1	Table S1.	Primary	antibodies	for	WB
---	-----------	---------	------------	-----	----

Antibody	Concentration	Specificity	Company
PLAGL2	1:1000	Rabbit polyclonal	Abcam
E-cadherin	1:1000	Mouse monoclonal	Proteintech
Vimentin	1:1000	Mouse monoclonal	Proteintech
N-cadherin	1:1000	Rabbit monoclonal	Proteintech
P27kip1	1:1000	Mouse monoclonal	Cell Signaling Technology
Cyclin-E	1:1000	Rabbit monoclonal	Cell Signaling Technology
His	1:2000	Mouse monoclonal	Proteintech
GAPDH	1:2000	Rabbit monoclonal	Proteintech
Flag	1:2000	Mouse monoclonal	Proteintech
HA	1:2000	Mouse monoclonal	Proteintech
CDK4	1:1000	Rabbit monoclonal	Proteintech
Cyclin-D1	1:1000	Mouse monoclonal	Proteintech
Snail1	1:1000	Rabbit polyclonal	Proteintech
USP37	1:1000	Rabbit polyclonal	Proteintech
MYC	1:1000	Mouse monoclonal	Proteintech
GSK-3β	1:1000	Rabbit monoclonal	Cell Signaling Technology
Ub	1:1000	Rabbit Polyclonal	Proteintech
USP38	1:1000	Rabbit Polyclonal	Proteintech
DUSP18	1:1000	Mouse Polyclonal	Abcom
MMP9	1:1000	Rabbit Polyclonal	Proteintech

Table S2. Sequence of primers for Quantitative reverse transcription-PCR

20			
	Gene	Forward primer (5'3')	Reverse primer (5'3')
	PLAGL2	GAGTCAAGTGAAGTGCCAATGT	TGAGGGCAGCTATATGGTCTC
	E-cadherin	CGAGAGCTACACGTTCACGG	GGGTGTCGAGGGAAAAATAGG
	Vimentin	CGAAACTTCTCAGCATCACG	GCAGAAAGGCACTTGAAAGC
	N-cadherin	TCAGGCGTCTGTAGAGGCTT	ATGCACATCCTTCGATAAGACTG
	P27kip1	AACGTGCGAGTGTCTAACGG	CCCTCTAGGGGTTTGTGATTCT
	Cyclin-D1	GCTGCGAAGTGGAAACCATC	CCTCCTTCTGCACACATTTGAA
	Cyclin-E	AAGGAGCGGGACACCATGA	ACGGTCACGTTTGCCTTCC
	CDK4	TCAGCACAGTTCGTGAGGTG	GTCCATCAGCCGGACAACAT
	Cyclin-D1	GTGCTGCGAAGTGGAAACC	ATCCAGGTGGCGACGATCT
	MMP9	AGACCTGGGCAGATTCCAAAC	CGGCAAGTCTTCCGAGTAGT
	GAPDH	AGAAGGCTGGGGGCTCATTTG	AGGGGCCATCCACAGTCTTC
26			
27			
28			
29			
30			
31			
~~			
32			
00			
33			
24			
54			
35			
00			
36			
-			
37			
38			
39			
40			

41 Supplementary Figure Legends

Figure S1. PLAGL2 promotes the proliferation, migration, and invasion of GC cells in vitro 42 43 and in vivo. (A) The qRT-PCR analysis of PLAGL2 expression in SGC7901 transfected with LentishPLAGL2 and AGS transfected with Lenti-PLAGL2. (B) The cell cycle results of PLAGL2 44 45 knockdown SGC7901 cell and PLAGL2 overexpression AGS cell. (C)The qRT-PCR analysis of the expression level of crucial cell cycle regulatory proteins and EMT-related proteins in PLAGL2 46 knockdown SGC7901 cell and PLAGL2 overexpression AGS cell. (D) Representative IHC images 47 48 of the expression of essential cell cycle regulatory proteins and EMT-related proteins in the 49 corresponding xenograft. Scale bars, 50µm. (E) The IHC scores of the expression of essential cell 50 cycle regulatory proteins and EMT-related proteins in the corresponding xenograft.

51

52 Figure S2. PLAGL2 stabilizes Snail1 protein by inhibiting its ubiquitination. (A) The qRT-PCR 53 analysis of the Snail1 expression level in PLAGL2 knockdown SGC7901 cell and PLAGL2 54 overexpression AGS cell. (B) WB analysis of protein levels of PLAGL2 and Snail1 in clinical GC 55 specimens. (C) Ubiquitination assays of endogenous Snaill in the lysates from PLAGL2 56 overexpression AGS cell. (D) WB analysis of Snail1 expression in SGC7901 transfected with two 57 independent Snail1 siRNAs and AGS transfected with Snail1 plasmid. (E)Transwell assays detected 58 the effect of Snail1 on PLAGL2-induced migration. Scale bars, 200µm. (F-G) The qRT-PCR 59 analysis of the expression level of EMT-related genes and critical cell cycle regulatory genes in 60 cotransfected SGC7901 and AGS cells.

61

62 Figure S3. USP37 interacts with and deubiquitinates Snail1 directly. (A) WB analysis of protein

3 / 8

63	levels of Snail1 and USP37 in HEK-293T cell transfected with two independent USP37 siRNAs
64	and USP37 plasmid. (B) The qRT-PCR analysis of mRNA levels of Snail1 in HEK-293T cell
65	transfected with USP37 siRNAs and USP37 plasmid, in SGC7901 cell transfected with two
66	independent USP37 siRNAs and in AGS cell expressing USP37 plasmid. (C-D) The stability of
67	Snail1 by USP37 was estimated using the pulse-chase assay.

69	Figure S4. PLAGL2 modulates Snail1 stability by activating USP37 transcription. (A) The
70	qRT-PCR analysis of Snail1 mRNA level in SGC7901 cell cotransfected with Lenti-shPLAGL2 and
71	USP37 plasmid and AGS cell cotransfected with Lenti-PLAGL2 and USP37 siRNA. (B-D)
72	Transwell assays detected the effect of USP37 on PLAGL2-induced migration. Scale bars, 200µm.
73	The average number of cells per field was calculated. (E) WB analysis of crucial cell cycle
74	regulatory proteins' expression level in cotransfected SGC7901 and AGS cells. (F) The qRT-PCR
75	analysis of the expression level of key cell cycle regulatory genes in cotransfected SGC7901 and
76	AGS cells.
77	
78	
79	
80	
81	
82	
83	
84	

93 Figure S2

104 Figure S3

25 kDa 130 kDa

-35 kDa

25 kDa 130 kDa

35 kDa

<u>USP37</u> 2 4

6

120 Figure S4

