCTTAACCTCTAAC	
CpG4	JH5992	GGGATAGTTGGGGGTTGGAGTTTAAT	160bp
	JH5993	ATAAACCCACCAAAACTCCCA	
ChIP-qPCR			
5' distal JH4350		CAGATGAGCCAACAGGTCTG	125bp
enhancer	XX 40 5 1		
	JH4351	CAGCAACTITGTCTGAAGTCC	
5'proximal JH609		GTTCAGGGTAGGCTCTCTGCA	160bp
ennancei	1116006		
21 1	JH0090		1.1.01
3' enhancer	JH5932	GGIIGGAGCCCAACCIAIAG	112bp
	JH5933	GAAGGCGGCTGCCAGACAAT	
KIP-qPCK			
Peblr20_A	JH5437	TCCTTCAACTCCGTCCCCACA	140bp
	JH5291	GAGACCTGTCAATCCACGTC	
Peblr20_B	JH6097	GGCACTTCCCAGGTGGTAGC	120bp
	JH6098	GGCACTTCCCAGGTGGTAGC	
Peblr20_C	JH4840	GCTGGCTCCTGCAAGATGCT	119bp
	JH4841	GATGATTCTACCCAGGATGCTC	
Peblr20_D	JH5293	GCTGGCTCCTGCAAGATGCT	162bp
	JH5417	GATGATTCTACCCAGGATGCTC	
Positive control	forward	GGGAGATACCATGATCACGAAGGT	110bp
	reverse	CCACAAATTATGCAGTCGAGTTTCCC	

A Screening of pluripotent IncRNAs

Figure S1. The genome-wide target analysis of Peblr20 by RAT-Seq

A 5'-RACE and 3'-RACE

B Sequences of 1700097N02Rik and Peblr20

1700097N02Rik

Peblr20

Figure S2. Peblr20 IncRNA gene structure

B Pou5F1

Figure S3. Differential expression of Peblr20 RAT-seq target genes

A Peblr20 shRNA vector

B Peblr20 knockdown iPSCs

C Peblr20 overexpression vector

				insert
Lenti DsRed AmpF	DsRed-Express	PuroR	CMV promoter	Peblr20 5'LTR
-Pedir20				

D Transfection efficiency in Fib

Figure S4. Peblr20 overexpression and knockdown

A Restriction enzyme cutting sites of CpG islands

Figure S5. Peblr20 induces DNA demethylation in the Pou5F1 promoter