Supplementary Information

Click-to-Release: Cleavable Radioimmunoimaging with [⁸⁹Zr]Zr-DFO-*Trans*-Cyclooctene-Trastuzumab Increases Tumor-to-Blood Ratio

Table of Contents

Reagents	3
Instrumentation	3
Synthesis of linker-chelator 2	4
Synthesis of linker-chelator 4	5
Synthesis of linker-chelator 6	6
Synthesis of linker-chelator 7	7
Synthesis of linker-chelator 8	8
Preparation of conjugates Tmab-2, Tmab-4, Tmab-6, Tmab-7, Tmab-8	9
Binding and internalization assay	9
Supplementary Figures	10
Supplementary Tables	18
MS analysis of Compounds 2, 4, 6-8	21
References	24

Reagents

All reagents and solvents were obtained from commercial sources (Sigma-Aldrich, Acros, Merck) and used without further purification, unless stated otherwise. 1-Amino-3,6,9,12-tetraoxapentadecan-15-oic-acid and N-(29-amino-3,6,9,12,15,18,21,24,27-nonaoxanonacosyl)-3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)propenamide as a TFA salt were purchased from Broadpharm. Tris(2-Carboxylethyl)phosphine (TCEP) was purchased from Thermo Fisher Scientific.

Trastuzumab solutions were purchased from Mylan (Ogivri) and were reconstituted following the manufacturer's instructions. Trastuzumab was purified using PD-10 cartridges (Cytiva) eluted with PBS. The concentration of the collected vials was determined by Nanodrop and the solutions were stored at -80 °C. [¹¹¹In]Indium chloride and [⁸⁹Zr]zirconium oxalate were purchased from Curium Pharma and Perkin Elmer, respectively. Water was distilled and deionized (18 MΩcm) by means of a milliQ-water filtration system (Millipore). Sterile phosphate buffered saline (PBS) was purchased from Fresenium Kabi. Amicon Ultra centrifugal devices (30kDa MW cut-off) were purchased from Millipore. Mouse serum was purchased from Innovative Research and was filtered through 0.2 µm filters before use. Zeba desalting spin columns (40kDa MW cut-off, 0.5mL) were purchased from Thermo Fisher Scientific. Chelex 100 (200-400 mesh) was purchased from Bio-Rad. For animal experiments, matrigel was purchased from Corning Life Sciences, the BT-474 cancer cell line was purchased from ATCC and 17β-estradiol releasing pellets (0.18 mg, 60 days release) were purchased from Innovative Research of America.

Instrumentation

NMR characterization of compounds was carried out on a Bruker AVANCE HD Nanobay console with a 9.4 T Ascend magnet (400 MHz) and a Bruker AVANCE III console with a 11.7 T UltraShield Plus magnet (500 MHz) equipped with a Bruker Prodigy cryoprobe. Chemical shifts are reported in ppm downfield from TMS at 25 °C. Abbreviations used from splitting patterns are s=singlet, t=triplet, q-quartet, m=multiplet and br=broad. Reverse phase (RP) liquid chromatography was performed on a Shimadzu HPLC system with MeCN/water mixtures (containing 0.1% TFA) as the eluent. LC-MS was recorded using Thermo Finigan LCQ Fleet system, applying a gradient of water and MeCN containing 0.1% TFA. Size exclusion Chromatography (SEC) was carried out on an AKTA-purifier system (Cytiva)

equipped with a UV detector, a Gabi radioactive detector and a fraction collector. The samples were loaded on a Superdex200 10/300 column (Cytiva) which was eluted with PBS with a flow rate of 0.6 mL/min. Radio-TLC was performed on ITLC-SG strips obtained by Agilent Technologies and eluted with 0.1M sodium citrate pH 6 and imaged on a phosphor imager (Typhoon FLA 7000; Cytiva). In these conditions, free ⁸⁹Zr migrates with R_f=0.9, while ⁸⁹Zr-labeled mAb remains at the origin. UV measurements were carried out on a Tecan Infinite 200 microplate reader. The antibody concentrations were measured using a Nanodrop 1000 spectrometer (Thermo Fisher Scientific) at 280 nm using a program for IgGs.

Synthesis of linker-chelator 2

2,5-Dioxopyrrolidin-1-yl(1R,6R,E)-1-methyl-6-(((3,14,25-trihydroxy-2,10,13,21,24pentaoxo-3,9,14,20,25-pentaazatriacontan-30-yl)carbamoyl)oxy)cyclooct-4-ene-1carboxylate (2).

2,5-Dioxopyrrolidin-1-yl-6-((((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)oxy)-1methylcyclooct-4-ene-1-carboxylate **1** was synthesized according to the literature procedure [1]. A mixture of **1** (15 mg, 0.035 mmol) and deferoxamine mesylate salt (29.9 mg, 0.046 mmol) in DMSO (1 mL) were stirred for 4 h at RT. The reaction was monitored by LC-MS. Upon completion of the reaction, the reaction mixture was diluted with water containing 0.1% TFA, followed by preparative RP-HPLC purification, using an elution gradient of 5% to 95% MeCN in water (both containing 0.1% TFA) to yield compound **2** (25.7 mg, 0.029 mmol, 84%) after lyophilization as a fluffy white powder.¹H NMR (400 MHz, CDCl₃) δ 5.87 (m, 1H), 5.63 (m, 1H), 5.17 (s, 1H), 3.64 (s, 3H), 3.62 (s, 1H), 3.21 (s, 4H), 2.82 (s, 4H), 2.67 (m, 4H), 2.29 (m, 3H), 2.23 (m, 3H), 2.08 (m, 2H), 1.95 (m, 2H), 1.84 (m, 8H), 1.65 (m, 4H), 1.54 (m, 5H), 1.42 (m, 5H), 1.26 (s, 3H),1.19 (m, 3H) ppm. HPLC-MS/PDA: *m/z* =868.44 [M+H]⁺, calcd. 867.46 for C₄₀H₆₅N₇O₁₄.

Synthesis of linker-chelator 4

2,5-Dioxopyrrolidin-1-yl(1R,6R,E)-1-methyl-6-((methyl(9,20,31-trihydroxy-2,10,13,21,24,32-hexaoxo-3,9,14,20,25,31-hexaazatritriacontyl)carbamoyl)oxy)cyclooct-4-ene-1-carboxylate (4).

Compound **1** (15 mg, 0.035 mmol) and sarcosine (3.1 mg, 0.035 mmol) were mixed in water for 2 h. Water was removed and the formed product **3** was combined, without further purification, with PyBOP (18.2 mg, 0.035 mmol) and DIPEA (12.1 μ L, 0.07 mmol) in DMSO and the reaction mixture was stirred in RT for 10 min, before adding deferoxamine mesylate salt (24.9 mg, 0.038 mmol). The reaction mixture was stirred in RT for 3 h and was monitored by LC-MS. Upon completion of the reaction, the reaction mixture was diluted with water containing 0.1% TFA, followed by preparative RP-HPLC purification, using an elution gradient of 5% to 95% MeCN in water (both containing 0.1% TFA) to yield compound **4** (28 mg, 0.029 mmol, 83%) after lyophilization as a fluffy white powder. ¹H NMR (400 MHz, DMSO-d₆) δ 5,77 (m, 1H), 5.09 (m, 1H), 3.84 (m, 1H), 3.40 (m, 22H), 3.04-2.80 (m, 6H), 2.59-2.54 (m, 2H), 2.27-2.22 (m, 3H), 1.95 (s, 2H), .89-1.76 (m, 2H), 1.50-1.32 (m, 5H), 1.22 (m, 4H) ppm. HPLC-MS/PDA: *m/z* =939.20 [M+H]⁺, calcd. 938.50 for C₄₃H₇₀N₈O₁₅.

Synthesis of linker-chelator 6

2,5-Dioxopyrrolidin-1-yl(1R,6R,E)-1-methyl-6-((methyl(25,36,47-trihydroxy-2,18,26,29,37,40,48-heptaoxo-6,9,12,15-tetraoxa-3,19,25,30,36,41,47heptaazanonatetracontyl)carbamoyl)oxy)cyclooct-4-ene-1-carboxylate (6).

PyBOP (19.8 mg, 0.038 mmol) and DIPEA (13.2 μ L, 0.076 mmol) were added to a stirred solution of **3** (15 mg, 0.038 mmol) in DMF at RT for 10 min. Upon activation, a solution of amino-PEG4-acid (12.2 mg, 0.046 mmol) and DIPEA (17.79 μ L, 0.102 mmol) was added, and the solution was stirred for 4 h. Upon completion of the reaction, the reaction mixture was diluted with acidified water containing 0.1% TFA, followed by preparative RP-HPLC purification, using an elution gradient of 5% to 95% MeCN in water (both containing 0.1% TFA) to yield compound **5** (20 mg, 0.031 mmol, 82%) after lyophilization as a fluffy white powder.

PyBOP (16.1 mg, 0.031 mmol) and DIPEA (10.8 μ L, 0.062 mmol) were added to a solution of **5** (20 mg, 0.031 mmol) in DMSO and the reaction was stirred at RT for 10 min. A solution of deferoxamine mesylate salt (22.3 mg, 0.034 mmol) and DIPEA (10.8 μ L, 0.062 mmol) in DMSO was added and the reaction mixture was monitored by LC-MS. After 4 h, the reaction mixture was diluted with water containing 0.1% TFA, followed by preparative RP-HPLC purification, using an elution gradient of 5% to 95% MeCN in water (both containing 0.1%

TFA) to yield compound **6** (32 mg, 0.026 mmol, 86%) after lyophilization as a fluffy white powder. ¹H NMR (400 MHz, CDCl₃) δ 5.88 (m, 1H), 5.66 (m, 1H), 5.24 (s, 1H), 3.89 (m, 6H), 3.77 (m, 2H), 3.64 (m, 15H), 3.49 (m, 2H), 3.06 (m, 3H), 2.82 (s, 3H), 2.60 (m, 2H), 2.38 (m, 1H), 2.30 (m, 2H), 2.15 (m, 3H), 1.92 (m, 2H), 1.27 (m, 3H) ppm. HPLC-MS/PDA: *m/z* =1186.32 [M+H]⁺, calcd. 1185.64 for C₅₄H₉₁N₉O₂₀.

Synthesis of linker-chelator 7

(1R,6R,E)-6-((33-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)-31-oxo-3,6,9,12,15,18,21,24,27-nonaoxa-30-azatritriacontyl)carbamoyl)-6-methylcyclooct-2-en-1-yl(3,14,25-trihydroxy-2,10,13,21,24-pentaoxo-3,9,14,20,25-pentaazatriacontan-30yl)carbamate (7).

A mixture of maleimido-PEG9-amine TFA salt (14 mg, 0.023 mmol) in DMF (0.5 mL) and DIPEA (16.2 μ L, 0.092 mmol) was added to a solution of **2** (20 mg, 0.023 mmol) in DMF (0.5 mL). The reaction mixture was stirred at RT for 2 h and monitored by LC-MS. Upon the formation of the desired product, the reaction mixture was diluted with water containing 0.1% TFA, followed by preparative RP-HPLC purification, using an isocratic elution of 20% MeCN in water (both containing 0.1% TFA) to yield compound **7** (4.5 mg, 0.003 mmol, 14%) after lyophilization as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.70 (s, 2H), 5.87 (m, 1H), 5.19 (s, 1H), 3.83 (m, 1H), 3.65-3.61 (m, 17H), 3.42 (m, 2H), 3.21 (m, 2H), 2.80-2.62 (m, 3H), 2.53 (m, 1H), 2.29-2.23 (m, 2H), 2.11-1.91 (m, 2H), 1.17 (m, 13H). 1.37 (m, 4H), 1.12 (m,

2H), 0.95-0.83 (m, 1H) ppm. HPLC-MS/PDA: $m/z = 1360.40 \text{ [M+H]}^+$, calcd. 1359.76 for $C_{63}H_{109}N_9O_{23}$.

Synthesis of linker-chelator 8

(1R,6R,E)-6-((33-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)-31-oxo-

3,6,9,12,15,18,21,24,27-nonaoxa-30-azatritriacontyl)carbamoyl)-6-methylcyclooct-2-en-1-yl methyl(25,36,47-trihydroxy-2,18,26,29,37,40,48-heptaoxo-6,9,12,15-tetraoxa-3,19,25,30,36,41,47-heptaazanonatetracontyl)carbamate (8).

A mixture of maleimido-PEG9-amine TFA salt (4 mg, 0.023 mmol) in DMF (0.5 mL) and DIPEA (6.2 μ L, 0.092 mmol) was added to a solution of **6** (20 mg, 0.023 mmol) in DMF (0.5 mL). The reaction mixture was stirred at RT for 2 h and monitored by LC-MS. Upon the formation of the desired product, the reaction mixture was diluted with water containing 0.1% TFA, followed by preparative RP-HPLC purification, using an isocratic elution of 20% MeCN in water (both containing 0.1% TFA) to yield compound **8** (4.2 mg, 0.002 mmol, 11%) after lyophilization as a colorless oil. Isolated compound **8** contains an impurity resulting from addition of maleimido-PEG9-amine to the maleimide moiety in **8** (ca. 10% by analytical HPLC). ¹H NMR (500 MHz, CDCl₃) δ 6.70 (s, 2H), 5.87 (m, 1H), 5.62 (m, 1H), 5.19 (s, 1H), 3.99-3.94 (m, 1H), 3.84 (m, 1H), 3.72 (m, 1H), 3.65-3.61 (m, 17 H), 3.53 (m, 2H), 3.49-3.46 (m, 1H), 3.41 (m, 1H), 3.21 (m, 3H), 3.08-3.01 (m, 2H), 2.83 (m, 2H), 2.62-2.57 (m, 2H), 2.53-2.49 (m, 2H), 2.04-2.01 (m, 1H), 1.31-1.19 (m, 21H), 1.12 (m, 4H), 0.89-0.81 (m, 7H) ppm. HPLC-MS/PDA: *m/z* =1677.56 [M-H]⁺, calcd. 1677.94 for C₇₇H₁₃₅N₁₁O₂₉.

Preparation of conjugates Tmab-2, Tmab-4, Tmab-6, Tmab-7, Tmab-8

Trastuzumab was conjugated to compounds **2**, **4**, **6** via NHS chemistry. Typically, trastuzumab (1 mg) was reacted for 2 h with the linker-chelator (35 eq) in PBS (final concentration 4 mg/mL, pH adjusted to ca 8.8 with 1M sodium carbonate). The crude reaction mixture was purified using SEC chromatography and chelex-treated PBS as an eluent and then the purified mAb conjugate was stored in aliquots at -80 °C for further use. Typically, this procedure afforded ca 1.6 linker-chelator per antibody, as determined by a tetrazine titration with ¹¹¹Inlabeled tetrazine, analyzed by SDS-PAGE [1].

Trastuzumab was conjugated to compounds 7 and 8 via maleimide chemistry using a modification of an already published procedure [2]. Trastuzumab (1 mg) was partially reduced with 2.3 eq TCEP in PBS at 37 °C for 30 min. Then, the solution was 1:1 diluted with PBS containing 5mM EDTA (pH adjusted to 6.8) and was cooled on ice. The reduced antibody was reacted with the linker-chelator 7 or 8 (10 eq, 10 mg/mL in DMSO) for 30 min on ice and then overnight at 4 °C in the dark. The crude reaction mixture was purified by SEC using chelex-treated PBS as eluent and then stored in aliquots in -80 °C for further use. Typically, this procedure afforded 2.5 linker-chelators per antibody, as measured by tetrazine titration [1].

Binding and internalization assay

The HER2 positive BT-474 cells were cultured in RPMI medium supplemented with 2 mM glutamine and 10% fetal calf serum. Approximately 48 h prior to the experiment, the cells were plated in 6-well plates at 0.6 million cells/well in 3 mL medium. At the time of the experiment, the cells were washed one time with pre-warmed PBS, followed by incubation for 6 or 24 h with 0.26 μ g of ⁸⁹Zr-conjugate in 3 mL binding medium (RPMI containing 0.5% BSA). Three wells were used for each condition. Blocking experiments were performed by adding a large excess (1000 eq) of trastuzumab to the medium. After incubation, the medium was removed and the cells were washed twice with ice-cold PBS followed by lysis in 0.1 M NaOH. To calculate the membrane bound activity, the cells were incubated with an acid buffer (0.1 M acetic acid, 154 mM NaCl, pH 2.6) on ice for 10 min. The lysates and acid wash solutions were measured by γ -counting together with standards to calculate the 100% added activity.

Supplementary Figures

Figure S1. Example of click-to-release reaction between conjugate [⁸⁹Zr]Zr-Tmab-2 and trigger 9.

Figure S2. SEC analysis of ⁸⁹Zr-labeled conjugates. After Zeba purification, the ⁸⁹Zr-labeled mAbs were analyzed by SEC on a Superdex200 10/300 column eluted with PBS to assess the radiochemical purity. Black: [⁸⁹Zr]Zr-Tmab-2, 99.0% radiochemical purity (RCP); blue: [⁸⁹Zr]Zr-Tmab-4, 95.7% RCP; green: [⁸⁹Zr]Zr-Tmab-6, 99.8% RCP; purple: [⁸⁹Zr]Zr-Tmab-7, 95.0% RCP; red: [⁸⁹Zr]Zr-Tmab-8: 99.4% RCP.

Figure S3. Release experiments in PBS. SEC profile of (blue) [⁸⁹Zr]Zr-Tmab-8 incubated overnight in PBS at 37 °C and (pink) of [⁸⁹Zr]Zr-Tmab-8 when reacted with 300 eq of trigger 10 in PBS for 24 h at 37 °C.

Figure S4. Release experiments in plasma between [⁸⁹Zr]Zr-Tmab-8 and trigger 10. The conjugate was radiolabeled with Zr-89 and was incubated with **10** (300 eq) in 50% mouse plasma in PBS at 37 °C for up to 20 h. The kinetics of the release was monitored by SEC at different time points.

Figure S5: Stability of ⁸⁹**Zr-labeled mAb constructs**. Zr-89 release in (A) 50% human serum and (B) 50% mouse serum at 37 °C, as shown by radio-ITLC analysis. Data represent the mean with one SD (n=3).

Figure S6. Binding and internalization cell assay. Total cell associated activity expressed in % of added radioactivity. Cells were incubated with $[^{89}Zr]Zr$ -Tmab-8 for 6 h and 24 h. The bound and internalized radioactivity (total binding), the internalized radioactivity and the cell surface bound radioactivity were measured by γ -counting. Blocking was performed with 1000 eq of non-radiolabeled trastuzumab. Data are the mean with SD (n = 3).

Figure S7. Triggered release in tumor-free nude mice. Blood kinetic studies in mice that received [⁸⁹Zr]Zr-Tmab-8. One hour post mAb injection the mice received one dose of trigger 10 (33.4 μ mol/kg) and 2 h later the mice received an extra dose of trigger 10 (33.4 μ mol/kg). The data points are the mean %ID/g ± SD (n = 4).

Figure S8. PET imaging studies. Mice were injected with [⁸⁹Zr]Zr-Tmab-8 (ca. 0.5 mg/kg; 5 MBq in 100 μ L) and 5 h later they were imaged under anesthesia obtaining scan 1 (A, B, C). One hour later, after recovery from anesthesia, the same mice received one dose of trigger 10 (33.4 μ mol/kg) and 4 h post-trigger injection they were imaged again obtaining scan 2 (D, E, F). Images are presented as maximum intensity projections (MIPs), maximum intensity 9.62 10⁻⁵ Bq/mL. In all images tumor site is indicated by a red arrow, bladder is indicated by a yellow arrow and the joints are indicated by white arrows.

Supplementary Tables

Table S1. Biodistribution studies in tumor-free mice. One group of mice received [⁸⁹Zr]Zr-**Tmab-8** (ca. 0.5 mg/kg, ca 0.5 MB in 100 μ L) and 4 days later were euthanized (no trigger). One group of mice received [⁸⁹Zr]Zr-Tmab-8 and 1 h post-mAb injection received a single dose of trigger 10 (33.4 μ mol/kg). One group of mice received [⁸⁹Zr]Zr-Tmab-8 followed by one dose of trigger 10 at 1 h and one a 2 h post-mAb. These mice were euthanized 24 h after the last dose of trigger. Data are the mean % ID/g with SD (n = 4).

Organ	no trigger	single dose	double dose
(%ID/g)		trigger 10	trigger 10
blood	11.55 ± 1.82	3.93 ± 0.29	3.61 ± 0.20
heart	3.03 ± 0.45	1.01 ± 0.09	0.91 ± 0.07
lung	8.56 ± 1.29	2.09 ± 0.45	1.93 ± 0.46
liver	3.65 ± 0.72	1.28 ± 0.12	1.32 ± 0.17
spleen	2.16 ± 0.23	0.76 ± 0.16	0.85 ± 0.07
pancreas	0.88 ± 0.16	0.41 ± 0.07	0.29 ± 0.04
kidney left	5.73 ± 0.89	2.51 ± 0.32	2.67 ± 0.13
kidney right	5.87 ± 0.80	2.51 ± 0.14	2.89 ± 0.12
muscle	0.76 ± 0.13	0.28 ± 0.01	0.33 ± 0.17
bone	2.63 ± 0.24	0.57 ± 0.01	0.60 ± 0.06
brain	0.28 ± 0.04	0.12 ± 0.02	0.09 ± 0.01
stomach*	0.23 ± 0.04	$0.12\pm\!\!0.05$	0.09 ± 0.01
small intestine*	1.43 ± 0.11	0.50 ± 0.02	0.38 ± 0.10
large intestine*	0.61 ± 0.15	0.26 ± 0.07	0.26 ± 0.13

*These values are expressed in %ID/organ.

Table S2. Biodistribution studies in tumor-bearing mice. Two groups of mice received [89 Zr]Zr-Tmab-8 (ca. 0.5 mg/kg, ca. 0.5 MB in 100 µL) followed by one dose of trigger 10 (33.4 µmol/kg) 6 h or 24 h post-mAb administration. The mice were euthanized 4 h after the trigger dose. Control mice that did not receive the trigger were euthanized 6 h and 24 h post-mAb injection. Data are the mean % ID/g with SD (n =5).

Organ	6 h	6 h	24 h	24 h
Urgan	0 11	0 1	24 n	24 N
(%1D/g)	no trigger	trigger 10	no trigger	trigger 10
blood	34.78 ± 2.16	9.73 ± 1.56	22.21 ± 1.84	8.40 ± 0.50
tumor	33.75 ± 14.82	22.49 ± 7.24	54.68 ± 13.43	55.63 ± 10.60
heart	8.80 ± 0.79	2.48 ± 0.32	6.06 ± 0.14	2.47 ± 0.25
lung	14.79 ± 6.26	5.61 ± 1.73	11.91 ± 5.16	5.28 ± 0.68
liver	8.69 ± 1.22	3.77 ± 0.43	5.90 ± 0.75	4.19 ± 0.76
spleen	6.75 ± 1.23	2.10 ± 0.27	4.96 ± 0.70	2.76 ± 0.45
pancreas	2.75 ± 0.26	$1,\!07\pm0.17$	2.96 ± 0.35	1.54 ± 0.35
kidney left	10.84 ± 1.05	6.02 ± 1.25	10.39 ± 1.24	8.71 ± 0.40
kidney right	11.71 ± 0.75	6.08 ± 1.33	9.91 ± 1.19	8.63 ± 0.47
muscle	1.40 ± 0.16	0.65 ± 0.12	1.79 ± 0.30	0.86 ± 0.18
bone	3.44 ± 0.55	1.68 ± 0.33	4.31 ± 0.62	3.38 ± 0.46
brain	0.75 ± 0.16	0.26 ± 0.06	0.52 ± 0.05	0.25 ± 0.02
fat	6.53 ± 1.24	2.67 ± 0.45	7.13 ± 1.38	3.62 ± 0.55
skin	8.03 ± 1.33	2.99 ± 0.39	7.21 ± 1.24	3.67 ± 0.39
stomach*	0.86 ± 0.18	2.01 ± 3.53	0.83 ± 0.15	0.98 ± 1.20
small intestine*	5.00 ± 0.41	4.88 ± 0.69	3.51 ± 0.45	4.31 ± 1.12
large intestine*	2.52 ± 0.19	7.58 ± 1.90	1.77 ± 0.59	7.06 ± 5.82

*These values are expressed in %ID/organ.

Table S3. Biodistribution studies (tumor-to-organ) in tumor-bearing mice. Mice received $[^{89}Zr]Zr-Tmab-8$ (ca 0.5 mg/kg, ca 0.5 MBq in 100 µL) followed by one dose of trigger 10 (33.4 µmol/kg) 6 h or 24 h post-mAb administration. The mice were euthanized 4 h after the trigger dose in both cases. Control mice that did not receive the trigger were euthanized 6 h and 24 h post-mAb injection. Data are the mean with SD (n =5).

Tumor/organ	6 h no trigger	6 h trigger 10	24 h no trigger	24 h trigger 10
blood	10 ± 0.4	$\frac{112}{23\pm0.6}$	25 ± 0.7	$\frac{11}{66+0.9}$
61000	1.0 ± 0.4	2.3 ± 0.0	2.3 ± 0.7	0.0 ± 0.9
heart	3.8 ± 1.3	8.9 ± 2.3	9.0 ± 2.4	22.44 ± 3.0
lung	2.2 ± 0.7	4.0 ± 1.0	4.8 ± 1.8	10.8 ± 2.9
liver	3.8 ± 1.1	6.0 ± 1.9	9.3 ± 2.2	13.6 ± 3.4
spleen	4.9 ± 1.4	10.8 ± 3.6	11.4 ± 4.0	20.5 ± 4.7
pancreas	12.3 ± 5.4	21.2 ± 6.7	19.0 ± 6.4	36.6 ± 6.1
kidney left	3.1 ± 1.3	3.8 ± 1.2	5.4 ± 1.7	6.4 ± 1.2
kidney right	2.9 ± 1.3	3.6 ± 0.7	5.5 ± 1.2	6.4 ± 1.1
muscle	24.1 ± 10.0	34.7 ± 11.9	31.8 ± 11.4	67.9 ± 21.8
bone	9.9 ± 4.0	13.6 ± 4.7	12.8 ± 3.6	16.6 ± 3.5
brain	45.8 ± 19.3	85.9 ± 24.7	106.3 ± 29.2	218.8 ± 33.5
fat	5.1 ± 1.6	8.6 ± 3.2	7.7 ± 1.3	15.8 ± 4.5
skin	4.3 ± 2.2	7.4 ± 2.0	7.9 ± 2.9	15.3 ± 3.2

MS analysis of Compounds 2, 4, 6-8

MS analysis of compound **2**. Calcd. [M+H]⁺ 868.46, [M+2H]²⁺ 434.73, [M+Na]⁺ 890.45

MS analysis of compound 4. Calcd. [M+H]⁺ 939.50, [M+2H]²⁺ 470.25, [M+Na]⁺ 961.49

MS analysis of compound 6. Calcd. [M+H]⁺ 1186.64, [M+2H]²⁺ 593.82, [M+Na]⁺ 1208.63

MS analysis of compound **7**. Positive mode: Calcd. [M+H]⁺ 1360.76, [M+2H]²⁺ 680.88, [M+Na]⁺ 1382.75, [M+2Na]²⁺ 702.87

Negative mode: Calcd. [M-H]⁻ 1358.76, [M-2H]²⁻ 678.8

MS analysis of compound **8**. Positive mode: Calcd. [M+H]⁺ 1678.94, [M+2H]²⁺ 840.97, [M+3H]³⁺ 560.31, [M+Na]⁺ 1700.93, [M+2Na]²⁺ 861.96, [M+H+Na]²⁺ 850.97

Negative mode: Calcd. [M-H]⁻ 1676.94

References

- 1. Rossin R, Van Duijnhoven SMJ, Ten Hoeve W, et al. Triggered Drug Release from an Antibody-Drug Conjugate Using Fast 'click-to-Release' Chemistry in Mice. Bioconjugate Chemistry. 2016; 27: 1697–706.
- 2. Wang Q, Wang Y, Ding J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020; 579: 421–6.