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Abstract 

Macrophages phagocytize pathogens to initiate innate immunity and products from the tumor 
microenvironment (TME) to mediate tumor immunity. The loss of tumor-associated macrophage 
(TAM)-mediated immune responses results in immune suppression. To reverse this immune disorder, 
the regulatory mechanism of TAMs in the TME needs to be clarified. Immune molecules (cytokines and 
chemokines) from TAMs and the TME have been widely accepted as mutual mediators of signal 
transduction in the past few decades. Recently, researchers have tried to seek the intrinsic mechanism of 
TAM phenotypic and functional changes through metabolic connections. Numerous metabolites derived 
from the TME have been identified that induce the cell–cell crosstalk with TAMs. The bulk tumor cells, 
immune cells, and stromal cells produce metabolites in the TME that are involved in the metabolic 
regulation of TAMs. Meanwhile, some products from TAMs regulate the biological functions of the tumor 
as well. Here, we review the recent reports demonstrating the metabolic regulation between TME and 
TAMs. 
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Introduction 
Macrophages that reside within the tumor 

microenvironment (TME) are known as 
tumor-associated macrophages (TAMs). As the 
predominant infiltrated immune cells in the TME 
[1-3], TAMs have been extensively studied for their 
pro-tumoral activities, such as tumor initiation, 
angiogenesis, metastasis, drug-resistance, and 
antitumor immunosuppression [4]. To mirror the 
Th1/2 immune response, canonical concepts suggest 
that there are two distinct states of polarized 
activation in macrophages, namely classical (M1, 
induced by lipopolysaccharide and IFN-γ) and 
alternative (M2, induced by IL-4 or IL-13) [5]. M1 and 
M2 macrophages have different transcriptional 
profiles, such as cytokines, chemokines, metabolic 
pathways. Studies have indicated that TAMs 
predominantly have an M2-like phenotype, which 

manifests as an immunosuppressive state and 
pro-tumoral progression [6]. Hence, targeting M2-like 
TAMs and depleting them in the TME or reversing the 
M2-like TAMs into an M1-like phenotype, which 
directly boosts their cytotoxicity and indirectly 
stimulates cytotoxic T cells to eliminate tumor cells, is 
a potential strategy for antitumor immunotherapy [7, 
8]. Numerous mechanisms underlying the role of 
TAMs in tumor immunosuppression have been 
elucidated, and novel therapeutic agents based on 
these new targets have been subjected to clinical trials 
in recent years [8, 9]. In addition, some recent reports 
focused on phagocytosis, the primordial function of 
macrophages, to reactivate antitumor immunity by 
targeting CD47/SIRPα [10], PD-1/PD-L1 [11], and 
CD24/Siglec-10 [12] pathways. All of these strategies 
have moved TAMs to the forefront of tumor 
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immunotherapy. 
In addition to the cytokine and chemokine 

regulatory mechanisms, metabolic regulation 
between the TME and TAMs has also been widely 
studied. All members of the TME rely on nutrients for 
their survival, maintenance, and proliferation. 
Meanwhile, the competition and symbiosis between 
TAMs and other members of the TME form a crosstalk 
mechanism linked by metabolites. Excessive 
metabolites uptake or secretion reprograms the 
phenotype and function of such components and 
interferes with tumor outcomes. Therefore, clarifying 
the metabolic regulatory mechanisms would help 
elucidate the landscape of metabolite connections 
between the TME and TAMs and promote metabolic 
immunotherapy targeting TAMs. Some excellent 
reviews have focused on TAM metabolism and the 
metabolic crosstalk between tumor cells and TAMs 
[13-15]. However, other than tumor cells, the 
metabolic regulation of immune and stromal cells in 
TME also needs to be concerned, especially the 
interaction with TAMs. Besides, the metabolism 
pattern of TAMs affects the outcome of cancer. This 
review discusses the metabolic crosstalk from TME to 
TAMs based on different cell types and from TAMs to 
TME by diverse oncobiological functions. 

Metabolic crosstalk: from TME to TAMs 
TAMs and other TME members make up the 

tumor ecosystem, suggesting that there are some 
interactions between them through cytokines, 
chemokines, and other factors [16]. Most often, all 
members of the TME consume oxygen and nutrients 
from the host for their phenotypic and functional 
performance [17, 18]. Thus, metabolites are 
accumulated in the TME and recycled from cell to cell. 
In particular, as messengers for cell-cell contact, the 
metabolites, which are derived from the TME (tumor 
cells, T cells, mast cells, cancer-associated fibroblasts, 
adipocytes, except TAMs), are ingested by TAMs to 
change their phenotype and function. In turn, TAMs 
promote tumor progression via metabolic 
reprogramming, which is triggered by the metabolites 
that are shuttled in the TME. Moreover, blockade of 
the metabolic pathways in the TME and TAMs is 
being used for drug discovery and tumor therapy [8, 
19]. Next, we describe the recent findings regarding 
metabolic crosstalk between the TME and TAMs 
(Figure 1). 

Tumor cells 
The bulk of cells in the TME are tumor cells. 

Tumor cells possess the self-serving characteristic of 
educating the TME to provide pro-tumoral 
conditions. Numerous tumor cells deprive glucose 

from the TME for their progression [20]. Thereby, 
other cells, including TAMs, have no alternative but 
mainly rely on oxidative phosphorylation (OXPHOS) 
to produce energy for cellular processes [21]. 
However, most tumor cells do not fully transmit 
glucose into the mitochondrial tricarboxylic acid 
(TCA) cycle to generate ATP (adenosine triphosphate) 
efficiently, but instead use glucose in aerobic 
glycolysis, which is termed the “Warburg Effect” [22]. 
Thus, tumor cells produce a large amount of lactic 
acid through aerobic glycolysis and release the 
redundant lactic acid into the extracellular 
microenvironment via monocarboxylate transporter 4 
(MCT4) [23].  

Reports indicate that lactic acid-treatment 
suppresses TNF secretion in human monocytes 
through glycolysis inhibition [24]. Furthermore, lactic 
acid is reportedly the messenger between tumor cells 
and TAMs. In addition, tumor cell-derived lactic acid 
induces the expression of vascular endothelial growth 
factor (VEGF) and the M2-like polarization of TAMs, 
which is mediated by hypoxia-inducible factor 1α 
(HIF1α) [25]. Moreover, a recent study demonstrated 
that lactic acid induces M2-like gene activation in 
macrophages through histone lactylation [26]. 
Besides, extracellular acidosis is involved in tumor 
progression via the stimulation of autophagy and 
immunosuppression [23], which was also found to 
promote tumor progression by increasing 
tumor-promoting macrophages in prostate cancer 
[27]. Regarding the underlying mechanism, tumor 
acidosis is sensed by G protein-coupled receptors 
(GPCRs) in TAMs. It induces transcriptional repressor 
ICER (inducible cyclic AMP (cAMP) early repressor) 
expression to enhance pro-tumoral macrophage 
polarization, especially in tumors with a high 
glycolytic rate, such as melanoma [28]. It is 
noteworthy that tumor-derived lactic acid was found 
to be dispensable for the induction of ICER expression 
in TAMs in this study [28], which means that other 
organic acids and hydrogen ions together, with or 
without lactic acid, contribute to prime TAMs for 
tumor growth. 

Interestingly, the restricted OXPHOS in tumor 
cells is accompanied by glutamine consumption to 
fuel the TCA cycle. Glutamine is converted to 
α-ketoglutarate by glutamate dehydrogenase or 
aminotransferases [29]. One study has reported that 
intracellular α-ketoglutarate leads to the M2-like 
activation of macrophages via FAO (fatty acid 
oxidation) and Jmjd3-dependent epigenetic 
reprogramming of M2 genes [30]. However, more 
research is needed to elucidate the mechanism of 
α-ketoglutarate shuttling between tumor cells and 
TAMs. Succinate, the downstream product of 
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α-ketoglutarate, is an intermediate of the TCA cycle in 
mitochondria, and its levels are mainly controlled by 
succinate dehydrogenase (SDH), which is regarded as 
a tumor suppressor [31]. Inherited or somatic 
mutations and the inhibition of SDH result in tumor 
formation, which importantly causes the 
accumulation of succinate in tumor cells [32]. 
Nevertheless, the excessive uptake of glutamine by 
tumor cells induces glutamine-based anaplerosis, and 
the γ-aminobutyric acid shunting pathway also 
increases succinate levels [33]. The tumor-derived 
succinate is taken up through succinate receptor 
(SUCNR1) and results in the polarization of TAMs 
into a pro-tumoral form via the SUCNR1/PI3K/ 
HIF1α signaling pathway to enhance tumor 
metastasis, which can also be mediated by autocrine 
succinate [34]. These studies suggest that serum 
succinate could be a potential clinical biomarker. 

ATP has long been known as the energy 
molecule. Hypoxia and chemotherapy lead to the 
accumulation of abundant ATP in the TME [35], 

which is primarily derived from tumor cells via 
ATP-binding cassette (ABC) transporters [36], 
pannexin 1 [37], or connexins [38]. The extracellular 
ATP triggers the P2 purinergic receptors (P2XRs and 
P2YRs) in tumor cells for its growth or inhibition [39]. 
In most cases, ATP is unstable in biological fluids and 
is rapidly degraded to adenosine, which is 
abundantly accumulated in extracellular fluids of 
solid tumors for tumor immunosuppression [40]. This 
biological process is mediated through the 
ectonucleotidases CD39, which converts ATP into 
ADP/AMP, and CD73, degrading AMP into 
adenosine [41]. One study reported that adenosine 
induces TAMs to express CD39 and CD73 for tumor 
immune escape [42]. Moreover, adenosine receptors 
(A1R, A2AR, A2BR, and A3R) have been found to 
sense adenosine for tumor growth, survival, 
metastasis, and immunosuppression [38]. 
Furthermore, reports suggest that CD39/CD73 and 
adenosine receptors are mainly induced and 
regulated by HIF1α [43-45]. Furthermore, A2AR and 

 

 
Figure 1. The metabolic crosstalk: from TME to TAMs. Tumor cell-derived lactic acid, succinate, α-ketoglutarate, ATP/Adenosine, PGE2 (prostaglandin E2), oleate, Retinoic acid 
(RA), BCKA (branched-chain ketoacids), kynurenine, POSTN (periostin), versican, sonic hedgehog and the extracellular acidosis promote the protumoral TAM formation to 
accelerate tumor progression. Artificially increasing HRG (histidine-rich glycoprotein) or stearic acid expression from tumor cell induce the antitumoral TAM. Metabolites from 
T cell to TAM are rarely identified, but activated T cell enhances IDO and SREBP1 (sterol regulatory element-binding protein 1) in TAM to facilitate tumor growth. CAF 
(cancer-associated fibroblast)-produced lactic acid, ADMA (asymmetric dimethyl arginine), BHB (beta-hydroxybutyrate), hyaluronan and STC1 (stanniocalcin-1) assist TAM to be 
protumoral. Mast cell-released LTB4 (leukotriene B4), chondroitin sulfate and tryptase/chymase guide TAM toward into tumor promoting. However, PGD2 (prostaglandin D2) 
from mast cell may bind DP (PGD2 receptors) on TAM and skews TAM to be antitumoral. Histamine triggers H4R (histamine H4–receptor) on macrophage into protumoral 
TAM, but H2R (histamine H2–receptor) into antitumoral TAM. Adipocyte-derived APN (adiponectin), leptin and A-FABP (adipose fatty acid binding protein) induce the 
protumoral TAM. Chemerin from adipocyte causing the phenotypic change of TAM is tumor context dependent. MCT1/4 (monocarboxylate transporter 1/4); SUCNR1 
(succinate receptor1); GPCR (G protein–coupled receptors); FAO (fatty acid oxidation); P2XRs/P2YRs (P2 purinergic receptors); A2AR/A2BR (adenosine receptors); BCAA 
(branched-chain amino acid); HCA2 (hydroxycarboxylic acid receptor 2); LTB4R1/2 (leukotriene B4 receptor 1/2); AdipoR (adiponectin receptor); ChemR23 (chemokine-like 
receptor 1, CMKLR1); PIGF (placental growth factor); E-FABP (epidermal fatty acid binding protein); ICER (inducible cyclic AMP (cAMP) early repressor); CREB (cyclic 
AMP-responsive element binding); AHR (aryl hydrocarbon receptor); RAR (retinoid acid receptor); UCP2 (uncoupling protein 2). 
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A2BR were reportedly to be expressed on 
macrophages and stimulated by adenosine, inducing 
M2-like TAM polarization [38, 41]. Additionally, 
A2AR depletion on myeloid cells, especially 
macrophages, slows melanoma growth and reduces 
metastasis by relieving T and NK cell suppression 
[46]. Studies have recently revealed that 
ectonucleotidases, adenosine receptors, and the 
adenosinergic pathway are potential targets to 
enhance antitumor immunity [38, 40], which would 
accelerate drug discovery in this field.  

Prostaglandin E2 (PGE2), a prostanoid lipid, is 
associated with tumor progression [47] and is 
synthesized by tumor cyclooxygenase to mediate 
tumor immune escape [48]. Reports suggested that 
PGE2 induces M2 polarization in macrophages 
through the cyclic AMP-responsive element binding 
(CREB) pathway [49, 50]. Furthermore, PD-L1 
expression in TAMs can be regulated by PGE2 levels 
[51]. Recently, one study clarified that PGE2 
modulates mitochondrial membrane potential to 
regulate M2-like gene expression in the nucleus [52]. 
Thereby, PGE2 from tumor cells polarizes TAMs 
through cAMP and mitochondrial signaling.  

Fatty acids are reportedly enriched in the TME 
and mainly tumor cell-derived [53]. A recent paper 
indicated that long-chain fatty acids, exemplified by 
oleate, are scavenged by CD36/204, facilitate 
mitochondrial respiration in TAMs, and polarize 
immune-suppressive TAMs through mTORC 
signaling [54]. Thus, tumor lipid metabolites 
orchestrate a TAM phenotype, and this might explain 
why a lipid droplet-rich TME is associated with more 
infiltrating TAMs. Nevertheless, researchers revealed 
that free fatty acids, particularly stearic acid, facilitate 
the inflammatory functions of CD11c+ macrophages 
via activation of the nuclear retinoic acid receptor and 
the cytosolic expression of epidermal fatty 
acid-binding proteins (E-FABP) in obesity models 
[55]. Therefore, whether various categories of fatty 
acids have different effects on TAM polarization 
needs more clarification. 

Retinoic acid (RA) is a metabolite of vitamin A 
that has an established role in organ development 
[56], cancer therapy [57], and immune homeostasis 
[58]. In vitro, RA-treated head and neck squamous cell 
carcinoma cells fail to activate macrophages by 
decreasing VEGF and IL-8 secretion [59]. In addition, 
the clinical use of available all-trans-retinoic acid 
(ATRA) abrogates the pro-tumorigenic phenotype of 
TAMs in prostate cancer by suppressing the activation 
of NF-κB p50 [60] and reduces osteosarcoma 
metastasis by downregulating MMP12 (matrix 
metalloproteinase 12) secretion from M2-type TAMs 
[61]. Further, ATRA could prevent osteosarcoma 

initiation and stemness by inhibiting M2-like TAMs 
[62]. However, retinoic-acid-related orphan receptor 
(RORC1/RORγ), one of the retinoid nuclear receptors, 
has been found to prevent myeloid-derived 
suppressor cells (MDSCs) from undergoing apoptosis, 
and to promote M2-like TAM differentiation in the 
TME [63]. Moreover, a recent study indicated that 
tumor cell-derived RA promotes TAMs and 
suppresses immunostimulatory dendritic cell 
differentiation from monocytes [64]. Combined with 
the RA mechanism in treating acute promyelocytic 
leukemia, the concept of differentiation therapy, and 
hence, RA from tumor cells, seems more like an 
immunosuppressant to mediate TAM formation in 
the TME. 

Nevertheless, the effects of other tumor 
cell-derived metabolites on TAMs have been 
investigated. Branched-chain ketoacids, which are 
excreted from glioblastoma cells via monocarboxylate 
transporter 1 (MCT1), are taken up by TAMs and 
re-purposed to form branched-chain amino acids, 
which reduces phagocytosis by TAMs and mediates 
tumor immunosuppression [65]. Moreover, a recent 
study revealed that glioblastoma cell-derived 
kynurenine activates AHR (aryl hydrocarbon 
receptor) in TAMs to modulate TAM recruitment and 
T cell dysfunction [66]. With respect to glioblastoma, 
researchers found that periostin (POSTN) from 
glioma stem cells (GSCs) recruits monocyte-derived 
macrophages from the peripheral blood through 
integrin αvβ3 to induce an M2 phenotype, and 
POSTN knockdown in GSCs inhibits tumor growth 
[67]. One report revealed that bladder tumor 
cell-derived versican drives lung metastasis in a TAM 
dependent manner [68]; however, the mechanism 
underlying CCL2 expression in TAMs via versican 
warrants additional investigation. Another recent 
study reported that tumor cell-derived sonic 
hedgehog triggers hedgehog signaling in TAMs for 
M2 polarization and impedes CD8+ T cell recruitment 
by hindering CXCL9 and CXCL10 production by 
TAMs, which is mediated by Kruppel-like factor 4 
(Klf4) [69]. Meanwhile, some tumor metabolites can 
re-educate TAMs to induce antitumor activity. HRG 
(histidine-rich glycoprotein) levels are decreased in 
the TME, and researchers have increased tumor levels 
by using a genetic gain-of-function strategy to find 
that HRG derived from these tumor cells inhibits 
tumor growth and metastasis by inducing 
macrophage polarization and vessel normalization 
through the downregulation of PIGF (placental 
growth factor), suggesting that HRG contributes to 
the skewing of TAMs to an antitumor polarization 
phenotype [70].  
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T cells 
T cell-based immune-checkpoint inhibitors have 

resulted in tremendous achievements [71]. Given that 
T cells are the cytotoxic cells of the antitumor immune 
response, their persistent survival, and the production 
of toxicity factors are critical to eliminate tumor cells 
and surveil tumor initiation and recurrence. All of 
these functions are based on metabolic support [72]. 
The naïve T cells mainly use the OXPHOS pathway to 
produce ATP [73]. When activated by immunological 
signals, the metabolic model switches to be 
glycolysis-dependent [74]. In the TME, glucose, 
oxygen, and other essential metabolites are deprived 
by tumor cells. T cells must thus adapt to the hypoxic 
and nutrient-deficient conditions, which becomes 
tumor immunosuppressive. Thus, the TME 
reprograms T cell metabolism into weak glycolysis 
and OXPHOS, accompanying the decrease in IFN-γ 
and perforin/granzyme B secretion [72]. However, 
the impact of T cell-derived metabolites on TAMs has 
not received much research attention with respect to 
the TME. One report indicated that tumor-infiltrating 
CD69+-activated T cells increase IDO (indoleamine 
2,3-dioxygenase) expression in TAMs, but the 
metabolic mediator has not been identified [75]. 
Another group revealed that CD8 T cell-derived 
IFN-γ could block sterol regulatory element-binding 
protein 1 (SREBP1)-mediated fatty acid metabolism in 
TAMs [76]. In summary, cytokine/chemokine 
crosstalk is common between T cells and TAMs, but 
metabolites are also important. 

Mast cells 
Mast cells are derived from bone marrow 

precursors and reside in peripheral tissues after 
maturation; further, they play the role of sentinels to 
recruit an immune army during infection, especially 
in allergic responses [77]. To date, the beneficial 
effects of mast cells on both the tumor and the host 
have been reported [78, 79]. A recent report found that 
IL-33-mediated mast cell activation in gastric cancer 
enhances TAM infiltration and tumorigenesis through 
CSF2, CCL3, and IL-6 secretion [80]. Other than 
cytokines and chemokines, mast cells also secrete 
distinct biogenic amines, eicosanoids, and 
proteoglycans when they are activated, which are 
either pro- or anti-tumoral. Theoharis C. Theoharides 
proposed M1- and M2-type mast cells according to 
their different effects on the tumor [78]. Moreover, 
some of these molecules have been studied on TAMs. 

Histamine, one of the biogenic amines from mast 
cells, combined with IL-2, increases Th1 immune 
responses in patients with stage IV melanoma [81]. 
Later clinical data suggested that histamine with IL-2 
does not change the number of intratumoral 

macrophages [82]. With respect to the mechanism, 
histamine can interact with the H2–receptor on 
macrophages to inhibit ROS production, which 
relieves NK and T cell inhibition to favor tumor 
inhibition [83]. Further, histamine deficiency causes a 
high incidence of colon and skin carcinogenesis via 
abnormal myeloid differentiation [84]. Moreover, 
macrophages also express other histamine receptors, 
including H1/4-receptor, and the H4-receptor is 
required to induce histamine-mediated chemotaxis 
and phagocytic activity [85]. Further, H4-receptor 
knockout mice show suppressed mammary tumor 
growth and metastasis through a reduction in CD4 T 
and Treg cells and an increase in NK cells in 
tumor-draining lymph nodes; besides, stimulation of 
the H4-receptor increases Treg numbers, enhances 
IL-10 expression, and decreases IFN-γ [86]. Moreover, 
the same group recently found that histamine has an 
antitumor effect, with increased cytotoxic lymphocyte 
infiltration, in H4-receptor knockout mice [87]. Thus, 
the specific histamine receptor that induces the 
antitumor immune response is still unknown. 
Histamine is generated by histidine decarboxylase 
(HDC), and HDC-knockout mice fail to form M1-like 
macrophages [88]. To date, although no systematic 
study has revealed the phenotypic and functional 
effect of histamine on TAMs, we speculate that 
histamine could polarize M1-like TAMs, based on 
these data combined with results of a previous report 
[89]. 

Activated mast cells can produce three 
eicosanoids, prostaglandin D2 (PGD2), leukotriene B4 
(LTB4), and LTC4 [90]. These three eicosanoids are 
produced de novo from arachidonic acid derived from 
nuclear membrane phospholipids via cytosolic 
phospholipase A2. Prostaglandin H2 (PGH2) is 
generated from arachidonic acid by prostaglandin H 
synthase 1/2 (PGHS1/2, also called cyclooxygenase 
1/2) and then is converted to PGD2 by hematopoietic 
prostaglandin D2 synthase (H-PGDS, in leukocytes) 
or lipocalin prostaglandin D2 synthase (L-PGDS, in 
the central nervous system). PGD2 has been found to 
induce leukocyte chemotaxis via PGD2 receptors (DP) 
in Th2 cells [91]. Enhancing the PGD2/DP pathway 
results in a suppressive effect on tumor growth by 
modulating tumor hyperpermeability and 
angiogenesis [92]. Moreover, decreasing PGD2 
through H-PGDS deficiency increases tumor growth, 
and mast cell-derived PGD2 reduces tumor expansion 
[93]. These findings suggest that the PGD2/DP 
pathway favors the inhibition of tumor progression. 
Although many studies mentioned PGD2 in the TME 
[94], DP expression and the regulation of PGD2 
biosynthesis in TAMs are yet to be identified. Mast 
cell-derived leukotrienes are potent pro-inflammatory 
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lipid mediators implicated in cancers, which require 
5-lipoxygenase (5-LOX) for their production. 
Generally, 5-LOX plays a pro-carcinogenic role [95], 
whereas its repression in TAMs also promotes tumor 
progression [96]. Thus, the effect of the 5-LOX 
pathway on tumors is diverse and might depend on 
the metabolites from 5-LOX. LTB4, one of several 
leukotrienes derived from mast cells, binds to two 
GPCR LTB4Rs (LTB4R1 with high affinity and 
LTB4R2 with low affinity [47]) and favors murine 
melanoma growth [97]. Elevated TAMs can be 
attracted to the TME inducing immunosuppression 
via LTB4 [98]. The addition of LTC4 has no 
remarkably increasing effect on the tumoricidal 
function of TAMs [99]. Leukotrienes and the 
expression of their receptors, especially LTB4, are 
increased in some human cancers, including colon, 
prostate, and pancreatic cancer [47]. Except with 
respect to chemotaxis functions, other mechanisms of 
leukotriene-mediated TAM polarization are 
comparatively less well known. 

For proteoglycans, mast cell-derived heparin has 
been reported to increase angiogenesis [100]. 
However, the interaction between heparin and TAMs 
has not been elucidated. Chondroitin sulfate, another 
proteoglycan from mast cells, is associated with 
decreased T cells and increases in TAM infiltration in 
the TME [68, 101]. However, the use of chondroitinase 
gene therapy to digest chondroitin sulfate increases 
CD206 (a marker of M2-like macrophages) expression 
after spinal cord contusion injury [102]. These data 
suggest that chondroitin sulfate deficiency might 
favor wound healing. Thus, further clarification of the 
mechanism underlying the effect of mast cell-derived 
proteoglycans on TAMs might explain the different 
functional changes. Mast cells are typically 
characterized by protease storage and secretion, 
including tryptase and chymase [103]. The expression 
of these two enzymes correlates with tumor 
progression [104]. These enzymes’ primary function is 
to degrade the extracellular matrix, which might 
indirectly mediate the immune response in the TME. 
However, fewer studies have mentioned the impact 
on TAMs. 

In general, mast cells were known to produce 
chemotactic materials. These chemoattractants induce 
immune responses in the TME, and especially, TAMs 
have been overlooked. Increasing research findings 
indicate that the number of immune cells in the TME 
is not the crucial factor with respect to tumor 
elimination, and increasing the tumoricidal immune 
cells by regulating these metabolites might be the 
future task, for instance, by reversing the M2-like 
phenotype of TAMs to generate antitumor M1-like 
macrophages with these mast cell-derived 

metabolites. 

Cancer-associated fibroblasts 
The tumor stroma constructs the framework of a 

solid tumor. Cancer-associated fibroblasts (CAFs), 
which can be derived from endothelial cells, pericytes, 
adipocytes, and mesenchymal stem cells [105], are the 
dominant component of the tumor stroma and have 
been suggested to boost tumor progression and 
metastasis [106, 107]. A variety of makers have been 
used to identify CAFs, such as α-SMA (smooth 
muscle actin), FSP1 (fibroblast specific protein 1), NG2 
(neuron–glial antigen-2), and CD90, among others 
[105]. To date, CAFs cannot be identified with a single 
marker, even in the same tumor. In line with this, 
CD10+GPR77+ CAFs have been found to promote 
tumor formation and chemoresistance by sustaining 
tumor stemness [108]. Studies have indicated that 
fibroblast activation protein and microRNAs can 
reprogram normal fibroblasts into CAFs [109]. 
Moreover, CAFs and TAMs are often used together to 
assess tumor progression [110].  

In recent years, some discoveries in CAF 
metabolism have been made. Michael P. Lisanti’s 
group has presented many studies on metabolism in 
CAFs, and they termed this new paradigm “The 
Reverse Warburg Effect” [111], which is characterized 
by increased lactate and pyruvate secretion from 
CAFs to fuel tumor cells [112]. As in the tumor cells, 
they found that lactate is released from CAFs via 
MCT4 [113, 114]. Even though no study has 
determined whether lactate from CAFs differentially 
affects TAMs than that from tumor cells, we believe 
that CAF-derived lactate polarizes M2-like TAMs, as 
previously mentioned herein. Moreover, they found 
that the loss of caveolin-1 (Cav-1) in CAFs is 
associated with tumor progression [115]. Asymmetric 
dimethyl arginine (ADMA) and beta-hydroxy-
butyrate (BHB), which are markers of oxidative stress 
and mitochondrial dysfunction, are profoundly 
upregulated in Cav-1-knockout CAFs [116]. 
Interestingly, endogenous ADMA has been 
demonstrated to inhibit nitric oxide synthase activity, 
probably inducing immune-suppressive TAMs in the 
TME [117]; however, more evidence is needed to 
indicate if ADMA can be taken up into TAMs. 
Furthermore, BHB, a ketone body produced by 
β-oxidation, also induces anti-inflammatory 
macrophages through HCA2 (hydroxycarboxylic acid 
receptor 2) [118]. Therefore, ADMA and BHB from 
CAFs might be conducive to TAM polarization, but 
the two metabolites’ primary source needs to be fully 
elucidated. 

Additionally, other CAF-specific metabolites 
have been found to affect TAMs. It has been found a 
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high level of hyaluronan in the TME predicts poor 
prognosis for tumor patients [119]. Nobutaka 
Kobayashi and co-workers found that TAMs 
preferentially traffic to hyaluronan-enriched areas, 
and genetic disruption of the hyaluronan synthase 2 
(Has2) gene in fibroblasts impairs TAM recruitment 
and reduces tumor angiogenesis and lymphangio-
genesis, which indicates that CAF secretion of 
hyaluronan results in TAM pro-tumoral activities 
[120]. Besides, stanniocalcin-1 (STC1), which is 
secreted by CAFs, is recognized as a mediator of 
colorectal cancer growth and metastasis [121]. The 
previous studies suggested that STC1 is an 
anti-inflammatory protein, especially for macro-
phages, which is mediated by inducing mitochondrial 
UCP2 (uncoupling protein 2) to suppress superoxide 
generation [122]. Thus, STC1 might inhibit the 
antitumor chemokine expression in TAMs to impede 
antitumor T cell infiltration. In summary, very few 
studies have been performed to assess CAF 
metabolites’ effect on TAMs, except for some specific 
metabolites. 

Adipocytes 
Besides CAFs, as another type of stromal cell, 

adipocytes, also called cancer-associated adipocytes 
(CAAs), are through to promote tumor growth and 
metastasis by secreting inflammatory factors and 
metabolites in the TME [123], especially in breast 
cancer [124]. CAAs have been reported to increase 
tumor growth and vascularization through TAMs 
[125]. Meanwhile, the impact of metabolites from 
CAAs on TAMs has been studied. For example, 
adiponectin (APN), one such adipokine, is produced 
by adipocytes and has antitumor activities [126] and 
pro-tumoral activities [127]. In response to APN, 
macrophages are mainly characterized by their anti‐
inflammatory effect [128] and M2-like phenotype, 
specifically, negatively regulating the growth of 
macrophage progenitors [129], inhibiting the 
production of CXCR3 ligands to reduce T cell 
migration [130], and decreasing the production of 
pro-inflammatory cytokines by suppressing IκB, JNK, 
p38, and STAT3 phosphorylation [131, 132]. Likewise, 
full-length APN was reported to induce M2 
macrophage polarization via AMPK and shift 
macrophage metabolism to OXPHOS [133]. Moreover, 
in the TME, APN deficiency induces TAM 
polarization to an M1-like phenotype to favor an 
antitumor immune response for tumor inhibition 
[134]. In mechanistic terms, APN might trigger 
downstream signaling of adiponectin receptors 
(AdipoRs) to polarize M2-like TAMs, such as 
AdipoR1 [135, 136], AdipoR2 [136, 137], C1qRp [129], 
and calreticulin receptor [138], among others. 

AdipoR1/2 probably mediates this on TAMs, which is 
suggested by the observation that AdipoR1/2 
expression on dendritic cells mediates T cell anergy 
and tolerance in breast cancer [139]. 

Leptin, another adipokine, was also found to 
shape the TME and contribute to tumor development 
[140]. In macrophages, leptin induces some inflam-
matory mediators’ production, including TNF-α, IL-6, 
and leukotriene B4 [141]. Moreover, leptin modulates 
cellular lipid metabolism and storage by enhancing 
ADRP (adipose differentiation-related protein) 
accumulation within macrophages via the 
PI3K/mTOR pathway [141]. Although the phenotypic 
changes in TAMs mediated by leptin have not been 
revealed, leptin-mediated macrophage chemotaxis 
and activation were demonstrated through the leptin 
receptor, which was found to require JAK/STAT, 
MAPK, and PI3K pathways [142]. This indicates that 
leptin might mediate the link between CAAs and 
M2-like macrophages in high-fat diet-induced 
obesity-associated tumor metastasis [143].  

Chemerin, a novel adipokine, regulates adipo-
genesis and adipocyte metabolism in an autocrine and 
paracrine manner [144] and was found to be a potent 
chemoattractant for macrophages that functions in a 
ChemR23-dependent manner [145]. ChemR23, also 
known as chemokine-like receptor 1 (CMKLR1), is 
downregulated in mouse M1-like macrophages but 
upregulated in mouse M2-like macrophages [146]. 
However, subsequent research suggested that human 
M1-like macrophages express ChemR23 but human 
M2-like macrophages do not [147]. In DSS-induced 
colitis, chemerin aggravates mucosal damage and 
increases pro-inflammatory cytokines by suppressing 
M2-like macrophage polarization [148]. This suggests 
that the mechanism of chemerin-induced inflam-
mation is intricate. In the TME, chemerin has been 
reported to inhibit tumor growth by increasing NK 
cell infiltration and reducing MDSC accumulation 
[149]. Furthermore, chemerin-deficient (Rarres2−/−) 
mice show significantly increased TAM numbers in 
the hepatocellular carcinoma TME [150]. Moreover, 
tumor cells favor CMKLR1 expression in macro-
phages, and chemerin enhances pro-inflammatory 
gene expression in TAMs [151]. This reveals that 
chemerin might skew TAMs to have an antitumor 
effect. However, chemerin is downregulated in most 
tumor tissues, including melanoma, acute myeloid 
leukemia, breast cancer, and adrenocortical carcinoma 
[152], indicating that chemerin downregulation can 
induce tumor immune escape. Thus, the 
re-introduction of chemerin into the TME might 
represent a therapeutic strategy [153]. Meanwhile, 
chemerin is elevated in colorectal cancer, gastric 
cancer, glioblastoma, hepatocellular carcinoma, and 
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others [152]. Therefore, the effect of treating tumors 
with chemerin could be tumor context-dependent, 
and further study is warranted. In addition, recent 
research indicated that circulating adipose fatty acid 
binding protein (A-FABP) is mainly derived from 
CAAs, and elevated circulating A-FABP is associated 
with obesity-associated tumor development [154]. 
However, the impact of A-FABP on TAMs is still 
elusive, since CD11b+F4/80+MHCII−Ly6C− TAMs 
produce A-FABP as well [155]. Together, the 
metabolite-mediated interaction between CAAs and 
TAMs is complicated, and further studies are urgently 
needed. 

Although cellular metabolism in the TME is 
different from that in normal host cells, all cells share 
the same metabolic pathways [156]. It is difficult to 
find some specific metabolites from one component of 
the TME, but it is feasible to analyze the quantity of 
various metabolites based on corresponding key 
metabolic enzymes’ expression. In general, the 
quantity of metabolites in early tumor patients is 
relatively small. Thereby, the diagnostic validity of 
metabolic tumor markers is limited to advanced and 
metabolically hyperactive tumors. TAMs are 
surrounded by the bulk of tumor cells and other 
components in the TME in either early- or late-stage 
tumors. Even slight changes in TME metabolic 
secretions could shape the immune phenotype of 
TAMs. However, it is a technical challenge to detect 
changes in local TME metabolites directly. 

Metabolic crosstalk: from TAMs to TME 
Metabolites from the TME affect the polarization 

of TAMs to induce tumor progression and inhibition. 
In turn, TAMs regulate the TME as well, such as via 
known cytokines and vesicles. As mentioned 
previously herein, tumor tissues are hypoxic, and 
tumor cells mainly use aerobic glycolysis to generate 
energy. TAMs have a direct impact on tumor cell 
metabolism. A recent study reported that TAMs make 
non-small cell lung cancer (NSCLC) cells more 
glycolytic through TNF-α secretion and promote 
enhanced hypoxia through AMP-activated protein 
kinase and PGC-1α activation. Moreover, the 
depletion of TAMs increases T cell infiltration and 
PD-L1 expression in tumor cells, which is beneficial 
for the PD-L1 blockade in NSCLC [157]. Another 
recent study suggested that enhanced aerobic 
glycolysis and decreased apoptosis in breast cancer 
cells are mediated by TAM-derived extracellular 
vesicle-packaged HIF-1α-stabilizing long noncoding 
RNA, which is upregulated by lactate in the TME 
[158]. An additional recent report focused on clear cell 
renal cell carcinoma, which highly relies on 
glutamine, and found that glutamine-deprived TAMs 

secrete IL-23 to decrease survival and enhance the 
immunosuppressive function of Tregs [159]. In 
addition to the altered tumor cell metabolism 
mediated by TAM-derived cytokines and vesicles, 
metabolites from TAMs extensively regulate the 
tumor immune microenvironment, metastasis, 
angiogenesis, and drug-resistance (Figure 2). 

First, some secreted molecules from TAMs can 
shape their immune phenotype. Reducing circulating 
cholesterol levels has been considered a useful 
strategy to treat breast cancer [160]. One study 
recently suggested that membrane cholesterol efflux 
in TAMs is increased by ovarian cancer cell-derived 
hyaluronic acid. On the one hand, these TAM-derived 
cholesterols promote tumor growth, whereas, on the 
other hand, high cholesterol efflux disrupts lipid rafts 
in TAMs and results in TAM reprogramming toward 
a tumor-promoting phenotype [161]. The cholesterol 
efflux in TAMs has a positive correlation with tumor 
burden. The genetic deletion of ABCA1 and/or 
ABCG1 revert the tumor-promoting functions of 
TAMs and reduces tumor growth. Activated 
macrophages could produce itaconic acid [162], which 
is regulated by immune-responsive gene 1 (Irg1) and 
an essential regulator of macrophage metabolism and 
inflammation [163]. Interestingly, itaconic acid acts as 
a metabolic brake in activated macrophages to avoid 
hyperinflammatory reactions. In mechanistic terms, 
itaconic acid inhibits succinate dehydrogenase to 
reprogram immune responses in macrophages [164] 
and activates the anti-inflammatory transcription 
factor Nrf2 via KEAP1 alkylation [165]. Importantly, 
itaconic acid, a key anti-inflammatory metabolite in 
macrophages, is the most highly upregulated 
metabolite of TAMs in a peritoneal tumor model and 
mediates tumor growth. Correspondingly, the genetic 
downregulation of Irg1 remarkably reduces 
peritoneal tumors [166]. FABPs are known as the 
carrier of free fatty acids that regulate lipid 
metabolism and inflammation in the host cells. The 
tissue distributions and ligand-binding specificities of 
a series of FABPs have been elucidated [167]. In 
tumors, one report found that F4/80+CD11b+ 

MHCII+CD11c+ TAMs highly express E-FABP, which 
promotes the recruitment of T and NK cells to 
mediate antitumor effects through IFN-β production 
[168]. However, the same group later found that 
F4/80+CD11b+MHCII−CD11c− TAMs express 
adipocyte/macrophage FABP (A-FABP) and promote 
tumor progression through NF-κB–miR-29b- 
regulated IL-6 production [155]. Therefore, TAMs 
expressing FABPs represent a double-edged sword 
for tumor immune surveillance. Moreover, the marker 
of M2-like TAMs is arginase 1 (Arg1), which depletes 
arginine to form urea and ornithine[169]. Another 
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result of L-arginine metabolism is the generation of 
creatine. In addition to ATP, earlier reports indicated 
that creatine, another direct energy molecule, is likely 
an antitumor molecule [170]. However, a recent study 
suggested that creatine uptake via Slc6a8 skews the 
alternative macrophage polarization by suppressing 
IFN-γ–STAT1 signaling and promoting ATP-depen-
dent SWI–SNF-mediated chromatin remodeling [171]. 
Creatine is highly needed in muscle, liver, and brain 
tissues [172]. Thus, it is assumed that the TME, 
especially tumors initiated from these organs, 
maintains high creatine amounts. However, the 
crosstalk between creatine in the TME and TAMs is 
not understood. Meanwhile, arginine-generated 
ornithine is the precursor of polyamines and proline, 
TAM-derived ornithine might be beneficial for tumor 
cells and their proliferation [173]. Additionally, T cell 
immune responses are affected by TAM metabolites 
[174]. Early research reported that arginine 
consumption via Arg1 suppresses T cell receptor 
expression and T cell cytotoxicity [175, 176]. Later, a 
study found that arginine is critical for T cell survival 
and antitumor T cell immunity [177]. This is one of the 
metabolic reasons why increased TAM accumulation 
in tumor tissues hinders the antitumor T cell immune 

response. Furthermore, the 15-lipoxygenase-2 
(15-LOX2) pathway enhances eicosanoid production 
in renal cell carcinoma TAMs, which increases the 
expression of FOXP3 and CTLA-4 in T lymphocytes to 
mediate immunosuppression [178]. Tumor-repopu-
lating cell-derived kynurenine, the downstream 
metabolite of tryptophan via IDO catalysis, 
upregulates PD-1 expression in CD8 T cells by 
activating the transcriptional factor AhR [179]. This 
study indicated that metabolites from IDO signaling 
modulate T cell immunosuppression. It should be 
noted that IDO is also overexpressed in TAMs [180]. 
In addition, TAM-derived kynurenine might similarly 
induce immunosuppressive T cells. 

Metabolites from TAMs contribute to tumor 
invasion and metastasis. TAM-secreted microvesicle- 
packaged microRNAs have been found to promote 
breast cancer cell invasion [181]. Osteopontin from 
TAMs induces bladder cancer metastasis through the 
osteopontin–CD44–TIAM1 (T cell lymphoma invasion 
and metastasis 1)–Rac1 pathway [182]. The blockade 
of this pathway disrupts the initial steps in bladder 
cancer metastasis. Furthermore, monocyte-derived 
TAMs upregulate collagenous extracellular matrix, 
such as collagen types I, VI, and XIV, for tumor 

 

 
Figure 2. The metabolic crosstalk: from TAMs to TME. TAM-derived cholesterol, itaconic acid, creatine and A-FABP switch its own phenotype into protumoral TAM. E-FABP 
(epidermal fatty acid binding protein) from TAM induces the antitumoral TAM formation. TAM-caused arginine consumption, eicosanoid and kynurenine accumulation result in 
immunosuppressive T cell. These effects reflect the immune microenvironment changes induced by metabolites from TAM. TAM-produced osteopontin, collagen and MMP9 
(matrix metalloproteinase 9) promote tumor metastasis. Lower vitamin D-caused decreased cathelicidin in TAM and TAM-released deoxycytidine induce drug resistance. 
REDD1(regulated in development and DNA damage response 1)-dependent Sema4D (semaphorin 4D) secretion from TAM accelerates tumor angiogenesis. ABHD5 
(abhydrolase domain-containing 5); 15-LOX2 (15-lipoxygenase-2); Irg1 (immune-responsive gene 1). 
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invasion [183]. MMP9 has been involved in tumor 
lung-specific metastasis [184]. Recently, researchers 
found that ABHD5 (abhydrolase domain-containing 
5) deficiency in TAMs induces the NF-κB 
p65-dependent production of MMP, which indicates 
that low-level triglyceride hydrolysis-mediated MMP 
is one of the mediators of tumor metastasis from 
TAMs [185]. 

Moreover, TAMs influence tumor angiogenesis. 
An earlier study found that high TAM numbers are 
associated with human breast tumor angiogenesis 
[186]. In terms of the mechanism, cytokines and 
chemokines are the predominant pro-angiogenic 
factors produced by TAMs [187]. Besides, MMPs [188] 
and cathepsins [189] from TAMs have been suggested 
to support tumor angiogenesis through extracellular 
matrix degradation. Semaphorin 4D, a ligand of 
plexin B1 on endothelial cells, is mainly derived from 
TAMs in the TME and promotes tumor angiogenesis 
and vessel maturation [190]. Subsequent research also 
found that TAMs enhance the abnormal vessel 
formation that occurs through REDD1 (regulated in 
development and DNA damage response 1)-mediated 
mTOR inhibition, and REDD1-deficient TAMs 
deprive glucose from endothelial cells, with 
consequent formation of an organized tumor 
vasculature to prevent metastasis [191]. However, the 
metabolic derivatives of REDD1-deficient TAMs are 
still unknown. 

In principle, macrophages can kill tumor cells via 
antibody-dependent cellular cytotoxicity (ADCC). For 
example, the M1-like macrophages target 
proliferating high-grade B cell lymphoma cells by 
releasing cathelicidin in a vitamin D-dependent 
manner. Instead, tumor-educated M2-like TAMs 
downregulate vitamin D metabolism and produce 
less cathelicidin resulting in failed cytotoxicity [192]. 
This phenomenon suggests that reduced cathelicidin 
from TAMs mediates ADCC resistance. Another 
recent report found that TAMs release deoxycytidine, 
based on liquid chromatography coupled tandem 
mass spectrometry metabolomics, which induces 
gemcitabine resistance by competitively inhibiting 
gemcitabine uptake in pancreatic ductal 
adenocarcinoma [193]. Using the colony-stimulating 
factor receptor 1 (CSFR1) inhibitor AZD7507, 
depleting TAMs prolongs survival in an 
autochthonous pancreatic cancer model. In summary, 
metabolites from TAMs affect multiple biological 
functions of the TME, especially remodeling the 
tumor immune microenvironment. With the clinical 
application of immunotherapy, an evaluation of 
metabolic flux in TAMs might guide tumor 
immunotherapy and elucidate the mechanism 
underlying drug-resistance and tumor 

immunotherapy progression. 

Conclusions and Perspectives 
Outstanding achievements have been made with 

respect to tumor immunotherapy; however, we still 
cannot completely overcome tumors. Chimeric 
antigen receptor (CAR)-T therapy effectively saves 
patients from refractory B cell malignancies, 
especially acute lymphoblastic leukemia (ALL), but 
the macrophage-involved cytokine-release syndrome 
(CRS) and neurotoxicity after CAR-T injection are 
associated with life-threatening consequences [194, 
195]. Some cytokines from macrophages have been 
identified in CAR-T-mediated CRS and neurotoxicity, 
such as IL-1 and IL-6. However, no metabolites have 
been clarified in this field. Meanwhile, even after 
receiving immune-checkpoint inhibitors, a so-called 
hyperprogressive phenomenon is observed in the 
clinic [196]. The mechanism of hyperprogression in 
immunotherapy has puzzled clinical immunologists. 
We might consider that the phenotype of TAMs 
becomes tumoricidal after immunotherapy, but little 
is known about the metabolic changes in these cells. 
An analysis of unique shuttling metabolites between 
TAMs and the TME might help us understand 
hyperprogression in immunotherapy. 

Even though the M1/2 classification is useful to 
analyze macrophages in vitro, this oversimplification 
cannot convey the heterogeneity of TAMs in vivo. 
Recent studies have indicated that TAM subsets 
cannot be explained by the M1/2-associated genes 
[197-199]. Using single-cell RNA sequencing and/or 
mass cytometry, the immune landscape of the TME 
has been revealed in human clear cell renal cell 
carcinoma [200], breast cancer [201], hepatocellular 
carcinoma [199], brain cancer [202], and colon cancer 
[203]. Thus, combined with metabolomics, the 
subtype classification of TAMs will more abundantly 
reflect the heterogeneity of TAMs in the TME, and 
novel metabolic targets might be discovered. 
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