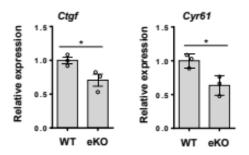
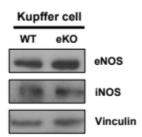

## **Supplementary Figures and Table**

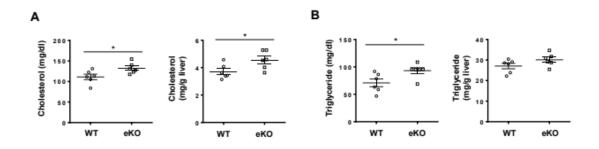
## Endothelial TAZ inhibits capillarization of liver sinusoidal endothelium and damage-induced liver fibrosis via nitric oxide production.


Jun-Ha Hwang<sup>1</sup>, Woong Heo<sup>1</sup>, Jung Il Park<sup>1</sup>, Kyung Min Kim<sup>1</sup>, Ho Taek Oh<sup>1</sup>, Gi Don Yoo<sup>1</sup>, Jeekeon Park<sup>1</sup>, Somin Shin<sup>1</sup>, Youjin Do<sup>1</sup>, Mi Gyeong Jeong<sup>2</sup>, Eun Sook Hwang<sup>2\*</sup>, Jeong-Ho Hong<sup>1\*</sup>

<sup>1</sup>Division of Life Sciences, Korea University, Seoul 02841, Korea


<sup>2</sup> College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea




**Figure S1. A)** Descending aorta and tibialis anterior muscle were isolated from wild-type (WT) and endothelial TAZ-knockout (eKO) mice. After RNA extraction and cDNA synthesis, endothelial marker gene expression was assessed by qRT-PCR (n = 3). **B**) Liver endothelium of WT and eKO mice was visualized by immunostaining for the panendothelial marker, endomucin. Scale bar = 200  $\mu$ m. For panel **A**, data are presented as mean  $\pm$  SD.



**Figure S2.** Liver sinusoidal endothelial cells were isolated from wild-type (WT) and endothelial TAZ-knockout (eKO) mice. The relative expression of TAZ target genes was analyzed by quantitative real-time PCR (n = 3). Data are presented as mean  $\pm$  SD. (\*P<0.05, as assessed using a one-tailed Student's t-test).



**Figure S3.** eNOS and iNOS levels in Kupffer cells. Kupffer cells were isolated from WT or eKO mice. The expression of eNOS, iNOS, and vinculin was analyzed by immunoblotting. Vinculin was used as a loading control.



**Figure S4. A)** Wild-type (WT) and endothelial TAZ-knockout (eKO) mice were fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Serum and liver tissue cholesterol levels were quantified using a cholesterol quantification kit (n = 6). **B**) Serum and liver tissue triglyceride levels of the mice in panel **A** were quantified using a triglyceride assay kit (n = 6). Data are presented as mean  $\pm$  SEM. (\*P<0.05, as assessed using a one-tailed Student's t-test).

## Table S1

|                  | Primers us | ed for gene expression analysis |
|------------------|------------|---------------------------------|
| Gene             | Direction  | Sequence $(5' \rightarrow 3')$  |
| Cd209b           | Forward    | TGGGCTCCTGCTGATCATT             |
|                  | Reverse    | TTCCCTTGGGAGATGGGGAT            |
| Ehd3             | Forward    | CGCCGTGCTTGAAAGTATCAG           |
|                  | Reverse    | ATAATTCGGTCCACCCGCTC            |
| Dlum 1           | Forward    | AGCACACTGCCTTCTCCTTG            |
| Plvp1            | Reverse    | AGCACACTGCCTTCTCCTTG            |
| Stab 1           | Forward    | TCACTGTCCCCACACTACTTT           |
| Stab1            | Reverse    | TGTCGCAACGTTTAGACCGTA           |
| C. 12            | Forward    | CACTATGTCGGGGATGGACG            |
| Stab2            | Reverse    | GGGAGCGTAGGTGGAATACG            |
| D 1              | Forward    | ACCGGGTGCTGTTCTATAAGG           |
| Pecam1           | Reverse    | TCACCTCGTACTCAATCGTGG           |
|                  | Forward    | CACCGTCCTCTTCGTTTTGC            |
| Edn1             | Reverse    | GGCTCTGCACTCCATTCTCA            |
| Lamb1            | Forward    | GAAAGGAAGACCCGAAGAAAA           |
|                  | Reverse    | CCATAGGGCTAGGACACCAAA           |
| N7 - 2           | Forward    | CCTTCCGCTACCAGCCAG              |
| Nos3             | Reverse    | CAGAGATCTTCACTGCATTGGCT         |
| 4 + 2            | Forward    | GTTCAGTGGTGCCTCTGTCA            |
| Acta2            | Reverse    | ACTGGGACGACATGGAAAAG            |
|                  | Forward    | TAGGCCATTGTGTATGCAGC            |
| Collal           | Reverse    | ACATGTTCAGCTTTGTGGACC           |
| $T_{-}$ $(1, 1)$ | Forward    | GTGGAAATCAACGGGATCAG            |
| Tgfb1            | Reverse    | ACTTCCAACCCAGGTCCTTC            |
| <i>T</i> : 1     | Forward    | AGGTGGTCTCGTTGATTTCT            |
| Timp1            | Reverse    | GTAAGGCCTGTAGCTGTGCC            |
| Fasn             | Forward    | AGGGGTCGACCTGGTCCTCA            |
|                  | Reverse    | GCCATGCCCAGAGGGTGGTT            |
| Pparg            | Forward    | ATGGGTGAAACTCTGGGAGA            |
|                  | Reverse    | CTTGTGAAGTGCTCAGC               |
| Scd1             | Forward    | CGTCTGGAGGAACATCATTCT           |
|                  | Reverse    | CAGAGCGCTGGTCATGTAGT            |

| Srebp1c                                           | Forward   | GTACCTGCGGGACAGCTTAG                |  |
|---------------------------------------------------|-----------|-------------------------------------|--|
|                                                   | Reverse   | TCAGGTCATGTTGGAAACCA                |  |
| Ctgf                                              | Forward   | CGACTGGAAGACACATTTGG                |  |
|                                                   | Reverse   | CAGGTCTTAGAACAGGCG                  |  |
| Cyr61                                             | Forward   | GAGTGGGTTTGTGATGAAGAC               |  |
|                                                   | Reverse   | CTTCAGTGAGCTGCCTTTTCC               |  |
|                                                   | Forward   | GCTTGTCATCAACGGGAAG                 |  |
| Gapdh                                             | Reverse   | GATGTTAGTGGGGTCTCG                  |  |
| Primers used for chromatin immunoprecipitation    |           |                                     |  |
| Target                                            | Direction | Sequence $(5' \rightarrow 3')$      |  |
| Nos3 promotor                                     | Forward   | GGTCAGCGGGCATGAAG                   |  |
| Nos3 promoter                                     | Reverse   | AGCAGAGTCCTGGCCTT                   |  |
| Primers used for luciferase reporter construction |           |                                     |  |
| Target                                            | Direction | Sequence $(5' \rightarrow 3')$      |  |
| Nag2 momotor                                      | Forward   | AAAAAACTCGAGGTGGGTTCAGGAAATTGAGATGA |  |
| Nos3 promoter                                     | Reverse   | AAAAAAAAGCTTAGCAGAGTCCTGGCCTT       |  |