1 Supplemental Figures and legends

3 Figure S1. 5-ALA metabolic pathway in mouse HIR model. Related to Figure 1.

- 4 (A) Representative images demonstrating the mouse HIR operation (arrows denote
- 5 hepatic areas with HIR injury).
- 6 (B) Representative western blots on the hepatic content of key enzymes ALAS1 and
- 7 ALAD in the 5-ALA metabolic pathway from mice at indicated conditions (n = 4).
- 8 Their signal intensity is normalized to that of ACTB.
- 9 (C) Relative mRNA levels of *Hmox1* in mouse livers at indicated conditions
- 10 normalized to that of Actb (n = 6).
- 11 (D) Activity of ALAD at indicated conditions (n = 3).
- 12 Results are presented as mean \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 by
- 13 one-way ANOVA (B), (C) and (D).
- 14

18 **ROS overproduction. Related to Figure 2.**

- 19 (A) Outline of the mouse HIR experimental procedures and conditions.
- 20 (B) Liver injury indicators Suzuki's score, AST, ALT and LDH levels in mice at
- 21 indicated conditions (n = 8 per group).

22	(C) Representative H&E staining of heart, kidney and lung sections from mice at
23	indicated conditions. No overt abnormality was found in the 5-ALA treatment group
24	(scale bar = 0.1 mm).
25	(D) MitoNeoD (red) and DAPI (blue) staining to evaluate mitochondrial ROS
26	overproduction in mouse primary hepatocytes and hepatic macrophages at annotated
27	conditions (n = 5 experiments, scale bar = $10 \ \mu m$).
28	Results are presented as mean \pm SEM. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ by
29	two-tailed Student's t tests (D) or one-way ANOVA (B).
30	

32 Figure S3. 5-ALA modulates mouse hepatic metabolism and immune responses

33 following HIR. Related to Figure 3.

- 34 (A) Heatmap of differentially expressed genes (DEGs) related to neutrophil migration
- 35 (GO:1990266) in mouse liver samples at annotated conditions (n = 4 per group).
- 36 (B) Heatmap of DEGs related to cellular response to IL-1 (GO:0071347) in mouse
- 37 liver samples at indicated conditions (n = 4 per group).

38	(C) Heatmap of DEGs related to regulation of response to macrophage
39	colony-stimulating factor (GO:1903969) in mouse liver samples at indicated
40	conditions (n = 4 per group). Red, high relative expression; blue, low relative
41	expression.
42	(D) Heatmap of DEGs related to immune system process (GO:0002376) in isolated
43	perfused rat liver at indicated conditions ($n = 4$). Red, high relative expression; blue,
44	low relative expression.
45	(E) Outline of the HIR experimental conditions and setup of the mouse metabolic
46	cage system.
47	(F) Representative results of oxygen consumption rates (OCR, VO ₂) and respiratory
48	exchange ratio (RER) in control and 5-ALA-treated mice measured as indicated with
49	the mouse metabolic cage system. Values normalized to the body weight of each
50	mouse (n = 6 per group).
51	(G) Relative mRNA expression of inflammatory cytokines ($Il1\beta$, $Inos1$, $Tnfa$, $Il6$ and
52	<i>Il10</i>) of in mouse primary macrophages and hepatocytes 6 h after OGD/R ($n = 6$ per
53	group). The mRNA level of each gene is normalized to that of Actb.
54	(H) Relative mRNA expression of macrophagic M1-enriched genes (Cd206, Il10,
55	Arg1) and M2-enriched genes (<i>Inos1, Il1β, Il6</i>) in mouse peritoneal macrophage
56	cultures at indicated conditions ($n = 6$ per group). The mRNA level of each gene is
57	normalized to that of Actb.
58	Results are presented as mean \pm SEM. * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001 by
59	two-tailed Student's t tests (G) or one-way ANOVA (H).

62 immune responses as downstream effects of 5-ALA treatment during mouse HIR.

- 63 **Related to Figure 4.**
- 64 (A) Relative mRNA expression of *Rela*, Cx3cr1, $II1\beta$ and Arg1 in mouse primary
- 65 hepatic macrophages at indicated conditions (NF-κB activator: 8 µg/mL betulinic acid,

66 NF-κB inhibitor: 5 μ M BAY-11-/082, 5-ALA: 1 mM, n = 6 per group). The i

- 67 level of each gene is normalized to that of *Actb*.
- (B) Representative western blots of TGF- β 1 in mouse livers at indicated conditions (n
- 69 = 3). Their signal intensity is normalized to that of ACTB.
- 70 (C) Outline of the HIR experimental procedures in *WT* and *Cx3cr1* KO mice.
- 71 (D) Heatmap of expressed gene related to positive regulation of lipid localization
- 72 (GO:1905954) differentially regulated between WT and Cx3cr1 KO mouse liver 6 h
- after HIR (n = 5 per group). Red, high relative expression; blue, low relative

74 expression.

- 75 (E) Heatmap of expressed gene related to carbohydrate catabolic process
- 76 (GO:0016052) differentially regulated between WT and Cx3cr1 KO mouse liver 6 h
- after HIR (n = 5 per group). Red, high relative expression; blue, low relative

78 expression.

- 79 (F) Heatmap of expressed genes related to complement and coagulation cascades
- 80 (MMU04610) differentially regulated between WT and Cx3cr1 KO mouse liver 6 h
- after HIR (n = 5 per group). Red, high relative expression; blue, low relative

82 expression.

- 83 (G) Heatmap of expressed genes related to antigen processing and presentation of
- peptide antigen (GO:0002495) differentially regulated between WT and Cx3cr1 KO
- mouse liver 6 h after HIR (n = 5 per group). Red, high relative expression; blue, low
- 86 relative expression.

- 87 Results are presented as mean \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 by
- two-tailed Student's *t* tests (B) or one-way ANOVA (A).

92 effector of the 5-ALA-CX3CR1 axis following HIR. Related to Figure 5.

93 (A) Gating strategy for flow cytometry analysis of intrahepatic immune cells in

94 Figure 5A-B.

- 95 (B) Up: flow cytometry analysis of M1 (CD45⁺F4/80⁺CD86⁺) and M2
- 96 (CD45⁺F4/80⁺CD206⁺) macrophages in *WT* and *Cx3cr1* KO mouse livers at indicated
- 97 conditions; down: percentage of M1 (CD45⁺F4/80⁺CD86h⁺) and M2

- 98 (CD45⁺F4/80⁺CD206⁺) macrophages in WT and Cx3cr1 KO mouse livers at indicated
- 99 conditions (n = 6 for sham, n = 6 for HIR 6 h).
- 100 (C) Heatmap of expressed M1-enriched genes in WT and Cx3cr1 KO mouse liver
- samples at indicated conditions (n = 5). Red, high relative expression; blue, low
- 102 relative expression.
- 103 (D) Representative western blots of hepatic CHIL3 proteins in WT and Cx3cr1 KO
- 104 mouse liver samples at indicated conditions. The CHIL3 signal intensity is normalized
- 105 to that of ACTB (n = 4 per group).
- 106 (E) Relative mRNA levels of *Chil3* normalized to that of *Actb* in mouse livers at
- 107 indicated conditions (n = 6 per group).
- 108 (F) Relative mRNA levels of Chil3 normalized to that of Actb in mouse primary
- 109 hepatic macrophages at indicated conditions (n = 6 per group).
- 110 (G) Representative confocal images of CHIL3 (red), phalloidin (gray) and DAPI (blue)
- 111 in mouse liver sections at indicated conditions (scale bar = $10 \mu m$).
- 112 Results are presented as mean \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 by
- 113 one-way ANOVA (B), (D), (E) and (F).

114


```
116 OGD/R. Related to Figure 5 and 6.
```

117 (A) Sequence homology analysis of human CHI3L1 and mouse CHIL3 proteins.

- 118 (B) Representative western blots of CHI3L1 proteins in patients' serum samples at
- 119 indicated conditions. The CHI3L1 signal intensity is normalized to the total proteins
- 120 stained with Ponceau S (n = 3 per group).

- 121 (C) AST, ALT and LDH levels in medium supernatant of L-02 cultures at indicated
 122 conditions (n = 5).
- 123 (D) Heatmap of DEGs related to glucose metabolism (R-HSA-70326) in L-02
- 124 cultures at indicated conditions (n = 4 per group). Red, high relative expression; blue,
- 125 low relative expression.
- 126 (E) Heatmap of DEGs related to regulation of cellular catabolic process (GO:0031329)
- in L-02 cultures at indicated conditions (n = 4 per group). Red, high relative
- 128 expression; blue, low relative expression.
- 129 (F) Heatmap of DEGs related to respiratory electron transport (R-HSA-163200) in
- 130 L-02 cultures at indicated conditions (n = 4 per group). Red, high relative expression;
- 131 blue, low relative expression.
- 132 (G) Relative mRNA expression of selected genes related to the mitochondrial
- 133 respiratory electron transport (NDUFA8, NDUFB5, SDHD, UQCR10, COX7C,
- 134 COX8A and ATP5PO) in L-02 cultures at indicated conditions (n = 12). The mRNA
- 135 level of each gene is normalized to that of *ACTB*.
- 136 (H) NAD⁺ and NADH levels (n = 9) in L-02 cells at annotate conditions.
- 137 Results are presented as mean \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 by
- 138 two-tailed Student's *t* tests (G) and (H) or one-way ANOVA (B) and (C).
- 139

141 Figure S7. 5-ALA and/or CHIL3 treatments profoundly affect hepatic lipid

142 metabolism. Related to Figure 7.

- 143 (A) Outline of the HIR experiments with mice subjected to indicated treatments.
- 144 (B) Gross appearance of mouse livers at indicated conditions (arrows denote areas of
- 145 HIR injury).
- 146 (C) Representative H&E staining of mouse liver sections at indicated conditions,
- 147 suggesting no overt difference between the control (ctrl) and CHIL3-treated group
- 148 (areas of HIR injury are marked by broken lines; scale bar = 0.1 mm).
- 149 (D) Liver injury indicators Suzuki's score, and serum AST, ALT and LDH levels in
- 150 mice with indicated conditions 6 h after HIR (n = 6 per group).
- 151 (E) Venn diagram indicating the number of overlapped genes in the metabolism of
- lipids (R-MMU-556833) (see Figure 3A) and fatty acid degradation (MMU00071)
- 153 (see Figure 7A) pathways.
- 154 (F) Among the 37 overlapped genes from (E), heatmap of 7 genes differentially
- regulated by 5-ALA or a combined treatment of 5-ALA and CHIL3 6 h after HIR is

156	shown ($n = 4$ per group). Red, high relative expression; blue, low relative expression.
157	These may be important effector genes regulated by 5-ALA and CHIL3 to facilitate
158	liver lipid catabolism and energy production following HIR in mice. Also see Data
159	S2.

- 160 (G) Quadruple Venn diagram indicating the numbers of overlapped DEGs in
- 161 indicated comparisons. Also see Data S2.
- 162 Results are presented as mean \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 by
- 163 two-tailed Student's *t* tests (D).

Table S1. Basic characteristics of liver transplantation donors and recipients.

					Time for	
	1	Condon	Medical	Coldischamic	post-operation	Weight
	Age	Gender	condition	time * (min)	liver biopsy	of liver
				time * (min)	(min)	
Donor 1	17	М	Trauma	431	67	22.1
Donor 2	59	М	Trauma	263	113	23.5
Donor 3	49	М	Trauma	357	74	21
Donor 4	27	F	Trauma	358	82	21.4
Donor 5	28	М	Trauma	381	95	23.7
Donor 6	27	М	Trauma	399	65	27.3
Donor 7	15	F	Trauma	407	132	22.5
Donor 8	55	М	Stroke	449	75	18.5
Donor 9	56	F	Encephal itis	370	79	26.6
Donor 10	32	М	Trauma	420	84	15.5
Donor 11	23	М	Trauma	500	83	26.3
Donor 12	30	М	Stroke	251	97	18.8
Donor 13	56	М	Stroke	570	102	33.2
Donor 14	50	М	Stroke	360	58	18.6
Donor 15	56	М	Stroke	340	68	20.7
Donor 16	68	М	-	230	74	22.5
Donor 17	54	F	Stroke	397	89	31
Donor 18	28	М	Stroke	330	97	22.6
Donor 19	55	М	-	429	99	15.6
Donor 20	58	М	Stroke	380	88	20.5

Related to Figure 1 and Figure S6.

166 * Surgery-related ischemia time was typically below 30 min.

	Age	Gender	Medical condition	Liver from
Recipient 1	47	М	Liver cirrhosis	Donor 4
Recipient 2	52	М	Liver cirrhosis	Donor 10
Recipient 3 51 M		Liver cirrhosis	Donor 11	

Table S2. Gene primers used for quantitative RT-PCR and genotyping.

Gene	Forward Primer	Reverse Primer
ALASI	CGCCGCTGCCCATTCTTAT	TCTGTTGGACCTTGGCCTTAG
ALAD	GCTACTTCCACCCACTACTTCG	TCAGGAACATCCGTGACAAAG
HMOX1	AAGACTGCGTTCCTGCTCAAC	AAAGCCCTACAGCAACTGTCG
UROD	ATGGAAGCGAATGGGTTGGG	GGGAGTGTAGTCTGTTTCCTCT
UROS	GCCAAGTCAGTGTATGTGGTT	GCAATCCCTTTGTCCTTGAGC
PPOX	CTGGATTCGCTCCGTTCGAG	CCCACGTAGAGGAACCTGT

Primers for quantitative RT-PCR related to Figure 1.

Primers for quantitative RT-PCR related to Figure 4.

Gene	Forward Primer	Reverse Primer
Ccr1	GCCCTCATTTCCCCTACAA	CGGCTTTGACCTTCTTCTCA
Ccr2	TGTGATTGACAAGCACTTAGA	TGGAGAGATACCTTCGGAACT
	CC	Т
Ccr5	ATGGATTTTCAAGGGTCAGTT	CTGAGCCGCAATTTGTTTCAC
	CC	
Ccr7	CATGGACCCAGGTGTGCTTC	TCAGTATCACCAGCCCGTTG
Ccr8	TGTTTGGGACTGCGATGTGT	TGATGGCATAGACAGCGTGG
Cx3cr1	CAAGCTCACGACTGCCTTCT	TGTCCGGTTGTTCATGGAGT
Actb	AGCCATGTACGTAGCCATCC	CTCTCAGCTGTGGTGGTGAA

Gene	Forward Primer	Reverse Primer
SERPINE1	ACCGCAACGTGGTTTTCTCA	TTGAATCCCATAGCTGCTTG
		AAT
EGFR	AGGCACGAGTAACAAGCTCA	ATGAGGACATAACCAGCCAC
	С	С
SLC2A1	GGCCAAGAGTGTGCTAAAGA	ACAGCGTTGATGCCAGACAG
	А	
ENO1	AAAGCTGGTGCCGTTGAGAA	GGTTGTGGTAAACCTCTGCT
		С
HK1	GCTCTCCGATGAAACTCTCA	GGACCTTACGAATGTTGGCA
	TAG	А
PPARA	ATGGTGGACACGGAAAGCC	CGATGGATTGCGAAATCTCT
		TGG
ACOXI	ACTCGCAGCCAGCGTTATG	AGGGTCAGCGATGCCAAAC

Primers for quantitative RT-PCR related to Figure 6.

Primers for quantitative RT-PCR related to Figure S1C.

Gene		Forward Primer	Reverse Primer
	Hmox1	AGGTACACATCCAAGCCGAGA	CATCACCAGCTTAAAGCCTTCT

Primers for quantitative RT-PCR related to Figure S3 and S4.

Gene	Forward Primer	Reverse Primer
------	----------------	----------------

Inos	CCTAGTCAACTGCAAGAGAA	TTTCAGGTCACTTTGGTAGG
Illb	CCACCTTTTGACAGTGATGA	GAGATTTGAAGCTGGATGCT
Cd206	GGTGGAAGAAGAAGTAGCC	GAAGGGTCAGTCTGTGTTTG
	Т	
Argl	CTCCAAGCCAAAGTCCTTAG	AGGAGCTGTCATTAGGGACAT
	AG	С
1110	TGTCAAATTCATTCATGGCC	ATCGATTTCTCCCCTGTGAA
	Т	
116	CCGGAGAGGAGACTTCACA	TCCACGATTTCCCAGAGAAC
	GA	
Rela	AGGCTTCTGGGCCTTATGTG	TGCTTCTCTCGCCAGGAATAC
Tnfa	CCCTCACACTCAGATCATCT	GCTACGACGTGGGCTACAG
	ТСТ	

Primers for quantitative RT-PCR related to Figure S6G.

Gene	Forward Primer	Reverse Primer
NDUFA8	CCCAACAAGGAGTTTATGC	CACAGTGACGTTTTATCTGCCT
	ТСТ	
NDUFB5	AGCTGGAAGTGCGAAAATT	ATACCAGGGTCCATCTCCTCT
	GA	
ATP5PO	ATTGAAGGTCGCTATGCCA	GCTTTTCACTTTAATGGAACGC
	CA	Т

COX8A	GCCAAGATCCATTCGTTGCC	CTCTGGCCTCCTGTAGGTCT
COX7C	GGTCCGTAGGAGCCACTAT	GTGTCTTACTACAAGGAAGGG
	GA	TG
UQCR10	ATCGTGGGCGTCATGTTCTT	ATGTGGTCGTAGATAGCGTCC
	С	
SDHD	ATTTCTTCAGGACCGACCTA	CAGCCTTGGAGCCAGAATG
	TCC	
ACTB	GTGACGTGGACATCCGCAA	TGGAAGGTGGACAGCGAGGC
	AGA	

Primers for Genotyping related to Figure 4.

Gene	Forward Primer	Reverse Primer
Cx3cr1	GTCTTCACGTTCGGTCTGGT	CCCAGACACTCGTTGTCCTT
wildtype		
<i>Cx3cr1</i> mutant	CTCCCCCTGAACCTGAAAC	CCCAGACACTCGTTGTCCTT

Table S3. Primary antibodies

Antibodies	Source	Identifier
Rabbit anti CHIL3	Abcam	Cat# ab192029
Rabbit anti CHI3L1	SAB	Cat# 35680
Rat anti F4/80 (for IF-Frozen)	Abcam	Cat# ab6640
Rabbit anti F4/80 (for IHC-P, IF-P)	CST	Cat# 70076
Rabbit anti CX3CR1	Abcam	Cat# ab8021

Rabbit anti ACTB	CST	Cat# 4970
Rabbit anti CCR1	ABclonal	Cat# A18341
Rabbit anti CCR5	Abcam	Cat# ab7346
Rabbit anti CD206	Abcam	Cat# ab64693
Mouse anti ALAD	Santa Cruz	Cat# sc-271585
Mouse anti ALAS1	Santa Cruz	Cat# sc-137093
Mouse anti p65 NF-ĸB	Santa Cruz	Cat# sc-8008
Rabbit anti TGF beta 1	ABclonal	Cat# A2124
Rabbit anti Ly-6G	Abcam	Cat# ab25377
Rat anti CD11b	Abcam	Cat# ab128797
PerCP/Cyanine5.5 anti-mouse CD45	Biolegend	Cat# 103131
Brilliant violet 510 anti-mouse/human CD11b	Biolegend	Cat# 101263
APC anti-mouse F4/80	Biolegend	Cat# 123116
Alexa fluor anti-mouse Ly-6C	Biolegend	Cat# 128023
PE anti-mouse CD206	Biolegend	Cat# 141706
Brilliant violet 605 anti-mouse CD86	Biolegend	Cat# 105037

Table S4. Other reagents

Reagents	Source	Identifier
Goat anti-Mouse IgG (H+L) Secondary Antibody,	Invitrogen	Cat# 31430
HRP conjugate		
Goat anti-Rabbit IgG (H+L) Secondary Antibody,	Invitrogen	Cat# 31460
HRP conjugate		
Alexa Fluor 488 goat anti-rat IgG (H+L)	Invitrogen	Cat# A-11006
Alexa Fluor 594 goat anti-rat IgG (H+L)	Invitrogen	Cat# A-11007
Alexa Fluor 488 goat anti-mouse IgG (H+L)	Invitrogen	Cat# A-11001
Alexa Fluor 594 goat anti-mouse IgG (H+L)	Invitrogen	Cat# A-11005
Alexa Fluor 488 goat anti-rabbit IgG (H+L)	Invitrogen	Cat# A-11008
BODIPY	Invitrogen	Cat# D3922
MitoNeoD	MedKoo	Cat# 563761
	Biosciences	
Phalloidine 633	Thermo Fisher	Cat# A22284
	Scientific	
TMRE	MCE	Cat# HY-D0985A
Hoechst 33342	Invitrogen	Cat# H3570
DAPI	Invitrogen	Cat# D1306
Tissue-Tek O.C.T Compound	Sakura	Cat# 4583
Taq Pro Universal SYBR qPCR Master Mix	Vazyme	Cat# Q712
HiScript III RT SuperMix for qPCR (+gDNA	Vazyme	Cat# R323

wiper)		
Brewer's medium	Solarbio	Cat# LA4590
RPMI 1640	Gibco	Cat#
		C11875500BT
DMEM	Gibco	Cat#
		C11995500BT
Fetal Bovine Serum	PAN	Cat# P30-3302
M-PER Mammalian Protein Extraction Reagent	Invitrogen	Cat# 78501
T-PER Tissue Protein Extraction Reagent	Invitrogen	Cat# 78510
NuPAGE Sample Reducing Agent (10X)	Invitrogen	Cat# NP0004
NuPAGE LDS Sample Buffer (4X)	Invitrogen	Cat# NP0008
TRIzol	Invitrogen	Cat# 15596026
Mouse Mononuclear Cells Separation Medium	Dakewe	Cat# 7211011
Corn oil	Macklin	Cat# C805618
DMSO	Sigma-Aldrich	Cat# D2650
Collagenase IV	Sigma-Aldrich	Cat# C5138

Chemicals, peptides, and recombinant proteins	Source	Identifier
5-Aminolevulinate	Macklin	Cat# A800543
CHIL3	МСЕ	Cat# HY-P7845
CHI3L1	МСЕ	Cat# HY-P70030
IL-4	Peprotech	Cat# 214-14
LPS from <i>E. coli O111:B4</i>	Sigma-Aldrich	Cat# L2630
Rotenone	Sigma-Aldrich	Cat# R8875
Decylubiquinone	Sigma-Aldrich	Cat# D7911
NaN ₃	Sigma-Aldrich	Cat# S2002
Cytochrome c	Sigma-Aldrich	Cat# C2867
Antimycin A	Sigma-Aldrich	Cat# A8674
BAY-11-7082	МСЕ	Cat# HY-13453
Betulinic acid	МСЕ	Cat# HY-10529
T0070907	Selleck	Cat# S2871
Fenofibric acid	Macklin	Cat# 42017-89-0

187 Table S5. Chemicals, peptides, and recombinant proteins

Critical commercial assays	Source	Identifier
Dako REAL EnVision Detection System,	Dako	Cat# K5007
Peroxidase/DAB+ Rabbit/Mouse		
TrueView Autofluorescence Quenching kit	Vector	Cat# SP-8500
ECL Chemiluminescent HRP Substrate	Advansta	Cat# K-12045
ECL Ultra Western HRP Substrate	Merck Millipore	Cat# CS222618
Seahorse XF Real-Time ATP Rate Assay Kit	Seahorse	Cat# 103592-100
Mouse YM1/Chitinase 3 like 3 ELISA Kit	RayBio	Cat# ELM-YM1
Mouse IL-1β ELISA Kit	Neobioscience	Cat# EMC001b
Mouse IL-6 ELISA Kit	Neobioscience	Cat# EMC004
Mouse IL-10 ELISA Kit	Neobioscience	Cat# EMC005
Mouse TNF-α ELISA Kit	Neobioscience	Cat# EMC102a
ATP assay kit	Nanjing Jiancheng	Cat# A095-1-1
	Bioengineering	
	Institute	
Lactate assay kit	Solarbio	Cat# BC2230
NADP/NADPH Quantitation Colorimetric Kit	biovison	Cat# K347-100
NAD+/NADH Colorimetric Assay Kit	biovison	Cat# K958-400
Mitochondrial Complex IV activity assay kit	Acmec	Cat# BC0940
Mitochondrial Complex V activity assay kit	Solarbio	Cat# BC1445
CCK-8 Cell Counting Kit	Vazyme	Cat# A311

189 Table S6. Critical commercial assays

In Situ Cell Death Detection Kit, Fluorescein	Roche	Cat# 11684795910
NEBNext® UltraTM RNA Library Prep Kit	NEB	Cat# E7775

Table S7. Experimental models

Experimental models	Source	Identifier
Human: L-02	ATCC	CRL-2524
Mouse: B6.129P2(Cg)-Cx3cr1 ^{tm1Litt} /J	Jackson lab	005582
Mouse: C57BL6/J	Zhuhai BesTest	N/A
	Bio-Tech Co,.Ltd	

193 Table S8. Software and algorithms

Software and algorithms	Source	Identifier
B 4 0 2	The D. Free letter	https://www.r-proj
K V4.0.2	The R Foundation	ect.org
	W' (1 [1]	http://daehwankiml
Hisat2 v2.0.5	Kim et al. [1]	ab.github.io/hisat2/
	Liao et al. [2]	https://subread.sou
featureCounts package v2.0.1		rceforge.net/featur
		eCounts.html
	Love et al. [3]	https://bioconducto
DESeq2 package 1.26.0		r.org/packages/rele
		ase/bioc/html/DES

		eq2.html
Graphpad Prism 8.0	Graphpad	https://www.graph
		pad.com/
Zen 2.6	Zeiss	https://www.zeiss.c
		om/microscopy/en/
		products/software/
		zeiss-zen.html
TissueFAXS SL Viewer 7.0.6245	Tissuegnostics	https://tissuegnosti
		cs.com/products/sc
		anning-and-viewin
		g-software/tissuefa
		xs-viewer
Oxymax/CLAMS	Columbus	https://www.colinst
		.com/downloads/?
		p=o
ImageJ 1.53	National Institutes of	https://imagej.nih.g
	Health	ov/ij/
CytExpert 2.4	Beckman	https://www.beckm
		an.com/flow-cyto
		metry/research-flo
		w-cytometers/cytof
		lex/software

195 Supplemental References

- 196 1. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and
- 197 genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology. 2019; 37: 907-15.
- 198 2. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning199 sequence reads to genomic features. Bioinformatics. 2013; 30: 923-30.
- 200 3. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
- 201 RNA-seq data with DESeq2. Genome Biology. 2014; 15.