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Abstract 

The notion of personalized medicine demands proper prognostic biomarkers to guide the optimal 
therapy for an invasive breast cancer patient. However, various risk prediction models based on 
conventional clinicopathological factors and emergent molecular assays have been frequently limited by 
either a low strength of prognosis or restricted applicability to specific types of patients. Therefore, there 
is a critical need to develop a strong and general prognosticator. 
Methods: We observed five large-scale tumor-associated collagen signatures (TACS4-8) obtained by 
multiphoton microscopy at the invasion front of the breast primary tumor, which contrasted with the 
three tumor-associated collagen signatures (TACS1-3) discovered by Keely and coworkers at a smaller 
scale. Highly concordant TACS1-8 classifications were obtained by three independent observers. Using 
the ridge regression analysis, we obtained a TACS-score for each patient based on the combined 
TACS1-8 and established a risk prediction model based on the TACS-score. In a blind fashion, consistent 
retrospective prognosis was obtained from 995 breast cancer patients in both a training cohort (n= 431) 
and an internal validation cohort (n = 300) collected from one clinical center, and in an external validation 
cohort (n = 264) collected from a different clinical center. 
Results: TACS1-8 model alone competed favorably with all reported models in predicting disease-free 
survival (AUC: 0.838, [0.800-0.872]; 0.827, [0.779-0.868]; 0.807, [0.754-0.853] in the three cohorts) and 
stratifying low- and high-risk patients (HR 7.032, [4.869-10.158]; 6.846, [4.370-10.726], 4.423, 
[2.917-6.708]). The combination of these factors with the TACS-score into a nomogram model further 
improved the prognosis (AUC: 0.865, [0.829-0.896]; 0.861, [0.816-0.898]; 0.854, [0.805-0.894]; HR 
7.882, [5.487-11.323]; 9.176, [5.683-14.816], and 5.548, [3.705-8.307]). The nomogram identified 72 of 
357 (~20%) patients with unsuccessful 5-year disease-free survival that might have been undertreated 
postoperatively. 

 
Ivyspring  

International Publisher 



Theranostics 2021, Vol. 11, Issue 7 
 

 
http://www.thno.org 

3230 

Conclusions: The risk prediction model based on TACS1-8 considerably outperforms the contextual 
clinical model and may thus convince pathologists to pursue a TACS-based breast cancer prognosis. Our 
methodology identifies a significant portion of patients susceptible to undertreatment (high-risk patients), 
in contrast to the multigene assays that often strive to mitigate overtreatment. The compatibility of our 
methodology with standard histology using traditional (non-tissue-microarray) formalin-fixed 
paraffin-embedded (FFPE) tissue sections could simplify subsequent clinical translation. 

Key words: Breast cancer, multiphoton imaging, tumor-associated collagen signatures, disease-free survival 

Introduction 
Breast cancer prognosis after diagnosis plays a 

central role for patients and oncologists to choose 
optimally personalized therapies, and thus have 
motivated the development of a wide variety of 
survival prognostic biomarkers (prognosticators) [1] 
and risk prediction models [2]. Beyond tumor size and 
nodal status, the most popular prognosticators are 
tubule formation, nuclear pleomorphism, and mitotic 
count that dictate the histological tumor grade [3]. The 
pursuit of similar structural or imaging 
prognosticators has focused on automatic image 
analysis and the tumor microenvironment [4]. 
However, the overall trend is to shift from prognosis 
based on structural tissue features to more functional 
prognostic features, which, for example, has delivered 
stronger prognosis for specific types of patients via 
multigene assays [2, 5]. In some cases, structural 
prognosticators have been developed to 
“complement” the functional prognosticators of gene 
expression [6, 7], rather than the other way around. 
One inadvertent consequence of this trend is an 
increased emphasis on rare biomolecules such as 
certain mRNAs and proteins [8], over bulk 
biomolecules such as lipid, despite the important role 
of lipid in tumor development [9]. Another 
inadvertent consequence is to focus on cells and 
intracellular components over extracellular matrix 
constituents, even though the latter is known to form 
a dynamic niche in cancer progression [10]. This 
imbalance also holds true in the context of the tumor 
microenvironment, as emergent prognosticators 
beyond tumor cells themselves have relied more on 
the stromal cells [6, 11] or infiltrating immune cells 
[12] than the extracellular matrix constituents.  

As one prominent example of this trend, various 
multigene assays have been compared with computer 
decision support systems based on conventional 
clinicopathological factors [13, 14], and have gained 
prognostic strength for various early-stage patients 
with young ages (or premenopausal status), few 
positive lymph nodes, or small tumor sizes [5]. 
However, the restriction to these patients decreases 
the general applicability of these multigene assays, 
limiting their usefulness in less developed countries 
[15] where breast cancer is predominantly diagnosed 

by signs and symptoms on physical exam (rather than 
screening) at relatively late stages. In this situation, 
wherein under-treatment is common and medical 
budgets are often limited, there is a critical need to 
develop a strong and general imaging prognosticator 
compatible with standard histology that outperforms 
the conventional clinicopathological factors. 

Since this type of prognosticator has rarely been 
clinically validated beyond the infiltrating immune 
cells in colorectal cancer [12], we aim to test the 
extracellular structures of interstitial (non-basement- 
membrane) collagen (bulk biomolecule) that have 
prominently defied the above trend of prognosticator 
development and highlighted the frequently 
underappreciated role of the tumor microenviron-
ment [16-23]. Although the corresponding imaging 
prognosticators have exhibited independent 
prognostic values over individual clinicopathological 
factors, they have not been put into a clinical context 
of a pathological alternative (i.e. multivariate risk 
prediction model of the clinicopathological factors 
that makes a computer decision support system 
available for pathologists) or have not unambiguously 
demonstrated their differential values over this 
context, possibly due to their insufficient prognostic 
strength and general applicability (Table S1).  

In this study, we expand the three 
tumor-associated collagen signatures (TACS1-3) 
discovered by Keely and coworkers using 
multiphoton microscopy (MPM) [24], by defining and 
recognizing five new tumor-associated collagen 
signatures (TACS4-8) at a larger (~7×) scale and at the 
invasion front of the primary tumor. We surprisingly 
find that TACS1-3 (well-established biomarkers) at a 
scale of 0.4 mm (typical scale for MPM) have 
significantly lower prognostic strength in comparison 
to TACS4-8. For the disease-free survival (DFS) 
prognosis of 995 Chinese patients, the risk prediction 
model based on TACS1-3 competes poorly with a 
contextual clinical model developed in our systematic 
study, while its counterpart based on TACS4-8 (or 
TACS1-8) considerably outperforms this contextual 
clinical model and may thus convince pathologists to 
pursue a TACS-based prognosis. Our methodology of 
prognosis identifies a significant portion of patients 
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susceptible to undertreatment, in contrast to the 
multigene assays that often strive to mitigate 
overtreatment. The compatibility of our methodology 
with standard histology using traditional (non-tissue- 
microarray) formalin-fixed paraffin-embedded (FFPE) 
tissue sections could simplify subsequent clinical 
translation (Table S1).  

Methods 
Patients 

This research used anonymous data for 
retrospective study and was conducted under a 
protocol approved by the Institutional Review Boards 
of Fujian Medical University Union Hospital and 
Harbin Medical University Cancer Hospital. We 
collected 1223 FFPE tissue blocks (Figure 1A) from 
1223 patients (aged 21–87 years) who underwent 
surgical resection, in which 228 patients were 
excluded and 995 patients passed quality control for 
subsequent analysis (Figure 1B). The inclusion criteria 
were: (i) patients had pathologically confirmed IBC 
without distant metastasis and underwent surgical 
resection; and (ii) clinicopathological characteristics 
and follow-up information were complete. For the 
training and internal validation cohorts, 731 samples 
were obtained between Nov. 2003 and Jun. 2017 from 
patients treated at the Fujian Medical University 
Union Hospital (Fuzhou, China). We used 
computer-generated random numbers to assign 431 of 
these patients to the training cohort and 300 patients 
to the internal validation cohort. The external 
validation cohort comprised 264 patients collected 
between Jul. 2009 and Dec. 2014 at Harbin Medical 
University Cancer Hospital (Harbin, China) (Figure 
1B).  

Clinicopathologic characteristics and follow-up 
information 

Tumor size was defined as the maximal diameter 
of the tumor in a resected specimen (T1: the long 
diameter of the tumor mass is less than 2 cm, T2: the 
long diameter of the tumor mass is greater than 2 cm 
and less than or equal to 5 cm; T3: the long diameter of 
the tumor mass is greater than 5 cm). Nodal status 
was classified into three categories according to the 
number of positive lymph nodes (N0: 0 positive 
lymph node; N1: 1 to 3 positive lymph nodes; N2: 
more than or equal to 4 positive lymph nodes). 
Clinical stage (I, II, III) of the tumor was obtained by 
two surgeons with more than 10 years of clinical 
experience through reviewing clinical data. Two 
pathologists with more than 10 years of experience in 
the diagnosis of breast tumor evaluated the 
histological grade (G1 to G3) according to the 

Nottingham histologic grade. The expression of 
estrogen receptor (ER), progesterone receptor (PR), 
HER2, and the Ki67 were detected by 
immunohistochemistry (IHC). Tumors with HER2, 
IHC staining scores of 0 or 1+ were defined as HER2 
negative, while IHC staining scores of 3+ were 
considered HER2 positive. For IHC staining scores of 
2+, molecular detection (in situ hybridization (ISH)) 
was needed to further confirm that the unamplified 
results of ISH were negative for HER2, and the 
amplified result of ISH were positive for HER2. 
According to the detection results of ER, PR, HER2 
and Ki67 expression by IHC or ISH, patients were 
classified into four molecular subtypes as follows: 
Luminal A: ER positive and/or PR positive, HER2 
negative and Ki67 low expression; Luminal B (HER2 
negative): ER positive and/or PR positive; HER2 
negative and Ki67 high expression; Luminal B (HER2 
positive): ER-positive and/or PR positive, and HER2- 
positive; HER2-enriched: ER negative, PR negative 
and HER2 positive; Triple-negative: negative for ER, 
PR and HER2. In this study, age, molecular subtypes, 
tumor size, nodal status, clinical stage and histological 
grade were categorical variables. Median DFS 
follow-up was 70.0 months (IQR 37.0-81.0).  

Multiphoton imaging system 
The imaging system was built on a commercially 

laser scanning microscope platform (LSM 880 Zeiss, 
Germany) using a mode-locked femtosecond 
Ti:Sapphire laser that emitted linearly polarized 810 
nm excitation light. The backscattered signals from 
tissue samples were simultaneously obtained via two 
independent channels. One channel detected second 
harmonic generation (SHG) signal (green color) 
between 395 nm and 415 nm while the other channel 
detected two-photon excitation fluorescence (TPEF) 
signal (red color) between 428 nm and 695 nm. A 
Plan-Apochromat ×20 objective (NA = 0.8, Zeiss, 
Germany) was employed to acquire large field 
images. Larger scale imaging was enabled by a 
motorized stage under computer control (ZEN 2.3 SP1 
software). The lateral resolution was ~0.8 µm while 
the imaging field of view was about 0.5×0.5 mm2, 
typically.  

Sample preparation and TACS quantification 
For each patient, an archived ~2-cm sized FFPE 

tissue block containing the invasive front [12, 16, 19] 
(i.e. the perceived tumor boundary that separates the 
primary tumor and adjacent normal appearing tissue) 
was selected for serial sectioning. Two consecutive 
5-μm thick serial sections were cut from each paraffin 
block using a semiautomatic microtome in one 
pathology laboratory (Figure 1A). One section was 
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used for H&E histology by whole slide imaging, after 
which a pathologist confirmed the presence of tumor 
cells and their borders. Throughout the entire tissue 
section, several (7-20) ~2.8-mm-sized non-overlap-
ping regions of interest (ROI) across the invasive 
margin and adjacent tumor area were labeled 
(numbered) in the H&E images (Figure 1A) by two 
imaging scientists (Lianhuang Li, Gangqin Xi) who 
were blind to the final pathological outcomes of the 
patients. ROIs with ductal carcinoma in situ (DCIS) 
were preferably selected inside the tumor, while ROIs 
were extensively sampled at the invasive front. The 
other section was deparaffinized by alcohol and 
xylene. Label-free dual-modal multiphoton 
microscopy (MPM) simultaneously collecting second 
harmonic generation (SHG) and two-photon excited 
fluorescence (TPEF) images [25] was performed for all 
labeled ROIs on this deparaffinized but unstained 
section and co-registered with the H&E image 
(Figures 2-3). This provided an average MPM 
sampling area of ~60 mm2/patient, much larger than 
that in prior works often employed core needle biopsy 
(Table S1). Subsequently, the MPM images were 
visually examined by three independent observers 
(Jiajia He, Gangqin Xi, Lianhuang Li) who were also 
blind to the final pathological outcomes. For each ROI, 
an individual TACS (defined below) was determined 
to be “present” if at least two reviewers answered 
“yes” (Figure 1A). The average MPM imaging time on 
one section (patient) was ~1 h, and typical 
examination time for one fully trained reviewer to 
extract TACSs was ~10 min/section. 

Intraclass correlation coefficients (ICCs) were 
used to evaluate the intra-observer and inter-observer 
discordance of feature determination. To ensure 
reproducibility, inter-observer correlation coefficients 
of the TACSs determined by the three observers were 
calculated. To assess the intra-observer discordance, 
we randomly selected MPM images of 30 patients for 
TACS feature extraction. Each panelist performed the 
extraction for 10 patients and repeated the same steps 
a week later. The mean intra-observer and 
inter-observer agreement of the TACS feature 
extraction among three panelists were 0.921 (95% CI, 
0.896-0.945) and 0.857 (95% CI, 0.825-0.888). An ICC 
value of >0.8 is considered as highly consistent. 

Statistical analysis  
Statistical analysis was implemented with R 3.5.2 

and IBM SPSS Statistics 24. All statistical tests were 
two-sided, and a P-value of less than 0.05 was 
considered statistically significant. Univariate and 
multivariate Cox proportional hazard regression 
analyses were used to select independent predictors 
by likelihood ratio test. We used independent 

predictors to construct the nomogram and generate a 
comprehensive indicator for estimating disease-free 
survival (DFS). The performance of nomogram was 
estimated using discrimination and calibration. The 
calibration of the nomogram was evaluated by a 
calibration plot, which was a graphic representation 
of the relationship between the actual incidence and 
the predicted probabilities. In a well calibrated model, 
the predictions should be close to the 45-degree 
diagonal line. We also constructed receiver operating 
characteristic (ROC) curves and calculated the areas 
under the curves (AUCs) to evaluate prognostic 
accuracy. The ROC curve was used to calculate the 
optimal cutoff value that was determined by 
maximizing the Youden index in the training cohort, 
and then, the same cutoff value was applied to the 
validation cohorts. The Kaplan-Meier survival curves 
were further used to estimate the correlation between 
variables and disease-free survival, and the log-rank 
test was used to compare differences in the survival. 

Results 
Definition of TACS1-8 and patient-specific 
quantification  

TACS1-3 have been proposed as biomarkers in 
mouse mammary carcinoma progression [24] and 
subsequently identified as survival prognosticators 
for human invasive breast cancer (IBC) [20] and DCIS 
[21], as well as human ovarian cancer [22] and canine 
mammary gland carcinoma [23]. We examined five 
new TACS-like (TACS4-8) structures in 431 IBC 
patients (Figure 1A) intended as the training cohort 
for our retrospective study (Figure 1B). It should be 
noted that the differentiation among TACS1-3 (Figure 
2) and TACS4-8 (Figures 2-3) occurred at a scale of 0.4 
mm and 2.8 mm, respectively. The accumulation of 
numerous large-scale SHG-TPEF images and 
co-registered H&E images from the training cohort 
allowed us to recognize 8 major TACSs (Figure 1C, 
Figures 2-3), in a manner like how up to 17 
histopathological subtypes were identified as 
biomarkers from H&E images [1]. TACS1 and TACS2 
resemble those defined in mouse mammary 
carcinoma [24] except for the lack of dense collagen 
(TACS1) and the lack of highly straightened (taut) 
collagen fibers (TACS2). These two TACSs can thus be 
treated as the human counterparts of the two 
DCIS-like structures. As reported previously [20, 21], 
TACS3 reflects a transition from DCIS to IBC due to 
the breakdown of the basement membrane. Therefore, 
TACS1-3 can be attributed to the initiation stage of 
tumor development (Figure 2).  

Importantly, TACS4 is defined by a reticular 
distribution of collagen fibers adjacent to 
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continuously distributed tumor cells, which leads to a 
clear tumor boundary. While TACS5 is defined by 
directionally distributed collagen fibers that enable 
unidirectional tumor cell migration without a clear 
tumor boundary, TACS6 is defined by chaotically 
aligned collagen fibers that enable multidirectional 
tumor cell migration without a clear tumor boundary. 
Finally, TACS7 is defined by densely distributed 
collagen fibers at the tumor invasion front largely free 
of tumors cells, in contrast to TACS8 defined by 
sparsely distributed collagen fibers at the tumor 
invasion front largely free of tumors cells. TACS4-8 
apparently reflect different tumor-stroma interactions 
at the invasion stage of tumor development after the 
DCIS-to-IBC transition (Figures 2-3). 

To a large degree, TACS1-3 are located inside the 
tumor or near the tumor boundary, while TACS4-8 

are located at the invasion front near the tumor 
boundary (Figure 1A, Figure 1C) and can only be 
easily recognized at a large imaging field-of-view of 
~2.8 mm. They might have escaped detection in 
previous studies that limited imaging field of view to 
1 mm in at least one dimension (dictated by the core 
size of core needle biopsy) or did not differentiate 
whether the imaging was conducted at the invasion 
front or tumor center (Table S1) [16-23]. For a given 
patient represented by one FFPE section, multiple 
TACSs might be present in one ROI and one TACS 
might exist in multiple ROIs. This complexity was 
caused by the large size (~2.8 mm) of the ROIs. 
Regardless of the complexity, TACS information was 
quantified as an 8-element vector of CTACSi, which 
reflected the percentage of TACSi (i = 1, 2, ... or 8) 
present in all ROIs (Figure 1A).  

 
 

 
Figure 1. (A) Extraction and quantification of TACSs for one exemplary patient among the training, internal validation, and external validation cohorts. For one H&E section of 
a patient, a total of 9 regions of interest (ROIs) are located either at the invasive front (1-8) or inside the tumor (9). (B) Study flowchart to exclude patients with neoadjuvant 
chemotherapy or radiotherapy, unknown pathological characteristics and follow-up, or damaged and tumor-free sections. The TACS-score is calculated for each patient using the 
linear combination of TACS percentages weighted by their regression coefficients. (C) Illustration of the structural and organizational features of collagen in the TACSs. TACS1-3 
are plotted in the tumor center for simplicity but may be present in the invasion front like TACS4-8. 
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Figure 2. Images of TACS1-3 (or TACS4) at the initiation (or expansion) stage of tumor development. TACS1: curved collagen fibers wrapped around emergent tumor foci; 
TACS2: collagen fibers stretched due to tumor growth and aligned more parallel to tumor boundary; TACS3: collagen fibers aligned perpendicular to the tumor boundary in a 
radiation pattern to facilitate tumor cell migration; TACS4: reticular distribution of collagen fibers adjacent to expanding tumor that leads to a clear tumor boundary. Scale bar: 
500 μm. 

 
The quantified TACS information completed the 

patient-specific quantification in this study that also 
included age, molecular subtype (Luminal A, 
Luminal B, HER2-enriched, or Triple-negative), tumor 
size, nodal status, histological grade, clinical stage, 
(chemo-, endocrine, radiation, and/or targeted) 
therapy, and DFS (Tables S2-S3). Recurrence was 
defined as the regeneration of tumor at the local site 
or in regional or distant organs after surgical resection 
of the primary tumor, while DFS was defined as the 
time from the date of diagnosis (within 3 months from 
primary tumor surgery) to the date of first recurrence 
or death [26]. 

TACS1-8 as a strong prognosticator 
Based on the quantified TACS and DFS data in 

the training cohorts (Table S2), we used ridge 
regression with cross validation to retrieve the 
coefficient of each TACS. The coefficients of all TACSs 
were fixed in a formula to calculate a patient-specific 
TACS-score (Figure 1B), which was a manifestation of 
the 8 TACSs. We then applied this formula to each 
patient in the training cohort, as well as an internal 
validation cohort (n = 300) and an external validation 

cohort (n = 264) (Figure 1B). In all cohorts, the high 
and low TACS-scores were consistently associated 
with high and low recurrence rates, respectively 
(Figure 4A).  

The calculated patient-specific TACS-score, 
along with age, molecular subtype, tumor size, nodal 
status, clinical stage, chemotherapy, and endocrine 
therapy (Table S3), were significantly (P < 0.05) 
associated with DFS in the univariate Cox 
proportional hazard regression analysis of the 
training cohort (Table S4, part 3). As expected, older 
age, Triple-negative subtype, larger tumor size, more 
positive lymph nodes, higher clinical stage, absence of 
chemotherapy, absence of endocrine therapy, and 
higher TACS-score were associated with worse DFS. 
These prognosticators, except for the endocrine 
therapy strongly correlated with the molecular 
subtype (Table S4, part 2), were selected in stepwise 
building of prognostic model. We used the forward 
stepwise selection method as the stopping rule to 
select independent predictors by the likelihood ratio 
test. In the corresponding multivariate analysis, 
TACS-score remained as an independent prognostic 
factor, along with the well-known biomarkers of 
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tumor size, nodal status, and molecular subtype 
(Table S4, part 1). This was consistent with the 
increased appreciation of molecular subtype in IBC 
classification and prognosis [27]. The multicollinearity 
analysis yielded a variance inflation factor of the 
prognosticators from 1.001 to 1.187 (values far less 
than 10), indicating that there was no collinearity 
among these prognosticators. 

The risk prediction model containing these 
independent prognosticators were established from 
the training cohort and presented as a nomogram, 
wherein the TACS-score considerably outweighed 
molecular subtype, nodal status, and tumor size 
(Figure 4B). Each subgroup of these prognosticators 
was assigned a point in the corresponding point scale. 
By summing up the points of all prognosticators in the 
scale of total points, we could determine the 1-year, 
3-year and 5-year DFS rates for a given patient. For 
example, a patient with a TACS-score of 0.23, nodal 
status of 0, tumor size of ≤2cm, and molecular subtype 
of Triple-negative, would have a total point of 75 and 
predicted 1-year, 3-year and 5-year DFS rates of 92%, 

72%, and 54%, respectively (Figure 4B, red line). The 
calibration curve of the nomogram for 5-year DFS rate 
showed good agreement between observed and 
predicted rates in the training cohort (approximation 
to 45-degree diagonal line is indicative of a well 
calibrated model), which was retained in the two 
validation cohorts (Figure 4C). This guaranteed the 
repeatability and reliability of the established 
nomogram. 

As a reference for TACS-based prognosis, a 
contextual clinical model was developed based on 
eight clinicopathological factors (age, molecular 
subtype, tumor size, nodal status, clinical stage, 
histological grade, chemotherapy, and radiation 
therapy) as the computer decision support system 
available for pathologists. To assess the differential 
values of TACS4-8 unique to this study, a multivariate 
model of TACS1-3 was developed in parallel to the 
TACS1-8 model (TACS-score) discussed above, and 
would reflect what extent of prognosis could be 
achieved for these 995 patients from the 
methodologies of previous works [20-24].  

 

 
Figure 3. Images of TACS5-8 at the invasion stage of tumor development. TACS5: directionally distributed collagen fibers that enables unidirectional tumor cell migration 
without a clear tumor boundary; TACS6: chaotically aligned collagen fibers that enables multidirectional tumor cell migration without a clear tumor boundary; TACS7: 
densely-distributed collagen fibers at the tumor invasion front largely free of tumors cells; TACS8: sparsely-distributed collagen fibers at the tumor invasion front largely free of 
tumors cells. Scale bar: 500 μm. 
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Figure 4. (A) Recurrence histograms of TACS-score for three cohorts. (B) Nomogram of TACS-score, molecular subtype, tumor size and nodal status derived from the training 
cohort. (C) Calibration curves of the nomogram to predict 5-year DFS rate for three cohorts. 

 
The discriminatory accuracy of the clinical 

model on 5-year DFS rate was reflected by the area 
under the curve (AUC) of ~0.73 from the receiver 
operating characteristic (ROC) curve, which 
expectedly outperformed simpler models based on 
some individual prognosticators (tumor size, nodal 
status, and molecular subtype) (Figure 5A, Figure 
S1A), and approximated the high AUC (0.79-0.81) 
obtained by including unconventional prognostic-
cators such as blood test variables, race/ethnicity, 
cancer detection mode, alcohol consumption, and 

diagnosis year [26, 28]. The TACS1-3 model had low 
prediction accuracy and led to a lower AUC of ~0.64 
for all cohorts, echoing the low prognostic strength of 
TACS1-3 observed in canine mammary gland 
carcinoma [23]. In contrast, the TACS1-8 model had 
high prediction accuracy (Figure S1B) and led to a 
higher AUC of ~0.82 for all cohorts (Figure 5A, Figure 
S1A). The nomogram model further improved the 
AUC to ~0.86 and enhanced the discriminatory 
accuracy (Figure 5A, Figure S1A). As to the 
corresponding stratification of high- and low-risk 
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patients, the TACS1-3 model, clinical model, TACS1-8 
model, and nomogram model delivered an increasing 
hazard ratio (HR) from ~2 to ~7 (Figure 5A), 
indicating an increasing ability for risk stratification. 
Thus, the combined high discriminatory accuracy and 
super risk stratification ability validated the 
TACS-score as a strong DFS prognosticator.  

TACS1-8 as a general prognosticator 
To demonstrate the general applicability of the 

TACS-score prognosticator, we combined all cohorts 
into 995 patients classified by various clinicopatholo-
gical factors (Table 1). We found that the TACS-score 
remained statistically significant in all cases. In the 
Kaplan-Meier analysis, each classified group showed 
relatively large separation between the low and high 
TACS risk patients (Figure S2). The high TACS risk of 
tumor size ≤2cm or 2-5cm had a poorer prognosis 
than the low TACS risk of tumor size >5cm; the high 
TACS risk of 0 or 1-3 positive lymph nodes had a 
poorer prognosis than the low TACS risk of ≥4 
positive lymph nodes; the high TACS risk of clinical 
stage I or II had a poorer prognosis than the low TACS 
risk of clinical stage III; and the high TACS risk of 
histological grade G1 or G2 had a poorer prognosis 

than the low TACS risk of histological grade G3 
(Figure S2). These results indicated that the 
TACS-score risk stratification reclassified a significant 
portion of patients classified by some well-known 
clinicopathological factors (i.e. highly complemented 
these factors), and the TACS-score functioned as a 
general prognosticator with no restriction to 
specifically classified patients. The small deficiency in 
risk assessment of Luminal A patients (with a low 
AUC of 0.758) was more than compensated by the 
outstanding ability in risk assessment of 
HER2-enriched and Triple-negative patients. To the 
opposite of, yet highly complementary with typical 
multigene assays, the TACS-score performed better 
for estrogen receptor-negative patients than for 
estrogen receptor-positive patients, and attained a 
higher AUC in highly node-positive (>3) patients than 
in node-negative (0) patients (Table 1). Interestingly, 
the TACS-score also performed well for the early 
stage IBC (Table 1) where the multigene assays have 
delivered the best value to avoid chemotherapy [2, 5]. 
A larger number of early stage IBC patients will be 
needed to explore the ability of the TACS-score to 
mitigate cancer overtreatment. 

 
 
 

Table 1. Prognosis of clinicopathologically classified IBC patients by the TACS1-8 model. 

Variable 5-yr DFS Low risk HR 95% CI P value AUC Sensitivity Specificity 
Age         
≤50 369 (66.5%) 329 (59.3%) 5.91 4.32-8.08 <0.0001 0.825 0.747 0.764 
>50 269 (61.1%) 231 (52.5%) 6.29 4.42-8.95 <0.0001 0.829 0.819 0.747 
Molecular subtype         
Luminal A 180 (81.1%) 135 (60.8%) 3.88 2.13-7.05 <0.0001 0.758 0.738 0.689 
Luminal B 255 (60.3%) 229 (54.1%) 5.64 4.03-7.91 <0.0001 0.822 0.780 0.757 
HER2-enriched 118 (61.1%) 116 (60.1%) 8.35 4.95-14.1 <0.0001 0.871 0.773 0.839 
Triple Negative 85 (54.1%) 80 (51.0%) 8.02 4.38-14.7 <0.0001 0.875 0.819 0.788 
Tumor size         
≤2cm 326 (73.3%) 264 (59.3%) 5.94 4.02-8.77 <0.0001 0.820 0.790 0.736 
2-5cm 293 (59.2%) 272 (54.9%) 6.64 4.82-9.14 <0.0001 0.841 0.782 0.778 
>5cm 19 (34.5%) 24 (43.6%) 3.62 1.71-7.66 0.001 0.804 0.750 0.789 
Nodal status         
0 380 (77.7%) 328 (67.1%) 6.07 4.15-8.88 <0.0001 0.828 0.743 0.789 
1-3 157 (63.3%) 130 (52.4%) 4.46 2.82-7.05 <0.0001 0.776 0.758 0.688 
≥4 101 (39.1%) 102 (39.5%) 5.34 3.57-7.99 <0.0001 0.840 0.822 0.743 
Clinical stage         
Ⅰ 216 (81.5%) 178 (67.2%) 4.41 2.61-7.47 <0.0001 0.803 0.714 0.759 
Ⅱ 317 (68.0%) 278 (59.7%) 6.06 4.25-8.64 <0.0001 0.817 0.758 0.763 
Ⅲ 105 (39.8%) 104 (39.4%) 5.37 3.59-8.02 <0.0001 0.833 0.824 0.733 
Histological grade         
G1 98 (74.2%) 73 (55.3%) 5.48 2.60-11.6 <0.0001 0.780 0.794 0.684 
G2 397 (66.3%) 342 (57.1%) 6.45 4.73-8.80 <0.0001 0.828 0.792 0.756 
G3 143 (54.2%) 145 (54.9%) 6.09 4.05-9.16 <0.0001 0.853 0.760 0.811 
Estrogen receptor         
positive 434 (67.8%) 363 (56.7%) 5.06 3.77-6.78 <0.0001 0.798 0.767 0.728 
negative 204 (57.5%) 197 (55.5%) 8.47 5.71-12.6 <0.0001 0.878 0.801 0.819 
Young early stage  120 (83.3%) 102 (70.8%) 4.96 2.40-10.2 <0.0001 0.862 0.708 0.792 
General early stage  216 (81.5%) 178 (67.2%) 4.41 2.61-7.47 <0.0001 0.803 0.714 0.759 

Note: Young early stage invasive breast cancer (Age ≤50, Tumor size ≤2cm, Nodal status 0, Clinical stage I); General early stage invasive breast cancer (Tumor size ≤2cm, 
Nodal status 0, Clinical stage I).  
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We also generalized the binary risk stratification 
of the 995 patients to the corresponding quaternary 
stratification into equal sized quartiles (Figure 5A, 
Table S5). In the TACS1-8 model, the Kaplan-Meier 
curves of the two low-risk quartiles approximated 
each other but differed significantly from those of the 

two high-risk quartiles (Figure 5A, right panel). This 
feature was also observed for the nomogram model 
but not for the TACS1-3 model or clinical model 
(Figure 5A, right panel), consistent with the dominant 
role of TACS-score in the nomogram (Figure 4B).  

 

 
Figure 5. (A) Kaplan-Meier curves of DFS according to the TACS1-3 model, clinical model, TACS1-8 model, and nomogram model in four cohorts, with AUC values at the 
5-year time point, HR intervals with 95% confidence level, and numbers of patients in two or four risk groups (colored numbers). (B) Numbers of likely undertreated 
(red-highlighted) and overtreated (purple-highlighted) patients according to Chinese treatment guideline and the four models. (C) Distribution histogram of TACS1-3 score and 
TACS-score among 995 patients in the TACS1-3 model and TACS1-8 model, respectively. 
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Treatment implication  
To assess postoperative adjuvant treatment, we 

used the 5-year prognosis obtained by the clinical, 
TACS, and nomogram models to evaluate the 
recurrence risk groups classified by the treatment 
guideline in China, which is consistent with the 10th 
St Gallen expert consensus (often considered as the 
best treatment approach for primary IBC) [29]. The 
execution of this guideline for the 995 patients 
allowed 626 patients to be stratified as minimum risk 
(n = 32) or moderate risk (n = 594) (defined together as 
low risk) for less aggressive treatment, and 369 
patients as high risk for more aggressive treatment 
(Figure 5B). The guideline caused likely 
undertreatment to 150 patients and likely 
overtreatment to 162 patients, which served as the 
references for the four models: (i) the TACS1-3 model 
lowered the undertreated patients by 94 at the cost of 
240 more overtreated patients, reflecting a worsened 
performance; (ii) the clinical model lowered the 
overtreated patients by 49 at the cost of 24 more 
undertreated patients, reflecting a small 
improvement; (iii) the TACS1-8 model lowered the 
undertreated patients by 72 and the overtreated 
patients by 6, reflecting a larger improvement; and (iv) 
the nomogram model lowered the undertreated 
patients by 72 and the overtreated patients by 36, 
reflecting the best overall improvement (Figure 5B, 
Figure S3). Thus, our TACS-score-based prognosis 
showed great potential to complement the 
standard-of-care treatment guideline in China and 
improve the choices in tailored adjuvant treatment. In 
particular, the patients with poor TACS-sore 
prognosis but low risk under the guideline (72 of 357 
patients with unsuccessful 5-year DFS) could have 
been treated more aggressively. Thus, the TACS-score 
could be valuable to address the undertreatment in 
less developed countries, which accounts for 45% 
(and increasing) of the global burden of breast cancer 
[15]. 

Individual TACS effects 
To assess the individual effects of the 8 TACSs, 

we performed similar univariate and multivariate 
Cox proportional hazard regression analysis as 
discussed above. While the combinations of 
independent TACSs exhibited small difference among 
different cohorts, TACS1, 3, 4, 6, 8 were identified as 
independent prognosticators for the combined cohort 
(Table S6). Consistently, the coefficients associated 
with TACS5 and TACS7 from the ridge regression 
(training cohort) were small in comparison to those 
associated with other TACSs (Figure 6A). Whether the 
TACS prognosticator can be simplified from an 
8-structure model to a 6- or 5-structure model will be 

explored in future studies.  
The correlation between individual TACSs and 

DFS was also assessed by Spearman's rank correlation 
coefficient. While TACS-specific coefficients exhibited 
small difference among different cohorts, TACS6, 5, 8 
(TACS4, 1, 7) were consistently correlated with poor 
(good) prognosis (Figure 6B). The significant 
univariate correlation of TACS5 (TACS7) was 
obscured in the multivariate analysis (Table S6) and 
ridge regression (Figure 6A), plausibly by the larger 
effect of TACS6 (TACS4). In contrast, the small 
univariate correlation of TACS3, likely due to its 
low-percentage presence (Figure 6C), emerged as a 
large coefficient in the (multivariate) ridge regression 
(Figure 6A). We noted that the external validation 
cohort (northern Chinese patients, Figure 1B) had 
rather different percentages of TACS1-8 presence 
from those of the training or internal validation cohort 
(southern Chinese patients) (Figure 6C). The 
consistent results from the two disparate cohorts 
(Figure 5) reinforced the general applicability of the 
TACS-score. 

We compared the 5-year DFS prognosis using 
individual TACS models, the clinical model, TACS1-3 
model, and TACS1-8 model. We found that the 
TACS1-8 model showed significantly higher AUC 
than individual TACS models (Table S7), which was 
associated with the more even distribution of 
TACS-score among all 995 patients than a specific 
CTACSi (Figure 5C vs. Figure 6D). Thus, the effects of all 
TACSs should be comprehensively considered. On 
the other hand, one model that integrated three 
independent TACS structures (TACS4, TACS6, and 
TACS8) outperformed the TACS1-3 model or the 
clinical model, and approximated the performance of 
the TACS1-8 (full) model, indicating the 
disproportional contribution of TACS4-8 over 
TACS1-3 to the TACS-score (Table S7). In this sense, 
our study demonstrates the limitation of previous 
studies based on TACS1-3 alone [20-24].  

Discussion 
Stephen Paget’s “Seed and Soil” hypothesis 

suggested that breast cancer metastasis originated 
from the intricate interaction between tumor cells and 
their microenvironment [30]. Breast tumor 
microenvironment can regulate tumor progression 
through extracellular matrix remodeling in 
tumor-associated stroma [10]. From the viewpoint of 
cellular gene expression, the role of the stroma in 
regulating breast tumor development and clinical 
outcome has also been recognized [11, 31]. Improved 
understanding of tumor-associated extracellular 
matrix and embedded stromal cells at the molecular 
level has motivated new cancer therapies to target the 
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tumor microenvironment, rather than the tumor cells 
themselves [32, 33]. Parallel attempts have been taken 
to shift postoperative survival prognosis from tumor 
cells and intracellular molecules or functions to 
stromal or extracellular matrix structures [4, 6, 16-23]. 
However, the corresponding tumor microenviron-
ment-based structural prognosticators have not 
demonstrated compelling strength and general 
applicability (clinical validity) to justify clinical trials 
[2], in comparison to various multigene assays based 
on tumor cells, intracellular biomarker molecules, and 
biological functions [5]. In this study, the TACS-score 
emerges as a tumor microenvironment-based 
structural prognosticator with surprising strength of 
5-year prognosis in discriminatory accuracy (AUC) 
and risk stratification ability (HR), which competes 
favorably with that of the 10-year prognosis by 
popular multigene assays [34]. Unlike the multigene 
assays, the TACS-score is generally applicable to all 
IBC subtypes, including the early stage IBC where the 
multigene assays have delivered the best value (Table 
1). The unexpected identification of the TACS-score as 
a strong and general IBC prognosticator reinforces the 
central role of the tumor microenvironment in tumor 
invasion and metastasis. It treats cancer metastasis as 
a complex tumor-stroma interaction and may 
therefore produce a survival prognosticator that 
outperforms the prognosticators based on the tumor 

cells alone.  
The innovations in anatomic pathology 

(histology) that use structural biomarkers have not 
kept pace with those of clinical pathology that use 
functional biomarkers. The invention of MPM in 1990 
[35] was thought to empower anatomic pathology by 
introducing new imaging contrasts such as SHG [36]. 
Although MPM has shown promise in in vivo optical 
biopsy to improve cancer diagnosis [37] and 
interoperative tumor margin detection to improve 
cancer surgery [38, 39], studies with more direct 
impact to histology have rarely been clinically 
validated. One plausible reason is the lack of a 
precision technology to co-register a virtual imaging 
section in the intact and often fresh tissue sample 
(MPM) with one physical section in a FFPE tissue 
block (histology). Thus, the benefit of additional MPM 
contrasts over those available from H&E histology 
and stained immunohistology (IHC) has remained 
unclear. Our study differs from most clinical MPM 
studies by imaging a thin FFPE section, an 
underappreciated sample that is usually avoided to 
take advantage of MPM in three-dimensional imaging 
that obviates the need for tissue sectioning and 
pretreatments. Thus, our MPM-based technology of 
cancer prognosis inherits some beneficial elements of 
standard histology: (i) a retrospective study is enabled 
due to the availability of archived FFPE tissue blocks 

 
Figure 6. (A) Ridge regression of training cohort to attain the coefficients of TACSs in DFS prognosis. (B) Correlation analysis between individual TACSs and DFS for four 
cohorts. (C) Average quantified TACS data of one patient in training, internal validation, or external validation cohort. (D) Distribution histogram of CTACSi among 995 patients 
in individual TACS models. 
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with well-documented clinicopathological informa-
tion; (ii) image co-registration is readily achieved 
(Figure 1A, Figures 2-3) just as H&E-stained histology 
and stained IHC are correlated; (iii) enabled by this 
image co-registration, a pathologist can use his/her 
valuable experience to select local MPM imaging 
regions near the tumor boundary with a global view 
of the primary tumor(s) and adjacent normal 
appearing tissue (Figure 1A), which is important for 
the TACS-score to attain high prognostic value; and 
(iv) the associated IHC assays allow the determination 
of 4 IBC molecular subtypes, which complement the 
TACS-score to form a better performing nomogram. 
However, the fundamental difference that 
distinguishes our technology from standard histology 
is the replacement of histological grade with the 
TACS-score as the only structural prognosticator 
(Table S4). It is striking that the TACS-score 
overpowers the well-established histological grade [3] 
in prognostic strength, highlighting the indispensable 
role of the tumor microenvironment in cancer 
prognosis. A paradigmatic shift from viewing the 
discrete cell nuclei stained by hematoxylin to imaging 
the collagen fibers by SHG (MPM) in our “revamped” 
histology has yielded a structural prognosticator that 
can compete with the best functional prognosticators.  

Our histology approach that focuses on fibrillar 
collagen (main component of extracellular matrix) 
bridges the gap between automated H&E histology [4, 
6] that lacks molecular specificity and clinical 
molecular pathology that lacks structural information. 
This bulk biomolecule apparently outperforms many 
biomarkers of rare biomolecules in balancing the 
sensitivity and specificity of cancer prognosis (Table 
1), defying the conventional wisdom that bulk 
biomolecules are slow or insensitive to respond to 
subtle cancerous changes. This finding has opened 
many new fronts of basic and translational research. 
First, a rational understanding is needed to explain 
the disparate prognostic values of different TACSs. It 
may not be surprising that TACS4-8 at invasive or 
expansion stages and a larger imaging scale are more 
prognostic than TACS1-3 at tumor initiation stages 
and relatively small scales. The prognostic differences 
among TACS4-8 necessitate cell-migration 
extracellular matrix models that have only been 
elucidated recently using SHG [40-42]. Regardless of 
the imaging scale, TACS4,7,8 and TACS5,6 are more 
subtle structures within the TACS framework and 
may be treated as different variations of TACS2 and 
TACS3, respectively (Figures 2-3). Second, it will be 
important to examine whether the TACSs or similar 
structures of fibrillar collagen can be generalized for 
risk assessment of other cancer (prostate, lung, skin, 
liver, etc.) types, considering the broad role of 

collagen fibers in different organs and epithelial 
tissues. For one common cancer type (e.g. breast or 
colorectal cancer), it will be interesting to compare the 
prognosis by the TACS-score originated from breast 
cancer and the Immunoscore originated from 
colorectal cancer [43]. Third, a wide variety of other 
nonlinear intrinsic/label-free contrasts (e.g. TPEF in 
Figure 3 that reveals cellular information) may 
synergistically complement the SHG contrast to 
further improve the prognosis [44], allowing MPM to 
translate from bench-level laboratorial research to 
clinical practice. On the other hand, alternative 
cost-effective and/or high-throughput methods to 
image collagen fibers, such as the wide-field 
microscopy with NHS-ester fluorescent labeling [45] 
or picrosirius red staining [46], may be explored to 
lower the cost of dedicated TACS extraction. Fourth, 
this retrospective study provides strong justification 
for future prospective studies to validate the clinical 
utility of the TACS prognosticator, which not only 
demonstrates the ability to mitigate undertreatment in 
less-developed countries (Figure 5B), but also holds 
potential to mitigate overtreatment for early stage 
cancer in well-developed countries (Table 1).  

There are several strengths in our study. First, 
our instrumentation to extract TACSs is highly 
compatible with standard histology and can be 
implemented without perturbing the routine 
histological workflow in future prospective studies 
(Figure 1A). Alternative technologies using tumor 
microarrays or gene expression assays are typically 
less compatible. Second, the standardization of TACS 
feature extraction is simple after optimizing and 
fixing the settings of the label-free MPM microscope 
along with the size and number of imaging regions. 
Alternative technologies using external 
staining/labeling in the wet laboratory are typically 
more resistant to standardization. Third, the FFPE 
sections allow easy transportation from remote 
hospitals or other sample collection sites to one 
central MPM facility and may thus lower the cost of 
the TACS feature extraction. We also acknowledge 
some limitations in this study. First, our study is 
limited to Chinese IBC patients that have relatively 
low 5-year DFS rate (Table S3) than the IBC patients in 
most Western countries, even though the TACS-score 
prognosis exhibits comparable effectiveness in 
southern and northern China (Figure 1B). Also, our 
results need to be further validated with longer 
follow-up (10 years rather than 5 years), to evaluate 
the long-term effect of the TACSs. Second, the 
extraction of TACSs necessitates three reviewers and 
may be prone to interobserver discordance, which 
may be mitigated by the automatic recognition and 
quantification of TACSs [47]. Third, our prognosis is 
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limited to the DFS that emphasizes quality of life, 
rather than the overall survival that dictates cancer 
mortality (which will be further explored to test the 
validity of the TACSs). Despite these limitations, we 
believe our study has demonstrated the potential use 
of TACSs for clinical practice.  

Conclusions 
In summary, the current study demonstrates a 

surprising biomarker (TACS-score) to predict 
individual disease-free survival rate for breast cancer 
patients, with great potential to identify high-risk 
patients (mitigate undertreatment) and expand to 
other human cancers. The corresponding models have 
high discriminatory accuracy, superior risk 
stratification ability, good calibration performance, 
and broad applicability. This finding strengthens the 
often-underappreciated role of the tumor 
microenvironment in (breast) cancer prognosis, 
introduces innovative features to anatomic pathology, 
promotes the transformation of multiphoton imaging 
from laboratory-based research to clinical practice, 
and enables more informed decisions on adjuvant 
systemic therapy. 
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