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1. Synthesis of monomers and polymer precursors 

N-(2-hydroxypropyl)methacrylamide (HPMA) 

N-(2-hydroxypropyl)methacrylamide (HPMA) was synthesized by the reaction of methacryloyl chloride and 

1-aminopropan-2-ol in dichloromethane in the presence of anhydrous sodium carbonate as described before [1]. 

Melting point: 69 °C. Elemental analysis: calculated C 58.72 %, H 9.15 %, N 9.78 %; Found C 58.98 %, H 9.18 %, N 9.82 %. 
1H NMR (DMSO-d6, 600 MHz): δ = 7.80 ppm (s, 1H, NH); δ = 5.65 ppm (m, 1H, =CH2); δ = 5.31 ppm (m, 1H, =CH2); 

δ = 4.68 ppm (s, 1H, OH); δ = 3.69 ppm (m, 1H, CH); δ = 3.04 ppm (m, 2H, CH2); δ = 1.85 ppm (q, 3H, CH3); and δ = 1.01 

ppm (d, 3H, CH3). 

N-(tert-butoxycarbonyl)-Nʼ-(6-methacrylamidohexanoyl)hydrazine (MA-AH-NHNH-Boc)  

N-(tert-butoxycarbonyl)-Nʼ-(6-methacrylamidohexanoyl)hydrazine (MA-AH-NHNH-Boc) was prepared in two-step 

synthesis. First, N-methacryloyl-6-amino-hexanoic acid (MA-AH-OH) was prepared by reaction of methacryloyl chloride and 

6-aminohexanoic acid in sodium hydroxide aqueous solution,[2, 3] followed by reaction with tert-butyl carbazate in THF in 

the presence of N,Nʼ-dicyclohexylcarbodiimide (DCC), as reported previously [4]. Melting point: 114 °C. Elemental 

analysis: calculated C 57.70 %, H 8.33 %, N 13.46 %; Found C 58.66 %, H 8.84 %, N 13.16 %. 1H NMR (DMSO-d6, 

600 MHz): δ = 9.43 ppm (s, 1H, NH); δ = 8.63 ppm (s, 1H, NH); δ = 7.85 ppm (s, 1H, NH); δ = 5.61 ppm (s, 1H, =CH2); 

δ = 5.28 ppm (s, 1H, =CH2); δ = 3.06 ppm (q, 2H, CH2); δ = 2.04 ppm (t, 2H, CH2); δ = 1.83 ppm (q, 3H, CH3); δ = 1.49 ppm 

(quint, 2H, CH2); δ = 1.42 ppm (quint, 2H, CH2); δ = 1.38 ppm (s, 9H, CH3); and δ = 1.24 ppm (quint, 2H, CH2). 

 

Chain transfer agent S-2-cyano-2-propyl-S-ethyl trithiocarbonate 

The CTA, S-2-cyano-2-propyl-S-ethyl trithiocarbonate (trithio-AIBN), was synthesized as described by Ishitake et 

al. [5]. Trithio-AIBN was obtained as yellow-orange oil. The HPLC showed a single peak with a retention time of 10.7 min 

at UV-Vis detection 305 nm. 1H NMR, d: 1.36 (t, 3H, SCH2CH3), d: 1.88 (s, 6H, C(CH3)2CN), d: 3.35 (q, 2H, SCH2CH3). 

ESIMS: m/z (M + Na)+ calculated. for C7H11NS3 228.06 found m/z [M+Na]+ 228.16. 

Polymer precursor poly(HPMA-co-MA-AH-NHNH2) (P1) 

The detailed synthesis of polymer precursor poly(HPMA-co-MA-AH-NHNH2) (P1) was as follows: HPMA (1.5 g, 10.5 

mmol), MA-AH-NHNH-Boc (365 mg, 1.2 mmol), and S-2-cyano-2-propyl-S`-ethyl trithiocarbonate (CTA) (13.3 mg, 64.6 

μmol) were dissolved in tert-butanol (16.3 mL), then mixed with a solution of 2,2ʼ-azobis(4-methoxy-2,4-

dimethylvaleronitrile) (V-70) (9.97 mg, 32.3 μmol) in DMA (328 μL) – the mixture contained 0.7 M solution of monomers. 

The reaction mixture was bubbled with argon and the polymerization was carried out in a thermostat-controlled water bath at 

30 °C for 72 h. The polymer was isolated by precipitation into a mixture of dry acetone and dry diethyl ether (2/1, v/v; 500 

mL) followed by centrifugation at 7800 rpm for 3 min. The crude polymer was filtered off, purified by reprecipitation from 

methanol, filtered, and dried under vacuum (1.44 g, 77 %). The trithiocarbonate end groups were removed via reaction with 

an excess of 2,2′-azobisisobutyronitrile (AIBN), as previously described [6]. AIBN (287 mg) was added into a solution of 

polymer (1.43 g) in dry DMA (11 mL) and bubbled with argon. After 3 h in a thermostat-controlled water bath at 80 °C, the 

solution was isolated as described above. The precipitate was dried under vacuum, resulting in the polymer with protected 

hydrazide groups (1.3 g, 91 %). Boc groups were removed in Q-H2O at 100 °Cas previously described [7]. After 2 h, the 

solution was freeze-dried, resulting in P1 with reactive hydrazide groups (1.12 g, 87 %) (Fig. S1). 



Polymer precursor poly(HPMA-co-MA-APMA) (P2) 

The polymer precursor P2 containing amine groups poly(HPMA-co-MA-APMA) was prepared analogously by using HPMA 

and N-(3-tert-butoxycarbonyl-aminopropyl)methacrylamide (APMA-Boc), as previously described [8] (Fig. S1). 

 

Figure S1. Synthesis of polymer precursors poly(HPMA-co-MA-AH-NHNH2) (P1) and poly(HPMA-co-MA-APMA) (P2). 

 

2. Physico-chemical characterization 

2.1. Nuclear magnetic resonance of monomers, chain transfer agent, polymer precursors and conjugates 

 



 

 

Figure S2.1.1. 1H NMR spectrum of HPMA (600.23 MHz for 1H, DMSO-d6, 22 oC).   

 

 

 

 

 

Figure S2.1.2. 1H NMR spectrum of MA-AH-NHNH-Boc (600.23 MHz for 1H, DMSO-d6, 22 oC). 

 

 

 



 

Figure S2.1.3. 1H NMR spectrum of S-2-cyano-2-propyl-S`-ethyl trithiocarbonate (600.23 MHz for 1H, CDCl3, 22 oC). 

 

 

 

 

 

 

Figure S2.1.4. 1H NMR spectrum of derivative dPyF (600.23 MHz for 1H, CDCl3, 22 oC). 

 

 



 

Figure S2.1.5. 1H NMR spectrum of precursor poly(HPMA-co-MA-AH-NHNH2) (P1) (600.23 MHz for 1H, DMSO-d6, 22 
oC) 

 

 

 

 

 

 

Figure S2.1.6. 1H NMR spectrum of P-hyd-dPyF (600.23 MHz for 1H, DMSO-d6, 22 oC). 

 

 



 

 

Figure S2.1.7. 1H NMR spectrum of precursor poly(HPMA-co-MA-AP-NH2) (P2) (400 MHz for 1H, DMSO-d6, 22 oC) 

 

 

 

 

 

 

 

Figure S2.1.8. 1H NMR spectrum of P-amide-PyF (400 MHz for 1H, DMSO-d6, 22 oC). 

  



2.2. Field flow fractionation and Size exclusion chromatography 

 

Figure S2.2. Polymer precursor P1 and polymer conjugate P-hyd-dPyF: (A) FFF chromatograms in PBS (pH 7.4) 
at 1.1 mg⋅mL−1; (B) SEC chromatograms in DMF + LiBr (0.5 g L−1). 

 

2.3. UV–Vis spectrophotometry 

 

Figure S2.3. UV-Vis spectra of pure PyF, derivative dPyF, conjugate P-hyd-dPyF, and conjugate P-amide-PyF at 0.1 

mg mL−1 PyF or dPyF equivalent in methanol. 

 

 

 

 

 

 

 



2.4. TEM microscopy 

 

 

Figure S2.4. TEM microscopy of conjugate P-hyd-dPyF 



 
Figure S2.5. Heat of dilution of P1, P2, P-amide-PyF and P-hyd-dPyF polymers measured by ITC in PBS at 37°C 

 

 
 

3. In vitro PDT effect, in vivo tissue distribution and PDT antitumor activity 

 

 

Figure S3.1. Intracellular ROS generation after PDT using P-hyd-dPyF treatment. See the manuscript for details. The data 
represent mean ± SD, n = 4. 
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Figure S3.2. Tissue distribution of P-hyd-dPyF (5 mg kg−1, dPyF equivalent) at different times after intravenous injection. 
The mouse sarcoma S180 solid tumor model was used. See the manuscript for details. The data represent mean ± SD, n = 6-8. 

 

  
Figure S3.3. In vivo PDT effect of P-hyd-dPyF (A), and body weight changes of the mice after the treatment (B, C). The 

mouse sarcoma S180 solid tumor model was used. See the manuscript for details. The data represent mean ± SD, n = 6-8. 

 



  
Figure S3.4. In vivo PDT effect of P-hyd-dPyF in colon cancer C26 bearing mice. The changes of tumor volumes were 

shown in (A), and the image of tumors of each group was shown in (B). See the manuscript for details. The data represent 

mean ± SD, n = 6-8. 

 

 

  
Figure S3.5. Evaluation of side effects of PDT using P-hyd-dPyF in colon cancer C26 bearing mice. The changes of body 

weight were shown in (A), and the histological examination (H&E staining) of major organs, i.e., the liver and kidney were 

shown in (B). See the manuscript for details. The data represent mean ± SD, n = 6-8. 
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