Legends to supplementary figures

Figure S1. 786-O and A498 cells show different sensitivities to ERLO. Quantification of immuno-blots (three independent experiments), the representative images was shown on Fig. 1D. 786-O or A498 cells were treated with increasing concentrations of ERLO and were tested for the presence of total (EGFR/HSP90), the active form of the EGF receptor (pEGFR/EGFR), the active form of AKT (pAKT/HSP90) and the active form of ERK (pERK/ERK). The statistical significance for the different ERLO concentrations for a specific cell line is shown by * (* p < 0.05; ** p < 0.01). The statistical significance for the comparison of the two cell lines is shown by # (# p < 0.05; ## p < 0.01).

Figure S2. BVZ/IFN/ERLO on the vascular/lymphatic networks. The tumor vascular/lymphatic networks in each experimental group (control, B+I, E, B+I+E) were evaluated by CD31 immuno-staining and coverage of the vessels using an anti- \langle SMA antibody as presented on Fig. 2. Vascular/lymphatic density (vessels/mm²) and the number of vessels covered with \langle SMA labelled cells were determined using the Image J program. Quantification (means ± SD) resulted from analysis of four independent tumors and considered at least ten fields for each tumour. Statistically significant differences are indicated: * p < 0.05; ** p < 0.01; *** p < 0.001.

Figure S3. Differential inhibition of proliferation-mediating signaling pathways by ERLO in cells derived from experimental tumors. (A) Representative 786-O cells from the four experimental groups were tested for the presence of the total and active form of the EGF receptor (EGFR/pEGFR, see Fig. 3) and active forms of ERK (pERK) and AKT (pAKT). HSP90 is shown as a loading control. Quantification of the relative level of EGFR (EGFR/HSP90), pEGFR (pEGFR/EGFR), pERK (pERK/HSP90) and pAKT (pAKT/HSP90) is shown (Fig. 3). The reference values (100%) correspond to the levels of the different parameters in cells of tumors derived from untreated mice in the absence of ERLO. (**B**) Equivalent experiments as described in (**A**) for the A498 model.

Figure S4. Parental 786-O cells proliferated faster than A498 parental cells. The proliferative capacity of parental 786-O and A498 cells was tested using the MTT assay. The results are presented as the mean percent increase \pm s.d. Statistical differences are indicated; ** p < 0.01; *** p < 0.001.

Figure S5. RCC4, 786-O and A498 cells expressed different EGFR and EGFR-AS1 levels. (A) EGFR mRNA levels were evaluated by qPCR in RCC4, 786-O and A498 cells; **, p<0.01. (B) Representative immuno-blots showing the EGFR protein level in the different RCC cell lines after treatment in the absence or presence of increasing concentrations of ERLO. HSP90 is shown as a loading control. (C) Quantification in three independent experiments for EGFR levels in the different cell lines and in response to ERLO. ** p < 0.01; *** p < 0.001. (D) EGFR-AS1 mRNA levels were evaluated by qPCR in RCC4, 786-O and A498 cells; ***, p<0.001.

Figure S6. EGFR levels are correlated to RCC aggressiveness depending on the metastatic status. (**A**) Graph showing relative levels of EGFR transcript in RCC tumors of different stages versus normal tissue measured by RNA-seq data available from TCGA. p values are indicated. (**B**) The Kaplan–Meier analysis of overall survival (OS) of patients with M0 RCC from the TCGA data base. OS was calculated from patient subgroups with an optimized cut-off for EGFR levels. (**C**) The Kaplan–Meier analysis of overall survival of patients with M1 RCC from the TCGA data base. Overall survival was calculated from patient subgroups with an optimized cut-off for EGFR levels. (**D**) The Kaplan–Meier analysis of disease-free survival (DFS) of patients with M0 RCC from the TCGA data base. DFS was calculated from patient subgroups with an optimized cut-off for EGFR levels. (**E**) The Kaplan–Meier analysis of progression-free survival (PFS) of patients with M1 RCC from the TCGA data base. PFS was calculated from patient subgroups with an optimized cut-off for EGFR levels.

Figure S7. EGFR-AS1 levels are correlated to RCC aggressiveness depending on the metastatic status. (**A**) Graph showing relative levels of EGFR-AS1 (1) transcript in RCC tumors of different stages versus normal tissue measured by RNA-seq data available from TCGA. p values are indicated. (**B**) The Kaplan–Meier analysis of overall survival (OS) of patients with M0 RCC from the TCGA data base. OS was calculated from patient subgroups with an optimized cut-off for EGFR-AS1 levels. (**C**) The Kaplan–Meier analysis of OS of patients with M1 RCC from the TCGA data base. OS was calculated from patient subgroups with an optimized cut-off for EGFR-AS1 levels. (**D**) The Kaplan–Meier analysis of diseasefree survival (DFS) of patients with M0 RCC from the TCGA data base. DFS was calculated from patient subgroups with an optimized cut-off for EGFR-AS1 levels. (**E**) The Kaplan–Meier analysis of progression-free survival (PFS) of patients with M1 RCC from the TCGA data base. PFS was calculated from patient subgroups with an optimized cut-off for EGFR-AS1 levels.

Reference

 Tan DSW, Chong FT, Leong HS, Toh SY, Lau DP, Kwang XL, *et al.* Long noncoding RNA EGFR-AS1 mediates epidermal growth factor receptor addiction and modulates treatment response in squamous cell carcinoma. Nat Med **2017**;23:1167-75

	FORWARD	REVERSE	
Housekeeping genes			
36B4	CAGATTGGCTACCCAACTGTT	GGCCAGGACTCGTTTGTACC	
m-36B4	AGATTCGGGATATGCTGTTGGC	TCGGGTCCTAGACCAGTGTTC	
GAPDH	TGC ACC ACC AAC TGC TTA GC	GGC ATG GAC TGT GGTCAT GAG	
Pro/Anti-angiogenesis genes			
m-CD31	ACGCTGGTGCTCTATGCAAG	TCAGTTGCTGCCCATTCATCA	
m-NG2	ACTAACCCATGCACTACATCAAG	ACTITTCCAGACAGAGAGCCTT	
m-αSMA	GTC CCA GAC ATC AGG GAG TAA	TCG GAT ACT TCA GCG TCA GGA	
IL6	CCTGAACCTTCCAAAGATGGC	TTCACCAGGCAAGTCTCCTCA	
CXCL5	AGCTGCGTTGCGTTTGTTTAC	TGGCGAACACTTGCAGATTAC	
CXCL4	AGCCACGCTGAAGAATGGAA	CACACACGTAGGCAGCTAGT	
CXCL10	GTGGCATTCAAGGAGTACCTC	TGATGGCCTTCGATTCTGGATT	
Lymphangiogenesis genes			
mLYVE	CAG CACACTAGCCTGGTGTTA	CGCCCATGATTCTGCATGTAGA	
m-VEGF-C	CTCTGTGGGACCACATGGTAA	TCCTCTCCCGCAGTAATCCA	
Proliferation genes			
PTPRk	AATGCTCCTCCTCAGCTTCTTGGT	AGGACCATCGCCATTGATCGAGTT	
EGFR	ATGCGACCCTCCGGGACGGC	CAAACGGTCACCCC TTTCTTTCC	
EGF	TGTCCACGCAATGTGTCTGAA	CATTATCGGGTGAGGAACAACC	
m-EGFR	GCCATCTGGGCCAAAGATACC	GTCTTCGCATGAATAGGCCAAT	
m-EGF	AGCATCTCTCGGATTGACCCA	CCTGTCCCGTTAAGGAAAACTCT	
CSF1	TGGCGAGCAGGAGTATCAC	AGGTCTCCATCTGACTGTCAAT	
m-CSF1	ATGAGCAGGAGTATTGCCAAGG	TCCATTCCCAATCATGTGGCTA	
m-CSF1R	TGTCATCGAGCCTAGTGGC	CGGGAGATTCAGGGTCCAAG	
Immune tolerance genes			
PDL1	TGGCATTTGCTGAACGCATTT	TGCAGCCAGGTCTAATTGTTTT	
Macrophage M1 genes			
miNOS	TCACCTTCGAGGGCAGCCGA	TCCGTGGCAAAGCGAGCCAG	
mIL6	ATCCAGTTGCCTTCTTGGGACTGA	TTGGATGGTCTTGGTCCTTAGCCA	
Macrophage M2 genes			
mARG1	GATTATCGGAGCGCCTTTCT	CCACACTGACTCTTCCATTCTT	
mCD206	CTGCAGATGGGTGGGTTATT	GGCATTGATGCTGCTGTTATG	

Supplementary Table S1. List of oligo-nucleotides used in qPCR experiments

	ERLO (µM)	EGFR/HSP90	pEGFR/EGFR	pAKT/HSP90	pERK/ERK
786-0	0	100	100	100	100
	1	120	17 **	77 *	30 **
	10	140	1 **	53 *	30 **
A498	0	247 ##	1 #	14 #	279 ##
	1	184	5	23	198 *
	10	240	1	23	151 *

Supplementary Figure S1: Grépin et al

Α

786-0	Control	B + I	E	B + I + E
CD31	10	6.6	6 (*)	4.75 (**)
CD31 + αSMA	0.75	3 (***)	2.25 (***)	1.25 (***)
LYVE1	1.2	4 (***)	2.3 (**)	1.6 (*)

Β

A498	Control	B+I	E	B + I + E
CD31	24	25	18.8	15.6 (**)
CD31 + αSMA	9.4	18.8 (***)	14.4 (***)	8.2 (*)
LYVE1	4.7	7.5 (**)	3.5 (***)	3.3 (***)

Supplementary Figure S2: Grépin et al

Supplementary Figure S3: Grépin et al

Supplementary Figure S4: Grépin et al

Supplementary Figure S5: Grépin et al

Supplementary Figure S6: Grépin et al

Supplementary Figure S7: Grépin et al