iNOS aggravates pressure overload-induced cardiac dysfunction via activation of the cytosolic-mtDNA-mediated cGAS-STING pathway

Running title: cytosolic mtDNA and cGAS-STING pathway in cardiac dysfunction Yongzheng Guo¹, Yuehua You¹, Fei-Fei Shang², Xiaowen Wang³, Bi Huang¹, Boying Zhao⁴, Dingyi Lv¹, Shenglan Yang¹, Ming Xie⁴, Lingwen Kong⁴, Dingyuan Du⁴, Suxin Luo^{1*}, Xin Tian^{5*} and Yong Xia^{1,2,6*}

¹Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;

²Institute of Life Science, Chongqing Medical University, Chongqing 400016, China;
³Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;

⁴ Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China;

⁵Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China;

⁶Davis Heart & Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University College of Medicine, OH 43210, USA.

*Address for Correspondence: E-mail: yong.xia@osumc.edu (Yong Xia) ; xintian@cqmu.edu.cn (Xin Tian); luosuxin@hospital.cqmu.edu.cn

This file includes: Supplemental Fig.1-10 Supplemental Table 1

Figure S1. (**A-B**) mice we subjected to STING agonist at different dosage for once a week or twice a week for 4 weeks. The the IFN β mRNA expression in heart was measured. The results showed that the dosage of 1 mg/kg STING agonist by intravenous injection twice a week increased the IFN β expression in heart more effectively, n = 4. Values are means ± SEM. Data were analyzed using a one-way ANOVA with a Tukey's multiple-comparison post-hoc test. *, *P* < 0.05. **, *P* < 0.01. ***, *P* < 0.001. ****, *P* < 0.0001.

Figure S2. (**A-B**) Pressure overload increased iNOS expression in the heart, n = 4. (**C-F**) The single-cell sequencing results showed that iNOS expression mainly increased in cardiomyocytes (**C**), but not in macrophages (**D**), endothelial cell (**E**) and fibroblast (**F**). (**G**) Gene set enrichment analysis indicated that the differentially expressed genes were primarily associated with cytosolic DNA pathway in TAC heart. Values are means ± SEM. Data were analyzed using a one-way ANOVA with a Tukey's multiple-comparison post-hoc test. *, *P* < 0.05. **, *P* < 0.01. ***, *P* < 0.001.

Figure S3. (A) Plasmid encoding iNOS was transfected into isolated cardiomyocytes to overexpress iNOS, and the western blots showed an increased iNOS expression in cardiomyocytes, n = 3; (B) EtBr was used to deplete mtDNA in H9C2 cells, n = 4. Values are means \pm SEM. Data were analyzed using a one-way ANOVA with a Tukey's multiple-comparison post-hoc test. *, P < 0.05. **, P < 0.01. ***, P < 0.001.

Figure S4. (**A**) Knockdown of cGAS suppresses the phosphorylation of IRF3 in TAC hearts, n = 6. (**B**) Cytosolic mtDNA content in the heart of TAC mice were measured using quantitative-PCR, n = 6. (**D**-**E**) Quantitative-PCR was performed to measure the transcript levels of IFN- β and ISGs activated by cGAS-STING, n = 4. (**F**-**H**) cGAS knockdown suppresses the expression of inflammatory markers in TAC heart, n = 4. Data are presented as the mean \pm SEM. Data were analyzed using a two-way ANOVA with a Tukey's multiple-comparison post-hoc test. *, *P* < 0.05. ***, *P* < 0.001. ****, *P* < 0.0001.

Figure S5. (A) Cytosolic mtDNA content in the heart of TAC mice were measured using quantitative-PCR, n = 6. (B) Quantitative-PCR was used to measure the transcript levels of IFN- β activated by cGAS-STING, n = 4. (D-E) STING knockdown suppressed the transcript levels of ISGs activated by cGAS-STING in TAC heart, n = 4. (F-H) STING knockdown suppressed the expression of inflammatory markers in TAC heart, n=4. Data are presented as the mean \pm SEM. Data were analyzed using a two-way ANOVA with a Tukey's multiple-comparison post-hoc test. *, P < 0.05. **, P < 0.01. ***, P < 0.001.

Figure S6. (A) cGAS knockdown improved cardiac function. Representative images of echocardiograms are presented. (**B-C**) LV ejection fraction and fractional shortening are shown in, n = 6. (**D-E**) cGAS knockdown reduced the mRNA expression levels of ANP and BNP in the heart from TAC mice, n = 4. (**F**) Representative hematoxylin-eosin staining of myocardial tissue. Scale bar: 1 mm. (**G**) HW/TL ratio as a measure of cardiac hypertrophy, n = 6. (**H**) Representative WGA staining to assess hypertrophy of cardiac myocytes. Scale bar: 100 µm. (**I**) Quantitative analysis of WGA staining, n = 6. (**J**) Representative images of Masson staining of the heart sections. Scale bar: 100 µm. the results of statistical analysis are shown in (**K**), n = 4. Data are presented as the mean \pm SEM. Data were analyzed using a two-way ANOVA with a Tukey's multiple-comparison post-hoc test. *, P < 0.05. **, P < 0.01. ***, P < 0.001. ****, P < 0.0001.

Figure S7. (**A-B**) cGAS knockdown reduced the mRNA expression of ANP and BNP in the heart from the TAC mice, n = 4. Data are presented as the mean \pm SEM. Data were analyzed using a two-way ANOVA with a Tukey's multiple-comparison post-hoc test. *, P < 0.05. **, P < 0.01. ***, P < 0.001. ****, P < 0.001.

Figure S8. cGAS knockdown protected cardiac function against pressure overload. LVIDd (**A**), LVIDs (**B**), IVSs (**C**), LVPWd (**D**), LVPWs (**E**) and IVSd (**F**) were measured with echo, n = 6. Data are presented as the mean \pm SEM. Data were analyzed using a two-way ANOVA with a Tukey's multiple-comparison post-hoc test. LVIDd, end-diastolic left ventricular internal diameter; LVIDs, end-systolic left ventricular internal diameter; IVSd, end-diastolic interventricular septal thickness; IVSs, end-systolic interventricular septal thickness; LVPWd, enddiastolic left ventricular posterior wall thickness; LVPWs, end-systolic left ventricular posterior wall thickness. *, P < 0.05. **, P < 0.01. ***, P < 0.001. ****, P < 0.0001. ns indicates no significant.

Figure S9. cGAS knockdown protects cardiac function against pressure overload. LVIDd (**A**), LVIDs (**B**), IVSs (**C**), LVPWd (**D**), LVPWs (**E**) and IVSd (**F**) were measured with echo, n = 6. Data are presented as the mean \pm SEM. Data were analyzed using a two-way ANOVA with a Tukey's multiple-comparison post-hoc test. LVIDd, end-diastolic left ventricular internal diameter; LVIDs, end-systolic left ventricular internal diameter; IVSd, end-diastolic interventricular septal thickness; IVSs, end-systolic interventricular septal thickness; LVPWd, end-diastolic left ventricular posterior wall thickness; LVPWs, end-systolic left ventricular posterior wall thickness; LVPWs, end-systolic left ventricular posterior wall thickness; LVPWs, end-systolic left ventricular posterior wall thickness. *, P < 0.05. **, P < 0.01. ****, P < 0.0001. ns indicates no significant.

Figure S10. The generation of cardiomyocyte-specific STING deficient mice. (**A**) Schematic view of generation of cardiomyocyte-specific STING depletion mice (STING cKO mice). (**B-C**) Genotyping of STING cKO mice using PCR analysis. (**D-E**) The efficiency of STING depletion was measured with Western Blot, n = 4. Data are presented as the mean \pm SEM. Data were analyzed using student *t* test. ****, *P* < 0.0001.

Primers	Forward	Reverse
Ccl2	CAGCCAGATGCAGTTAACGC	GCCTACTCATTGGGATCATCTTG
IFNβ1	CTGCGTTCCTGCTGTGCTTCTCCA	GAAGTCCGCCCTGTAGGTGAGGTTG
		А
IL6	TCCATCCAGTTGCCTTCTTG	GGTCTGTTGGGAGTGGTATC
Cxcl10	TTTCTGCCTCATCCTGCTGGGTCTGA	TGTGCGTGGCTTCACTCCAGTTAAG
		G
Irf7	GAGCGAAGAGGCTGGAAGACCAACT	GCAGAACCTGTGTGGGGCAGAGCATT
	Т	
Ifit1	AGGCTGGAGTGTGCTGAGATGGACT	TGTGCTGCTGAGGGCTTCTTCAATG
	G	Т
Ifit2	CAGAGGAAGAGGTTGCCTGGAGAGT	CTTGGTCAGGATGCTGTTGCTGGAT
	G	G
Ifit3	CCTGGCACCATGAACCTGAGGACAA	CCATAAGCAGCACTCCACAGCACAT
	С	С
Osal2	TCAGCAGCAGGAAGACCCTAGCAGA	GCACGGACTCAAGCAGCCAGACTA
	Т	
GAPDH	ATGGTGAAGGTCGGTGTGAACGGAT	GTCTCGCTCCTGGAAGATGGTGATG
	Т	G
ANP	GCTTCCAGGCCATATTGGAG	GGGGGCATGACCTCATCTT
BNP	GAGGTCACTCCTATCCTCTGG	GAGGTCACTCCTATCCTCTGG
Col1	GCTCCTCTTAGGGGCCACT	ATTGGGGACCCTTAGGCCAT
Col3	CTGTAACATGGAAACTGGGGAAA	CCATAGCTGAACTGAAAACCACC
Dloop1	AATCTACCATCCTCCGTGAAACC	TCAGTTTAGCTACCCCCAAGTTTAA
Dloop2	CCCTTCCCCATTTGGTCT	TGGTTTCACGGAGGATGG
Dloop3	TCCTCCGTGAAACCAACAA	AGCGAGAAGAGGGGGCATT

Supplemental Table S1: The used Real-time PCR primers in this study.