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Abstract 

Background: Studies have shown that the expression of histone deacetylases (HDACs) is significantly related 
to the tumor microenvironment (TME) in gastric cancer. However, the expression of a single molecule or 
several molecules does not accurately reflect the TME characteristics or guide immunotherapy in gastric 
cancer. 
Methods: We constructed an HDAC score (HDS) based on the expression level of HDACs. The single-cell 
transcriptome was used to analyze the underlying factors contributing to differences in immune infiltration 
between patients with a high and low HDS. In vitro and in vivo experiments validated the strategy of transforming 
cold tumors into hot tumors to guide immunotherapy. 
Results: According to the expression characteristics of HDACs, we constructed an HDS model to 
characterize the TME. We found that patients with a high HDS had stronger immunogenicity and could benefit 
more from immunotherapy than those with a low score. The AUC value of the HDS combined with the 
combined positive score (CPS)for predicting the efficacy of immunotherapy was as high as 0.96. By single-cell 
and paired bulk transcriptome sequencing analysis, we found that the infiltration levels of CD4+ T cells, CD8+ 
T cells and NK cells were significantly decreased in the low HDS group, which may be induced by MYH11+ 
fibroblasts, CD234+ endothelial cells and CCL17+ pDCs via the MIF signaling pathway. Inhibition of the MIF 
signaling pathway was confirmed to potentially enhance immune infiltration. In addition, our analysis revealed 
that GPX4 inhibitors might be effective for patients with a low HDS. GPX4 knockout significantly inhibited 
PD-L1 expression and promoted the infiltration and activation of CD8+ T cells. 
Conclusion: We constructed an HDS model based on the HDAC expression characteristics of gastric cancer. 
This model was used to evaluate TME characteristics and predict immunotherapy efficacy. Inhibition of the MIF 
signaling pathway in the TME and GPX4 expression in tumor cells may be an important strategy for cold tumor 
synergistic immunotherapy for gastric cancer. 
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Introduction 
According to global cancer statistics from 2020, 

the incidence and mortality rates of gastric cancer 
rank 5th and 4th among malignant tumors [1], 

respectively, resulting in a huge economic burden on 
society [2]. The current treatment of gastric cancer 
involves surgery combined with radiotherapy, 
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chemotherapy, or targeted drug therapy [3]. Although 
patient prognosis has improved, the outcome is still 
unsatisfactory. Therefore, in-depth exploration of 
factors affecting the treatment response and prognosis 
of gastric cancer and formulation of new clinical 
treatment strategies are the primary tasks for 
improving patient prognosis. 

In recent years, researchers have gained a deeper 
understanding of the relationship between tumors 
and the tumor microenvironment (TME). Fleitas et al. 
found that tumor-associated macrophages have great 
potential as therapeutic targets for gastric cancer [4]. 
Related studies have shown that the heterogeneity of 
the gastric cancer microenvironment can effectively 
predict sensitivity to gastric cancer chemotherapy [5]. 
According to previous studies, tumor cells may 
induce immune escape through the PD-1/PD-L1 
signaling pathway [6]. In addition, tumor-associated 
fibroblasts form a high-density extracellular matrix in 
the TME that blocks drug absorption and immune cell 
infiltration, leading to different therapeutic responses 
[7]. Zeng et al. found that gastric cancer prognosis can 
be determined by the level of TME cell enrichment [8]. 
Additionally, one study found that clinical MSI-H 
patients may have a higher immune status and may 
be more suitable for immunotherapy [9]. However, 
this is not absolute; for example, EBV-positive 
patients tend to exhibit MSS but have high immune 
infiltration and can benefit from immunotherapy [10, 
11]. Therefore, there is no accurate indicator for 
identifying gastric cancer patients for whom 
immunotherapy might be beneficial. Therefore, 
analyzing the heterogeneity of the TME by 
determining a quantitative index for the TME may be 
the key to improving the therapeutic effect and 
prognosis and could guide gastric cancer treatment 
and prognosis evaluation. 

There are reportedly 18 kinds of histone 
deacetylases (HDAC1–11, SIRT1–7) that play an 
important role in chromosomal structural 
modification and gene expression regulation [12, 13]. 
Histone acetylation dissociates DNA and histone 
octamers, allowing transcription factors and 
cooperative transcription factors to bind specifically 
to DNA-binding sites and activate gene transcription. 
Conversely, deacetylation of histones has the opposite 
effect [14]. HDACs reversibly regulate the acetylation 
status of histones and nonhistone proteins during 
TME development [15-17]. Moreover, HDAC6 is 
involved in the upregulation of several key factors in 
the immune system, such as PD-1 and PD-L1 
receptors, which are the main cancer immunotherapy 
targets [18]. Brune et al. found that HDAC inhibitor 
treatment could enhance Foxp3 expression, thereby 
inducing and maintaining the immunosuppressive 

Treg phenotype [19]. Kai et al. found that HDAC3 
inhibitors could enhance the differentiation of CD8+ T 
cells into cytotoxic effector cells [20]. The above 
studies indicate that HDACs may be important 
targets for regulating the TME. However, different 
types of HDACs present heterogeneity in regulating 
the infiltration level of TME cells, and a single 
molecule or a single class of molecular target 
inhibitors alone cannot precisely control the changes 
in the TME. Therefore, there is an urgent need to 
systematically analyze HDAC expression profiles and 
the corresponding TME characteristics to provide a 
theoretical foundation for clinical treatment strategies 
and prognosis evaluation of gastric cancer. 

In this study, by analyzing the expression 
characteristics of HDACs in gastric cancer, an HDAC 
score (HDS) was established and used to evaluate the 
microenvironment. We investigated the genomic 
characteristics of gastric cancer in high and low HDS 
groups using the multiomics approach, and we found 
that the high HDS group had a higher degree of 
immune infiltration and better prognosis. The results 
were further verified in the bulk transcriptome 
sequencing cohort of gastric cancer patients at Peking 
University People's Hospital. This analysis revealed 
that patients with a high HDS could benefit more 
from immune checkpoint inhibitor therapy. To 
explore the internal mechanism affecting the 
difference in the TME between patients with high and 
low HDSs, single-cell and paired bulk transcriptome 
sequencing analysis showed that MYH11+ fibroblasts, 
CD234+ endothelial cells and CCL17+ pDCs in low 
HDS samples may inhibit the infiltration of T cells and 
NK cells through the MIF signaling pathway. In 
addition, we found that GPX4 inhibitors may be more 
effective in patients with a low HDS through drug 
sensitivity prediction. In vivo and in vitro experiments 
showed that inhibiting GPX4 expression in tumor 
cells can significantly enhance the infiltration and 
activation level of CD8+ T cells and improve the 
prognosis of gastric cancer. In conclusion, we 
developed an HDS to quantify the TME of gastric 
cancer to guide the treatment of stratified gastric 
cancer patients. For patients with a low HDS, this 
study explored therapeutic strategies to improve the 
state of the microenvironment and improve prognosis 
from the aspects of the TME and tumor cells. We 
believe these findings will contribute to the discovery 
of new therapeutic targets for gastric cancer and the 
development of effective therapeutic strategies. 

Methods 
Data acquisition and processing 

The RNA-seq, mutation, and somatic copy 
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number variation (SCNV) data, methylation dataset, 
and clinical information of gastric cancer patients 
were obtained from the Gene Expression Omnibus 
(GEO) and TCGA databases. Six cohorts with overall 
survival information (TCGA-STAD, GSE15459, 
GSE34942, GSE57303, ACRG, and GSE84437) were 
included in the study. The RNA-seq data of gastric 
cancer cell lines were obtained from the Cancer Cell 
Line Encyclopedia database. The data for 
pembrolizumab (anti-PD-1) treatment cohorts of 
gastric cancer patients were obtained from the 
European Nucleotide Archives (ENA) database 
(PRJEB25780 and PRJEB40416). Dataset information is 
shown in Table S1. For microarray data from GEO 
and other platforms, transcripts per million (TPM) 
values were used for subsequent analyses. RNA-seq 
data from the TCGA database were downloaded as 
fragments per kilobase of exon model per million 
mapped fragments (FPKM) values, and then the 
FPKM values were converted into transcripts with 
transcripts per kilobase of exon model per million 
mapped reads (TPM). The combat package was used 
to perform batch correction of data. The mutation data 
were analyzed using VarScan2 software. Single-cell 
and paired bulk transcriptome sequencing were 
provided by Professor Boxi Kang [21]. 

Nonnegative matrix factorization (NMF) 
algorithm for cluster analysis of 18 HDACs 

In this study, the expression profiles of 18 
HDACs were extracted from six gastric cancer cohorts 
with prognosis data; these profiles were used to 
identify the molecular characteristics of gastric cancer 
mediated by HDACs. The 18 HDACs included four 
class I HDACs (HDAC1, HDAC2, HDAC3, and 
HDAC8), six class II HDACs (HDAC4, HDAC5, 
HDAC6, HDAC7, HDAC9, and HDAC10), seven class 
III HDACs (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, 
and SIRT7), and one class IV HDAC (HDAC11). Based 
on these findings, NMF algorithm analysis was used 
to identify different gastric cancer subtypes, and 300 
repetitions were performed to ensure the stability of 
the results [22]. The "CancerSubtypes" package was 
used for the above analysis [23]. 

Gene set acquisition and functional annotation 
Antigen presentation signatures, immune- 

related signatures, carcinogenic pathway activation 
signatures, DNA mismatch repair signatures, and 23 
immune cell signatures were obtained from previous 
studies [24-27]. ssGSEA was used to evaluate the score 
of signatures via the "GSVA" package. The gene set 
file "c2.cp.kegg.v7.4" from the Molecular Signatures 
Database was used to determine pathway enrichment 
scores [28]. The R package "ClusterProfiler" was used 

for the functional annotation of genes [29]. The 
deconvolution algorithm of CIBERSORT was used to 
analyze the enrichment levels of 22 
microenvironmental cells [30]. 

Calculation of the HDS in gastric cancer 
In the ACRG cohort, the NMF algorithm 

identified different HDAC clusters. The limma 
package was used to identify genes that were 
differentially expressed between different HDAC 
clusters in the ACRG cohort. An adjusted P value < 
0.01 was considered to indicate significant differential 
expression. Univariate Cox regression analysis 
identified DEGs with significant prognostic value. 
Only the genes with P values < 0.05 were retained. 
Finally, the Boruta algorithm was used to reduce the 
dimensionality of DEGs with significant prognostic 
value [31]. Genes with an HR < 1 in univariate Cox 
regression analysis were defined as gene set A, and 
genes with an HR > 1 were defined as gene set B. The 
A and B gene sets were used for subsequent analysis. 

PCA was used to construct the HDS, in which 
principal component 1 was selected as the feature 
score. Then, we used a method such as GGI to define: 

𝐻𝐻𝐻𝐻𝐻𝐻 = �(𝑃𝑃𝑃𝑃1𝑖𝑖 − 𝑃𝑃𝑃𝑃1𝑗𝑗) 

PC1i represents the feature score of the first 
principal component of gene A, and PC1j represents 
the feature score of the first principal component of 
gene B. Median HDS scores were used to divide 
gastric cancer samples into high-HDS and low-HDS 
groups. 

Whole transcriptome sequencing 
A total of 121 gastric cancer tissue samples were 

ground into powder in liquid nitrogen. The research 
protocol was approved by the Ethics Committee of 
Peking University People's Hospital. We defined it as 
the PKUPH cohort. RNA was extracted from tissues 
and cells using TRIzol. For the qualified total RNA 
samples, 1–3 µg of total RNA was used as the starting 
material for each sample to construct a transcriptome 
sequencing library. Sequencing was performed using 
the BGISEQ-500 platform by running a paired-end 
sequencing program (PE), and 150 bp paired-end 
sequencing reads were obtained. TPM values were 
used to calculate gene expression levels. Statistical 
methods are described in previous studies [32]. 

Multiple immunofluorescence staining assay 
Forty-seven cancer tissue specimens with 

transcriptome sequencing data were included in this 
study. The patients did not undergo neoadjuvant 
treatment prior to surgery. The research protocol was 
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approved by the Ethics Committee of Peking 
University People's Hospital. The tissue block sections 
were cut into 3 µm lengths and embedded in paraffin 
before being placed on a glass slide. The paraffin 
sections were dewaxed, treated with EDTA antigenic 
repair buffer in a microwave oven for antigenic repair 
and then sealed with serum. The sealing solution was 
gently shaken off, and PBS was added to the section in 
a certain proportion of the first primary antibody and 
incubated at 4 °C overnight. The corresponding 
HRP-labeled secondary antibody was added for 
incubation at room temperature, and the fluorescence 
enhancer was added dropwise. After incubation at 
room temperature and away from light, microwave 
treatment was carried out. The second primary 
antibody and the third primary antibody were added 
in accordance with the above steps. After DAPI 
staining of the nucleus, the tablets were sealed with 
anti-fluorescence quenching tablets. Antibodies 
against CD8α (ab237709), CD4 (ab183685), pan-CK 
(ab7753) and PD-L1 (ab213480) were purchased from 
Abcam. The slices were placed under a scanner to 
capture images. The proportion of positive cells was 
calculated. 

Single-cell transcriptome sequencing analysis 
A Seurat matrix was constructed after cells were 

identified with CellRanger, low-quality cells were 
filtered according to previous studies [21], and finally, 
data were obtained for cluster analysis. First, the top 
2000 genes with the highest variance were selected for 
data normalization, principal component analysis 
(PCA) was used to reduce the dimensionality of the 
data to 50 principal components, and the harmony 
function was used to remove the batch effect of the 
samples. A total of 9 clusters (B cells, CD4+ T cells, 
CD8+ T cells, NK cells, mast cells, endothelial cells, 
fibroblasts, myeloid cells, and plasma cells) were 
identified by tSNE cluster analysis. Then, the gene 
expression matrix of each cell group was extracted for 
the identification of subpopulations. The top 2000 
genes in terms of variance were used for principal 
component analysis, and the top 25-30 principal 
components were used for batch correction with 
Harmony. The Wilcoxon rank sum test was used to 
identify differentially expressed genes between 
subpopulations. Finally, ligand and receptor 
information in the CellChat library was used to 
analyze the communication of each subgroup of cells 
[33]. 

Prediction of gastric cancer immunotherapy 
response and chemotherapeutic drug 
sensitivity 

The ISOpureR package was used to purify 

nontumor tissue data from our bulk sequencing data 
[34]. The CTRP2.0 and PRISM databases were used to 
predict sensitivity to chemotherapeutics [35, 36]. 
These two databases defined the sensitivity of tumors 
to drugs by evaluating their AUC values. Based on 
PRISM and CTRP2.0 drug sensitivity AUC data and 
CCLE expression profile data, potential therapeutic 
drugs were predicted for high and low HDS tumor 
cell characteristics. 

Cell culture and transfection 
The AGS and MFC cells were cultured in RPMI 

1640 medium (Gibco, USA) containing 10% fetal 
bovine serum (FBS) (Gibco, USA) at 37 °C and 5% 
CO2. Three si-GPX4s were purchased from Gemma 
(Shanghai, China). AGS cells were seeded in 6-well 
plates, and siRNA transfection experiments were 
performed when the cell density reached 80%. 
Transfection was performed according to the 
manufacturer's instructions. RNA was extracted 48 
hours after transfection for subsequent analysis. The 
siRNA sequence was shown in Table S6. 

Construction of lentiviral knockdown GPX4 
cell lines 

The mouse GPX4 knockdown lentivirus was 
purchased from GeneChem (Shanghai, China). MFC 
cells were seeded in 48-well plates, and a lentivirus 
transfection assay was performed according to the 
reagent manufacturer's instructions. 

Western blot assay 
Cells were collected and fully lysed with RIPA 

lysis buffer containing 1% phenylmethanesulfonyl 
fluoride. Protein loading buffer was then added to the 
protein sample and boiled in a 100 °C water bath for 5 
min. The protein was then subjected to SDS‒PAGE 
and transferred to a polyvinylidene fluoride (PVDF) 
membrane after electrophoresis. Then, PVDF was 
incubated in 5% skimmed milk powder for 2 h, and 
the primary antibody (GPX4, GAPDH or PD-L1) was 
incubated at 4 °C overnight after washing. After the 
PVDF membrane was washed three times again, the 
secondary antibody with HRP was incubated for 2 h. 
Finally, enhanced chemiluminescence (ECL) reagent 
was added to the PVDF membrane, and the bands 
were exposed on a Bio-Rad instrument. 

Real-time quantitative polymerase chain 
reaction (RT‒qPCR) assay 

RNA was extracted using TRIzol. The reverse 
transcription and amplification kits were purchased 
from TransGen Biotech (China). The methods were 
performed according to the reagent manufacturer's 
instructions. GAPDH was used as an internal 
reference gene. The 2-∆∆CT method was used to analyze 
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the relative expression of genes. 

CD8+ T-cell stimulation assay 
The 6-well plates were coated with 3 μg/mL 

anti-CD3 (BioLegend, cat 100359) and incubated at 37 
°C for 2 h. CD8+ T cells were isolated from the spleens 
of 615 mice using the STEMCELL EasySep mouse 
CD8+ T-Cell Isolation Kit. The fluid in 6-well plates 
was removed, and 1×106 CD8+ T cells were cultured in 
each well and then in complete medium 1640 
containing 2 μg/mL anti-CD28 antibody (BioLegend, 
cat 102116) for 48 h. 

T-cell coculture assay 
A total of 1×105 cells per well were inoculated 

into 96-well plates and incubated for 2 h. The 
activated CD8+ T cells and tumor cells were 
cocultured in 1640 medium containing 100 U/mL IL-2 
(PEPROTECH), 10% FBS, 10 mM HEPES, 100 μM 
NEAA and 50 μM β-mercaptoethanol at a ratio of 5:1 
for 48 h. Two hours before cell collection, Brefeldin A 
(BioLegend, 1:1000) was added to block cytokine 
secretion. The cells were washed and resuspended in 
a dye buffer, stained with anti-CD8 α and incubated 
in the dark on ice for 30 min. After washing, the cells 
were fixed, broken and stained on ice for 30 min with 
anti-IFN-γ or anti-GZMB antibodies. The cells were 
suspended and analyzed by flow cytometry. 

Cell proliferation, apoptosis, migration, and 
invasion assays 

The cells were seeded in six-well plates and 
stained with the EdU kit (Beyotime, C0075S) and 
apoptosis kit (Multi Science, AP107-100). The stained 
cells were suspended and detected by flow cytometry. 
The cells were resuspended in 1640 medium without 
FBS. A total of 2×105 or 5×105 cells were seeded in the 
upper layer of transwell chambers without or with 
Matrigel. The lower chamber layer was supplemented 
with 1640 medium containing 10% FBS. After 
coculture for 48 or 72 h, the cells were fixed with 
methanol. Cells in the upper chamber were removed, 
and the remaining cells were stained with 2% crystal 
violet. Finally, images were taken under the 
microscope, and the migrating and invading cells 
were counted. 

Mouse model of subcutaneous tumors 
When the cell confluence reached 80%, 1×106 

sh-NC/sh-GPX4 MFC cells were resuspended in PBS 
and injected subcutaneously into the right oblique 
abdomen of 615 mice (Female, 6-8 weeks old, Wukong 
biology). Anti-mouse-PD-L1 (BioXcell) or MIF 
inhibitor (4-IPP, 80 mg/kg, MCE) was used for 
intraperitoneal therapy. Tumor growth and mouse 
survival were monitored by in vivo imaging, and the 

tumor volume was calculated as a×b2/2 (a is the 
longest diameter of the tumor, b is the shortest 
diameter of the tumor). Mice with tumors smaller 
than 1000 mm3 were considered viable. Tumor tissues 
were collected and cut into small pieces (1~2 mm3) 
with eye scissors. Protease solution (1 mg/mL 
collagenase D and 0.1 mg/mL DNase I, Thermo 
Fisher Scientific) was added for digestion in a 37 ℃ 
incubator for 30 min. After termination of digestion, 
the cells were filtered through a 70 μm cell filter. The 
cells were washed once with dye buffer. Anti-CD45, 
anti-CD8α or anti-CD4 antibodies (Biolegend) were 
used to stain the cells, and the proportions of CD8+ T 
cells and CD4+ T cells were detected by flow 
cytometry. Intracellular staining was performed as 
described above. All animal experimental protocols of 
this study were approved by the Ethics Committee of 
Peking University People's Hospital. 

Statistical analysis 
All statistical P values were two-sided, and P < 

0.05 was considered to indicate statistical significance. 
All analyses were performed using R software 
(version 4.0.2). 

Results 
Landscape of HDACs in gastric cancer 

Figure 1A shows the location of the 18 HDACs 
and mechanisms regulating protein acetylation. In the 
TCGA database, we found that the most common 
mutations of class II HDACs co-occurred in gastric 
cancer (Figure S1A). We then analyzed the 
relationship between HDAC mutations and mRNA 
expression. We found that mutations in HDAC4, 
HDAC5, and HDAC9 significantly decreased the 
mRNA expression levels of the corresponding 
HDACs (Figure S1B).  

Since copy number variants (CNVs) are also 
known to alter gene expression, we further analyzed 
the CNV status of 18 HDACs in gastric cancer and 
found that CNVs of HDACs were often observed and 
were different for various HDACs (Figure S1C). In 
addition, for HDACs showing CNVs, we analyzed the 
corresponding mRNA expression levels. The results 
showed that except for HDAC5, HDAC6, HDAC7, 
and HDAC9, the copy number loss of the other 14 
HDACs significantly inhibited the expression of the 
corresponding mRNA. In contrast, the copy number 
gain of these 14 HDACs significantly promoted the 
expression of the corresponding mRNAs (Figure 
S1C). 

We included five GEO datasets with prognostic 
information (GSE15459, GSE34942, GSE57353, ACRG, 
and GSE84437) in this study. The combat package was 
used to perform batch correction of data. A total of 
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1048 gastric cancer samples with prognostic 
information were included (Table S1). To explore the 
role of HDACs in gastric cancer, we enriched the 
scores of ten cancer-related pathways in the GEO 
dataset through the ssGSEA method. We found that 
the expression of HDACs was significantly related to 

ten cancer signaling pathways. However, the 
correlation between HDAC expression and 
cancer-related pathway enrichment was not 
consistent, even for HDACs in the same class (Figure 
1B). 

 

 
Figure 1. Landscape of histone deacetylases (HDACs) in gastric cancer (GEO cohort). (A) The mechanism of HDACs in cells. (B) Association of HDAC expression 
with ten cancer-related pathways. (C) Correlation between HDAC mRNA expression levels and immune cell infiltration. (D) Three gastric cancer subtypes with significant 
prognostic differences as identified by the mRNA expression of HDACs. (E) KEGG functional enrichment analysis to understand the characteristics of different HDAC clusters. 
(F) The difference in TME cell infiltration levels between different HDAC clusters (CIBERSORT algorithm). 
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HDAC-mediated subtype characteristics in 
gastric cancer 

Next, we analyzed some gastric cancer subtypes 
that have already been identified. We found that the 
expression of HDAC was heterogeneous among the 
four subtypes of the TCGA cohort (CIMP-EBV, 
CIMP-H, CIMP-L, and non-CIMP) (Figure S2A). This 
result was also observed in other subtypes (CIN, EBV, 
GS, and MSI) (Figure S2B). Moreover, Aggarwal et al. 
[37] divided gastric cancer into four subtypes (EMT, 
MSI, MSS/TP53-, and MSS/TP53+) based on Asian 
populations. Our results also revealed that the 
expression of HDACs significantly differed based on 
gastric cancer subtypes (Figure S2C). MSI status and 
EBV status are important indicators of gastric cancer 
outcomes. We analyzed the expression of HDACs in 
samples of different MSI and EBV statuses (from the 
TCGA and ACRG cohorts). Our results verified that 
HDACs were significantly differentially expressed in 
the MSI, non-MSI, EBV+, and EBV- subtypes (Figure 
S2 E-F). These gastric cancer subtypes have been 
shown to be related to the TME state. Then, we found 
that the expression of HDACs was significantly 
related to the cell infiltration level in the TME, but 
significant heterogeneity was observed (Figure 1C). 

These results reveal that the expression of 
HDACs may play important but heterogeneous roles 
in gastric cancer. Therefore, assessment of the 
expression levels of all HDACs rather than just a few 
molecules may help to accurately identify the 
characteristics of gastric cancer and provide new 
treatment strategies. 

Nonnegative matrix factorization for 
constructing a new classification system for 
gastric cancer based on the expression of 
HDACs 

We analyzed the relationship between the 
expression of the 18 HDACs and the prognosis of 
gastric cancer in the GEO cohort (GSE15459, 
GSE34942, GSE57353, GSE62254, and GSE84437). 
Univariate Cox regression analysis revealed that 
HDAC1, HDAC5, HDAC8, SIRT3, and SIRT6 were 
significant predictors of gastric cancer (Figure S3A 
and Table S2). 

Next, NMF clustering was used to classify 
gastric cancer into 2–5 subtypes based on the 
expression profile of HDACs, and three clusters were 
found to be the most appropriate (Figure S3B). The 
heatmap shows that these three clusters (Figure S3C) 
can be used to stratify patients based on the 
expression of HDACs. HDACs were differentially 
expressed in the three clusters (Figure S3D). The 
survival curve revealed that the overall survival of 
gastric cancer patients was significantly different in 

these three clusters (Figure 1D), and HDAC cluster A 
patients had the worst prognosis. To further analyze 
the role of the three clusters in gastric cancer, KEGG 
enrichment analysis was used to identify the 
pathways enriched in the three clusters. The limma 
package was used to identify pathways that were 
significantly differentially enriched between cluster 
pairs. The results revealed that multiple oncogenic 
pathways, including glioma, melanoma, WNT, and 
TGF-β signaling pathways, were activated in HDAC 
cluster A (Figure 2E and Table S3). In addition, ECM 
receptor interactions and focal adhesion pathways 
were also enriched in HDAC cluster A. The activation 
of metabolic pathways and DNA damage repair 
pathways in HDAC cluster C had a high enrichment 
score, and this score was slightly lower in HDAC 
cluster B. 

Finally, we used the deconvolution algorithm 
CIBERSORT to estimate the immune cell enrichment 
level in each sample again and further compared the 
immune infiltration level between HDAC cluster A 
and HDAC cluster C. The results revealed that CD4 
memory cells, mast cells, and DCs were activated in 
HDAC cluster C, but T-regulatory cells were also 
enriched. In HDAC cluster A, M2 macrophages were 
enriched. 

According to the above results, gastric cancer 
subtypes had different levels of HDAC expression, 
and cell infiltration in the TME was broadly regulated 
by HDACs. 

Characteristics of HDAC clusters in the ACRG 
cohort 

The above results were analyzed based on five 
GEO datasets. Even if the batch effect removal 
method was applied, the heterogeneity between the 
datasets may still have affected the display of the 
results. For this reason, we focused on one of the 
largest datasets, the ACRG cohort dataset. This 
dataset contained a large amount of complete clinical 
information. We performed NMF cluster analysis on 
the expression profiles of HDACs in the ACRG 
cohort. The samples could be divided into three stable 
subtypes (HDAC clusters A, B, and C) (Figure S4A). 
HDAC expression profiles in these three subtypes 
were analyzed. HDACs were significantly 
differentially expressed in these three subtypes 
(Figure S4B). The heatmap clearly shows that SIRT4, 
HDAC4, and HDAC9 were highly expressed in 
cluster A; HDAC1, HDAC5–7, HDAC10–11, SIRT2–3, 
and SIRT6–7 were highly expressed in cluster B; and 
HDAC2, HDAC3, HDAC8, and SIRT5 were highly 
expressed in cluster C (Figure 2A). We performed 
PCA based on the HDAC clusters and found that 
these three clusters could distinguish gastric cancer 
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samples effectively (Figure 2A). Survival analysis 
revealed that the overall survival of the three clusters 
was significantly different. HDAC cluster A had the 

worst prognosis in terms of overall survival, while 
HDAC cluster C had the best prognosis (Figure 2A). 

 

 
Figure 2. Construction of the histone deacetylase score (HDS) model in the ACRG cohort. (A) Differential expression of HDAC mRNAs in the three HDAC 
clusters. Principal component analysis revealed the distribution of the three HDAC clusters. Prognostic differences between different HDACs. (B) Differentially expressed genes 
in the three HDAC clusters. The heatmap shows the expression profile of 103 genes (A genes and B genes) in the ACRG cohort after dimensionality reduction by the Boruta 
algorithm. (C) The biological processes of HDAC signature A genes and B genes. (D) Sankey diagram showing the relationship between three HDAC clusters and three gene 
clusters. (E) Prognostic differences between different gene clusters. (F) Construction of the HDS model through principal component analysis and evaluation of the difference 
in the HDS between different HDAC clusters and gene clusters. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Calculation of the HDS to quantify the 
characteristics of patients with gastric cancer 

To better understand the transcriptome 
characteristics of different HDAC clusters, we used 
the limma package to identify genes that were 
significantly differentially expressed between 
different HDAC clusters based on the ACRG cohort, 
with P < 0.01 indicating a significant difference. A 
total of 924 genes were differentially expressed among 
the three clusters (Figure 2B). Next, using univariate 
Cox regression analysis, we identified 488 genes 
significantly associated with gastric cancer prognosis. 
Then, the Boruta algorithm was used to perform gene 
dimensionality reduction, and a total of 103 genes 
were finalized. Univariate Cox regression results for 
59 genes showed that the hazard ratios (HRs) were all 
< 1 (Table S4). High expression levels of these genes 
implied a good prognosis. We defined these genes as 
type A genes. In contrast, the univariate Cox 
regression results of 44 genes revealed that their HRs 
were all > 1 (Table S4). High expression levels of this 
type of gene implied a poor prognosis. We defined 
these genes as type B genes. We performed NMF 
cluster analysis on these 103 genes and found that 
samples of gastric cancer could also be divided into 
three gene clusters (Figure S5A and Figure 2B). 
Moreover, HDAC expression and immune cell 
infiltration levels were significantly different among 
these three gene clusters (Figure S5B). GO analysis 
revealed that the HDAC signature A genes were 
mainly enriched in cell differentiation and cycle 
regulation, and the HDAC signature B genes were 
mainly enriched in protein localization and regulation 
(Figure 2C). The Sankey diagram shows the 
relationship between the three gene clusters and three 
HDAC clusters (Figure 2D). This result reveals that 
gene clusters and HDAC clusters are highly 
consistent. Moreover, survival curve analysis further 
demonstrated that the overall survival associated 
with samples in the three gene clusters was 
significantly different, wherein gene cluster C 
indicated the best prognosis and gene cluster A 
indicated the worst (Figure 2E). These results suggest 
that the 103 genes could effectively represent the 
characteristics of HDAC clusters in gastric cancer. 

However, it is difficult to apply these 
classifications in clinical practice. Therefore, based on 
the expression of 103 genes, we constructed an HDS 
model and calculated the score of each patient. The 
process for this method is shown in Figure S5C. The 
HDS value for each sample is shown in Table S5. The 
Kruskal‒Wallis test results revealed that the HDS had 
significant differences in certain HDAC clusters and 

gene clusters (Figure 2F-G). This result was consistent 
with the HDAC clusters and gene clusters. 

Clinical features and genomic characteristics 
of the HDS in gastric cancer 

We attempted to determine the relationship 
between the HDS and prognosis and clinical 
characteristics. We divided patients with gastric 
cancer into high and low HDS groups based on the 
median score. The results revealed that the high HDS 
group had a longer survival time than the low HDS 
group in the TCGA cohort (Figure 3A). In addition, 
we found that the MSI-H- and EBV-positive subtypes 
had the highest HDS. Similarly, we observed in the 
ACRG cohort that a low HDS was associated with a 
worse prognosis than a high HDS (Figure 3B). The 
MSI subtype had the highest HDS, whereas the EMT 
subtype had the lowest HDS (Figure 3C). The Sankey 
diagram shows the relationship between the HDS in 
gene clusters and ACRG subtype characteristics 
(Figure 3C). The waterfall chart shows the 
relationship between the HDS and clinical features in 
the ACRG cohort (Figure 3C). Then, we analyzed the 
prognosis of patients with a high and low HDS in 
different GEO cohorts (Figure S6A). These results 
demonstrate that patients with a high HDS had a 
better prognosis and a longer recurrence-free survival 
time (Figure S6B). Finally, we explored whether the 
HDS was a prognostic marker for gastric cancer. Cox 
regression analyses revealed that the HDS was an 
independent prognostic factor for gastric cancer 
(Figure 3D). 

The above results revealed that HDAC 
expression, HDAC clusters, and gene clusters were 
significantly related to the TME and that the HDS was 
also related to immune-related subtypes (such as EBV 
subtypes and MSI-H subtypes). These results indicate 
that the HDS may indirectly reflect the TME 
characteristics of gastric cancer. Then, we analyzed 
the correlation between the HDS and the expression 
of antigen presentation-related molecules, 
costimulatory molecules, and coinhibitory molecules 
in six gastric cancer cohorts. We found that the HDS 
was positively correlated with the expression of most 
antigen-presenting molecules (Figure 3F). This result 
suggests that the high HDS group had a significantly 
higher antigen-presenting ability than the low HDS 
group. Further analysis revealed a positive correlation 
between the HDS and the expression of costimulatory 
molecules and cosuppressive molecules (Figure 3F). 
This result demonstrates that patients with a high 
HDS value had higher immunogenicity, but at the 
same time, there was stronger immunosuppression. 
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Figure 3. Clinical features and genomic characteristics associated with the HDS in gastric cancer. (A) The prognostic difference between the high- and low-HDS 
groups (TCGA cohort). Differences in the HDS in gastric cancer subtypes (TCGA cohort). (B) The prognostic difference between the high- and low-HDS groups (ACRG 
cohort). (C) Differences in the HDS in gastric cancer subtypes and clinical features (ACRG cohort). (D-E) Univariate and multivariate COX regression were used to identify the 
effects of the HDS and clinical features on overall survival (OS) and relapse-free survival. (F) The correlation between the HDS and antigen presentation molecules, costimulatory 
molecules, and coinhibitory molecules. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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High HDS may indicate “hot” tumor status in 
gastric cancer 

To investigate the relationship between the HDS 
and TME, we analyzed six gastric cancer cohorts from 
the TCGA and GEO databases. The results revealed 
that the enrichment scores of immune cells such as 
CD4+ T cells, CD8+ T cells, NKT cells and Th17 cells 
were significantly positively correlated with the HDS 
(Figure 4A). However, the scores of immunosup-
pressive cells such as M2 macrophages, MDSCs, pDCs 
and stromal cells (fibroblasts and endothelial cells) 
were significantly negatively correlated with the HDS. 
Interestingly, a significant positive correlation was 
found between the HDS and Treg cells (Figure 4A). In 
addition, we found that the HDS was considerably 
negatively correlated with the expression of 
angiogenic molecules in five gastric cancer cohorts 
(Figure 4B). The above studies revealed that a high 
HDS may indicate a “hot” tumor, but at the same 
time, these tumors exhibit immunosuppression. 

However, the above results were based on public 
databases and mRNA expression. To further verify 
the accuracy of this result, we collected the cancer 
tissue of 121 patients with gastric cancer for RNA-seq 
and divided the patients into high and low HDS 
groups based on the median HDS (Figure 4C). 
Prognostic information was available for 41 patients 
with high HDSs and 45 patients with low HDSs. 
Survival analysis revealed that patients with a high 
HDS had a longer OS and DFS than those with a low 
HDS (Figure 4D). In addition, the correlation between 
the HDS and microenvironment cell enrichment 
scores was highly consistent with the results for five 
cohorts in the public database (Figure 4E). Results of 
multiple immunofluorescence staining revealed that a 
high HDS was associated with a higher proportion of 
CD8+ T-cell infiltration, but at the same time, tumor 
cells may express more PD-L1 to promote immune 
escape (Figure 4F). Immune checkpoint inhibitors 
could be used to obtain the greatest benefit in patients 
with a high HDS. 

The HDS is a powerful predictor of gastric 
cancer immunotherapy efficacy 

The above results imply that patients with a high 
HDS are more likely to benefit from immunotherapy, 
as they have "hot" tumors. We also predicted that 
patients with a high HDS would benefit from PD-L1 
inhibitor treatment through the TIDE and submap 
algorithms (Figure 5A). The study (PRJEB40416) 
included 14 patients with MSI-H advanced gastric 
cancer treated with pembrolizumab. The results 
revealed that the HDS was higher in the CR/PR 
group than in the SD/PD group, but the difference 
was not significant (P = 0.054) (Figure 5B). The reason 

for this could be the deviation caused by the small 
sample size. We observed that 71% of patients in the 
CR/PR group had a high HDS (Figure 5B). ROC curve 
analysis showed that the HDS predicted the 
therapeutic effect of pembrolizumab in the 
PRJEB40416 cohort with an AUC value of 0.776, while 
the AUC of the CPS was only 0.381, indicating that the 
HDS had a higher predictive value (Figure 5C). 
Finally, the HDS combined with the CPS was used to 
predict the efficacy of gastric cancer immunotherapy, 
with an AUC value of 0.881 (Figure 5C). To verify the 
reliability of the results, the study (PRJEB25780) 
included 45 patients with advanced gastric cancer 
treated with pembrolizumab. These patients included 
those with MSS, MSI-H, and EBV subtypes. In this 
cohort, CR/PR patients had a significantly higher 
HDS than SD/PD patients, with 75% of them having a 
high HDS (Figure 5D). The waterfall chart shows the 
HDS of each patient with different responses, and the 
ROC curve revealed an AUC value of 0.71 for the HDS 
in the PRJEB25780 cohort (Figure 5F). However, when 
combining the HDS with MSI status and the CPS, we 
found that the AUC of the combined model for 
predicting gastric cancer immunotherapy efficacy was 
as high as 0.96 (Figure 5F). This result was exciting 
and implied that the HDS combined with MSI status 
and the CPS could be used to accurately screen gastric 
cancer patients likely to benefit from immunotherapy. 
A nomogram was generated to visualize this 
predictive model (Figure 5G). 

Single-cell transcriptome sequencing revealed 
the TME of high and low HDS patients 

Based on the above results, a high HDS indicated 
a “hot” tumor, a better prognosis, and a better 
immunotherapy response. However, exploring the 
underlying factors in patients with high and low 
HDSs that lead to different immune characteristics 
may be an important strategy to improve immune 
infiltration and prolong survival. We used 24 
single-cell sequencing datasets and 20 paired bulk 
sequencing datasets for analysis (Figure 6A). A total 
of 9 clusters were identified through T-distributed 
stochastic neighbor-embedding (t-SNE), according to 
the definition of marker genes as B cells (CD19, 
MS1A1), plasma cells (SDC1, MZB1, CD79A), CD4 T 
cells (CD4, CD3E, CD3D), CD8 T cells (CD8, CD3E, 
CD3D), natural killer (NK) cells (CX3CR1, FGFBP2), 
myeloid cells (CD68, CD163), mast cells (TPSAB1, 
TPSB2), endothelial cells (VWF, PECAM1), and 
fibroblasts (FGF7, COL1A1, MME) (Figure 6B). In 
addition, we separated the samples into high HDS 
and low HDS groups through bulk sequencing; there 
were 9 high HDS cases and 11 low HDS cases (Figure 
6C). tSNE showed the characteristics of TME cells in 
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patients with high and low HDS (Figure 6C). The 
stacking plots revealed that patients with a high HDS 
may have higher infiltration levels of CD8+ T cells, 
CD4+ T cells, and NK cells. Patients with a low HDS 
may have higher proportions of endothelial cells and 
fibroblasts (Figure 6D). Difference analysis further 

revealed that CD4+ T cells, CD8+ T cells and NK cells 
were more abundant in the high HDS group (Figure 
6E). Multiple immunofluorescence experiments 
further verified these results (Figure 6F). These 
findings are consistent with our above analysis results 
based on bulk transcriptome sequencing. 

 

 
Figure 4. Association of immune characteristics with the HDS. (A) The correlation between the HDS and TME cell enrichment scores was analyzed in five gastric 
cancer cohorts. (B) The HDS was significantly negatively correlated with the expression of angiogenic molecules in five gastric cancer cohorts. (C) Flow chart of RNA-seq. (D) 
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Survival analysis revealed that patients with a high HDS had longer OS and DFS. (E) The correlation between the HDS and TME cell enrichment scores was analyzed in the 
PKUPH cohort. (F) The expression levels of CD8 and PD-L1 proteins in high- and low-HDS samples. 

 

 
Figure 5. Value of the HDS in predicting the efficacy of immunotherapy for gastric cancer patients. (A) The TIDE algorithm and the submap algorithm predict the 
response of high- and low-HDS tumors to PD-1 inhibitors. (B) Differences in the HDS in different response groups (CR/PR and SD/PD) (PRJEB40416 cohort). (C) ROC curve 
reveals the accuracy of the HDS, CPS and HDS+CPS in predicting the efficacy of immunotherapy. (D-E) Differences in the HDS in different response groups (CR/PR and SD/PD) 
(PRJEB25780 cohort). (F) The AUC value of the ROC curve reveals the accuracy of different indicators for predicting the efficacy of immunotherapy. (G) The nomogram shows 
the HDS combined with MSI status and the CPS to predict the efficacy of gastric cancer immunotherapy. 
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Figure 6. Single-cell transcriptome sequencing reveals the TME of high- and low-HDS patients. (A) Twenty-four single-cell sequencing datasets and twenty paired 
batch sequencing datasets were analyzed. (B) A total of 9 clusters were identified through T-distributed stochastic neighbor-embedding (t-SNE), according to the definition of 
marker genes. (C) The tSNE plot shows the characteristics of TME cells in patients with high and low HDSs. (D) Stacking plots revealed the proportion of high and low HDSs 
in each cell cluster. (E) Multiple immunofluorescence staining verified the difference in CD4+ T cells and CD8+ T cells in high- and low-HDS samples. 
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Endothelial cells and fibroblasts may inhibit 
the infiltration of T cells and NK cells through 
the MIF signaling pathway 

Next, we investigated the internal factors 
underlying TME differences between the high and 
low HDS samples. The CellChat package was used to 
compare cell interactions between the high HDS and 
low HDS groups. The results showed that there was 
no significant difference in the number of receptors or 
ligands between the two groups, and the interactions 
in the high HDS group were weaker than those in the 
low HDS group (Figure 7A). In the low HDS group, 
the number and strength of signaling pathways in 
endothelial cells, fibroblasts, and myeloid cells to 
CD4+ T cells, CD8+ T cells, and NK cells were 
significantly higher than those in the high HDS group 
(Figure 7B). We further reclustered endothelial cells 
and fibroblasts into eight cell clusters to explore the 
differences in stromal cells between high and low 
HDSs (Figure 7C). Each cluster's marker genes were 
identified using the FindMarkers function. There 
were two clusters of endothelial cells (PLVAP+ 
endothelial and CD234+ endothelial) and six clusters 
of fibroblasts (CD69+ fibroblasts, CD36+ fibroblasts, 
EGFL6+ fibroblasts, CXCL14+ fibroblasts, SFRP2+ 
fibroblasts, and MYH11+ fibroblasts). Stacking plots 
showed the proportion of high and low HDSs in each 
cluster (Figure 7D). 

We further analyzed the communication 
information of endothelial cells and fibroblasts with T 
cells and NK cells. T cells and NK cells were 
reclustered into 7 clusters for CD4+ T cells (Figure S7), 
11 clusters for CD8+ T cells (Figure S8), and 4 clusters 
for NK cells (Figure S9). CellChat was used to analyze 
communication between endothelial cells, fibroblasts, 
T cells, and NK cells. The results showed that the 
interactions between SFRP2+ fibroblasts, MYH11+ 
fibroblasts, CD234+ endothelial cells, CD69+ 
fibroblasts and T-cell and NK-cell clusters were 
stronger in the low HDS group (Figure 7E). We 
analyzed the differences in the communication of 
endothelial cells and fibroblasts (SFRP2+ fibroblasts, 
MYH11+ fibroblasts, CD234+ endothelial cells and 
CD69+ fibroblasts) with T cells and NK cells in the 
high and low HDS samples. The MIF signal was 
significantly enriched in the low HDS samples but not 
in the high HDS samples. The results suggested that 
SFRP2+ fibroblasts, MYH11+ fibroblasts, CD234+ 
endothelial cells and CD69+ fibroblasts may 
communicate with T cells and NK cells frequently 
through MIF signals, decreasing their infiltration 
levels in low HDS samples (Figure 7F). We further 
analyzed whether SFRP2+ fibroblasts, MYH11+ 
fibroblasts, CD234+ endothelial cells and CD69+ 

fibroblasts communicate with CD8+ T-cell subtypes, 
CD4+ T-cell subtypes and NK cell subtypes. It was 
also found that the MIF-CD74 signal was significantly 
enriched at a low HDS compared to a high HDS 
(Figure S10A). 

However, the roles of SFRP2+ fibroblasts, 
MYH11+ fibroblasts, CD234+ endothelial cells and 
CD69+ fibroblasts are not clear in gastric cancer. The 
ssGSEA algorithm was used for enrichment analysis 
of each of the four cell clusters in the ACRG cohort. 
Survival analysis revealed that there were no 
significant associations between the expression of 
CD69+ fibroblasts and SFRP2+ fibroblasts and the 
survival of gastric cancer patients (Figure S11A). High 
levels of MYH11+ fibroblasts and CD234+ endothelial 
cells may be poor prognostic factors for patients with 
gastric cancer (Figure S11A). The top 20 marker genes 
of MYH11+ fibroblasts and CD234+ endothelial cells 
were analyzed by KEGG to identify their functions. 
MYH11+ fibroblasts were enriched in the NF-κB, 
epithelial-mesenchymal transition and IFN-γ 
signaling pathways, and CD234+ endothelial cells 
were enriched in the TGF-β, inflammatory reactions 
and IFN-γ signaling pathways (Figure S11B). These 
results suggest that MYH11+ fibroblasts and CD234+ 
endothelial cells may be widely involved in tumor 
and immune processes. Correlation analysis showed 
that MYH11+ fibroblasts and CD234+ endothelial cells 
were highly negatively correlated with the HDS 
(Figure S11 C). Furthermore, we found that assessing 
the HDS and MYH11+ fibroblasts could increase 
prognosis-based stratification accuracy in gastric 
cancer patients (Figure S11D). 

These results further revealed that MYH11+ 
fibroblasts and CD234+ endothelial cells were the key 
factors affecting the difference in immune features 
between the high and low HDS groups. Inhibiting the 
infiltration of MYH11+ fibroblasts and CD234+ 
endothelial cells or blocking their inhibition of T cells 
and NK cells via MIF signals is an important strategy 
to enhance immune cell infiltration in low-HDS 
tumors. 

CCL17+ plasmacytoid dendritic cells may 
inhibit T-cell and NK-cell infiltration through 
the MIF signaling pathway in low-HDS tumors 

Previous results found that myeloid cells also 
communicate with T cells and NK cells in low HDS 
tumors (Figure 7B). We reclustered the myeloid cells 
into 12 cell clusters (Figure 8A). According to the 
definition of marker genes, macrophages (CD163, 
CD68), monocytes (S100A8, S100A9), plasmacytoid 
dendritic cells (pDCs) (CD1E, CD1C), and DC1 cells 
(IDO1, IDO2) were used (Figure 8B). Using the 
FindMarkers function, each cluster’s marker genes 
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were identified. The top 5 marker genes of each 
cluster are shown in the bubble plot (Figure 8C). Cell 
communication analysis revealed that cluster 3 (C3) 
cells communicated more frequently with T cells and 

NK cells in low-HDS tumors (Figure 8D). C3 cells 
were identified as CCL17+ pDCs based on marker 
gene characteristics (Figure 8B-C). 

 

 
Figure 7. Endothelial cells and fibroblasts may inhibit the infiltration of T cells and NK cells through the MIF signaling pathway. (A) The difference in cell 
interaction number and strength in high- and low-HDS samples was analyzed based on CellChat. (B) Circle plot and heatmap show the difference in the number and intensity of 
interactions per cell cluster at high and low HDSs. (C) The tSNE analysis revealed reclustering maps of stromal cells. The bubble map shows the marker genes for each cell 
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cluster. (D) Stacking plots show the proportion of high- and low-HDS samples in each cluster. (E) CellChat was used to analyze communication between endothelial cells, 
fibroblasts, T cells, and NK cells. (F) Bubble diagram and circle diagram showing that SFRP2+ fibroblasts, MYH11+ fibroblasts, CD234+ endothelial cells and CD69+ fibroblasts may 
communicate with T cells and NK cells frequently through MIF signals in low-HDS samples. 

 
Figure 8. CCL17+ plasmacytoid dendritic cells may inhibit T-cell and NK-cell infiltration through the MIF signaling pathway in low-HDS samples. (A) The 
tSNE analysis revealed reclustering maps of myeloid cells. (B) The bubble plot shows the expression of the defined gene in each cell cluster. (C) The bubble plot shows the 
marker genes for each cell cluster. (D) The difference in cell interaction number and strength in high- and low-HDS samples was analyzed based on CellChat. (E) Bubble plot 
showing upregulated signaling pathways in low-HDS tumors. (F) Violin diagram showing the expression levels of MIF signaling pathway-associated ligands and receptors in 
CCL17+ pDCs, T cells, and NK cells. (G) KEGG demonstrates the capabilities of CCL17+ pDCs. (H) Correlation between the enrichment score of CCL17+ pDCs and the HDS 
(ACRG cohort). (I) Effect of the enrichment score of CCL17+ pDCs on the prognosis of gastric cancer (ACRG cohort). 
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By comparing the differentially enriched 
signaling pathways between low- and high-HDS 
tumors, we again found that CCL17+ pDCs frequently 
communicate with T cells and NK cells through MIF 
signaling in low-HDS tumors (Figure 8E). We further 
analyzed the ligands and receptors associated with 
the MIF signaling pathway in CCL17+ pDCs, T cells 
and NK cells. The results showed that MIF expression 
in CCL17+ pDCs was higher in low-HDS tumors. The 
expression levels of MIF signaling pathway- 
associated receptors (CD74, CXCR4, CD44) were not 
different between T cells and NK cells in high- and 
low-HDS tumors (Figure 8F). Similarly, we found that 
the MIF-CD74 signal was significantly enriched in 
low-HDS tumors in the cellular communication 
network between CCL17+ pDCs and CD8+ T-cell 
subtypes, CD4+ T-cell subtypes, and NK-cell subtypes 
(Figure S10B). KEGG enrichment analysis of marker 
genes revealed that CCL17+ pDCs were mainly 
enriched in Th1 and Th2 cell differentiation, antigen 
presentation and cell adhesion pathways (Figure 8G). 
Correlation analysis showed that the enrichment 
score of CCL17+ pDCs in the ACRG cohort was 
negatively correlated with the HDS (Figure 8H). 
However, the CCL17+ pDC score had no significant 
effect on prognosis (Figure 8I). These results suggest 
that in low-HDS tumors, CCL17+ pDCs may 
communicate with T cells and NK cells frequently 
through high MIF expression. Blocking the 
communication network of MIFs may enhance T-cell 
and NK-cell infiltration. 

To verify these results, we constructed a mouse 
model of heterotopic transplanted tumors treated 
with intraperitoneal injection of an MIF inhibitor 
(4-IPP) (Figure 9A). The results showed that MIF 
inhibitors significantly inhibited tumor growth 
(Figure 9B). Immunofluorescence revealed that CD8+ 
T-cell and CD4+ T-cell infiltration increased 
significantly after MIF inhibitor treatment (Figure 9C). 
Flow cytometry analysis revealed that the proportion 
of CD8+ T cells and CD4+ T cells in lymphocytes and 
their capability to secrete IFN-γ increased 
significantly after MIF inhibitor treatment (Figure 
9D-G). The above results further verified the results of 
single-cell transcription analysis. By inhibiting MIF 
signaling, the TME characteristics of gastric cancer 
may be reversed, leading to the transformation of cold 
tumors into hot tumors. 

GPX4 may be an important target for tumor 
cells in low-HDS tumors 

Based on the above results, blocking MIF may 
enhance immune infiltration in low-HDS patients by 
inhibiting the effect of stromal cells and CCL17+ pDCs 
on T cells and NK cells. This strategy is realized by 

interfering with cell communication in the TME. 
However, due to the lack of tumor cells in single-cell 
transcriptome sequencing data, it is impossible to 
mine tumor cell targets to improve patient prognosis. 
For this reason, the CTPR and PRISM databases were 
used to identify chemotherapy drugs that might be 
effective against high-HDS and low-HDS tumors 
(Figure 10A). We found that gastric cancer tumors 
with a low HDS may be sensitive to GPX4 inhibitors 
(ML210, ML162, and 1S3R−RSL−3), survivin 
inhibitors (YM-155), and dasatinib (Figure 10A). Three 
GPX4 inhibitors were predicted to be more effective 
against low-HDS tumors; therefore, it was necessary 
to investigate the regulatory mechanism of GPX4 
inhibitors in patients with low-HDS tumors. To 
explore the effect of GPX4 inhibitors on gastric cancer 
tumors with a low HDS, we used five types of gastric 
cancer cells (HGC27, MKN45, KATOAIII, SNU1, and 
AGS) stored in the laboratory. The CCLE database 
was used to analyze the HDS value of the cells, and it 
was found that AGS cells had the lowest HDS (Figure 
10B); thus, AGS cells were used in our analysis. 
Transfection of three si-GPX4s into AGS cells showed 
that siGPX4-2 had a significant knockdown effect on 
GPX4 expression (Figure 10B). Table S6 shows the 
primer sequences of all genes. To explore why GPX4 
inhibitors are more effective against tumors with a 
low HDS, we analyzed the expression characteristics 
of HDACs in patients with a high and low HDS. The 
results showed that people with a high HDS may 
have higher HDAC1, HDAC2, HDAC3, HDAC6, 
HDAC8, HDAC10, SIRT5, SIRT6 and SIRT7 
expression levels. Patients with a low HDS had higher 
expression levels of HDAC4, HDAC5, HDAC9, 
SIRT2, and SIRT4 (Figure 10C). Therefore, we further 
found by RT‒PCR that GPX4 knockdown significantly 
inhibited the expression of HDAC5, HDAC9 and 
SIRT4 and enhanced the expression of HDAC1, 
HDAC2 and HDAC3 (Figure 10D). This may be one of 
the reasons why low-HDS tumors were more 
sensitive to GPX4 inhibitors. 

Next, RNA-seq was used to explore the effect of 
GPX4 knockdown. Differentially expressed genes in 
the NC and siGPX4 groups were analyzed using GO 
and KEGG functional enrichment analyses. The 
results revealed that these differentially expressed 
genes were mainly enriched in cell communication 
and metabolic processes. KEGG enrichment analysis 
revealed that after GPX4 knockdown, metabolic 
pathways and immune-related signaling pathways 
(TNF signaling pathway and cytokine‒cytokine 
receptor pathway) were activated (Figure 10E). These 
results suggest that GPX4 knockdown may regulate 
cell metabolism and improve tumor cell 
immunogenicity. We further analyzed the expression 
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of costimulatory and coinhibitory molecules. We 
found that the costimulatory molecules TNFSF15 and 
TNFSF9 were overexpressed in the siGPX4 group 
(Figure 10F), suggesting that GPX4 knockdown could 
inhibit tumor angiogenesis. We also found that the 
mRNAs of CD86 and BTNL8 were expressed in the 
siGPX4 group (Figure 10F), suggesting that knocking 
down GPX4 increased T-cell activity and killed tumor 
cells. In addition, T-cell activity was related to the 
expression of immune checkpoint molecules. We also 
found that PD-L1 mRNA expression was significantly 
reduced in the siGPX4 group (Figure 10E), suggesting 
that GPX4 knockdown could inhibit PD-L1 expression 
and prevent tumor immune escape. However, GPX4 

knockdown significantly increased the mRNA levels 
of BNT3A1 and BNT24A (Figure 10F), which may act 
as a negative feedback regulatory mechanism on 
T-cell activity. Finally, the ACRG cohort was used to 
analyze immune cell expression and related immune 
signals in the high- and low-GPX4 groups (Figure 
10G). The results showed that GPX4 knockdown 
significantly increased the infiltration of B cells, iDCs 
and mast cells, the level of TILs and the expression of 
type II TNF response-related factors. The results 
above suggest that GPX4 knockdown may activate 
T-cell activity, leading to enhanced TIL infiltration 
and the type II TNF response to kill tumor cells. 

 

 
Figure 9. Inhibition of MIF signaling enhances intratumoral T-cell infiltration and cytotoxicity. (A) Regimen of MIF inhibitors for gastric cancer. (B) MIF inhibitors 
significantly inhibited the growth of gastric cancer. (C) Immunofluorescence revealed the infiltration level of T cells in the MIF-inhibited group and the control group. (D-E) Flow 
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cytometry was used to analyze the proportion and cytotoxicity of CD8+ T cells in the MIF inhibitor and control groups. (F-G) Flow cytometry was used to analyze the proportion 
and cytotoxicity of CD4+ T cells in the MIF inhibitor and control groups. *P < 0.05, **P < 0.01. 

 
Figure 10. Inhibition of GPX4 expression in tumor cells may activate the immune microenvironment. (A) The CTRP and PRISM databases predicted effective 
compounds for low-HDS samples. (B) HDS values for five gastric cancer cell lines. GPX4 mRNA expression in different intervention groups. (C) Differential expression of 
HDACs in the high- and low-HDS groups. (D) Expression of HDACs after knocking down GPX4. (E) GO and KEGG functional enrichment analyses of the differentially 
expressed genes in the NC group and the GPX4 knockdown group. (F) Differential analysis of the expression of costimulatory and coinhibitory molecules after GPX4 
knockdown. (G) Differential analysis of immune cell infiltration and immune-related signatures in the high- and low-HDS groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001. 
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Figure 11. GPX4 knockdown inhibits tumor growth and liver metastasis in gastric cancer. (A) Western blot and qPCR assays verified the knockdown efficiency of 
GPX4 in MFC cells. (B) The effect of GPX4 knockdown on cell apoptosis was detected by apoptosis assay. (C) The effect of GPX4 knockdown on cell migration and invasion 
was detected by cell migration and invasion assays. (D) The EdU assay was used to detect the effect of GPX4 knockdown on cell proliferation. (E-F) The mouse subcutaneous 
xenograft model revealed that knockdown of GPX4 significantly inhibited tumor cell growth and prolonged the survival time of mice. **P < 0.01. 

 

GPX4 knockdown may promote CD8+ T-cell 
infiltration and improve the anti-PD-L1 
therapeutic effect 

GPX4 expression was downregulated in MCF 
cells (mouse gastric cancer cells) to explore its effect 
on the gastric cancer microenvironment. The results 
were verified by Western blot and qPCR assays 
(Figure 11 A). GPX4 knockdown significantly 
promoted apoptosis and inhibited the migration, 
invasion, and proliferation of MFC cells (Figure 
11B-D). The mouse xenograft model revealed that 
GPX4 knockdown inhibited tumor cell growth and 
prolonged the survival time of mice (Figure 11E-F). 

Next, we explored whether GPX4 knockdown 
plays a tumor suppressor role by regulating the 
immune microenvironment. Immunofluorescence 
assays showed that GPX4 knockdown increased CD8+ 
T-cell infiltration (Figure 12A), and flow cytometry of 
subcutaneous tumor tissue confirmed this result 

(Figure 12B). In addition, CD8+ T cells in 
subcutaneous tumors with low GPX4 had stronger 
IFN-γ secretion ability (Figure 12C). These results 
revealed that GPX4 knockdown promoted CD8+ T-cell 
infiltration. However, it is unclear whether tumor 
cells affect CD8+ T cells, directly or indirectly, through 
other immune cells after GPX4 knockdown. To 
explore this result, 615 mouse spleen cells were 
extracted, and CD8+ T cells were sorted by magnetic 
bead separation and then activated in vitro (Figure 
12D). Activated CD8+ T cells were cocultured with 
MFC-NC and MFC-SH GPX4 cells. Before cell 
collection, brefeldin A was applied to block cytokine 
secretion. Flow cytometry showed that GPX4 
knockdown promoted IFN-γ and GZMB secretion by 
CD8+ T cells and increased CD8+ T-cell toxicity 
(Figure 12E). These results indicated that GPX4 
knockdown not only inhibited tumor cell growth but 
also improved CD8+ T-cell infiltration and killing 
ability. 
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Figure 12. GPX4 knockdown may promote CD8+ T-cell infiltration and cytotoxicity. (A) Immunofluorescence assay showed that GPX4 knockdown significantly 
promoted the infiltration level of CD8+ T cells. (B) Flow cytometry was used to analyze the infiltration level of CD8+ T cells in tumor tissues after knockdown of GPX4. (C) Flow 
cytometry showed that GPX4 knockdown significantly promoted IFN-γ secretion by CD8+ T cells and increased the toxicity of CD8+ T cells. (D) Activation of CD8+ T cells and 
coculture with tumor cells. (E) The cytotoxicity of CD8+ T cells after coculture was determined by flow cytometry. (F) GPX4 knockdown significantly inhibited the expression 
of PD-L1 mRNA and protein. (G) Expression level of PD-L1 mRNA in mouse subcutaneous tumors. (H) GPX4 knockdown combined with PD-L1 inhibitors significantly 
improved the efficacy of immunotherapy and inhibited tumor growth. *P < 0.05, **P < 0.01. 
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However, the mechanism by which GPX4 affects 
the infiltration level and killing ability of CD8+ T cells 
remains unclear. Our above results showed that GPX4 
knockdown significantly inhibited PD-L1 mRNA 
expression in AGS cells (Figure 10E), so we speculated 
that GPX4 knockdown might inhibit PD-L1 
expression and affect CD8+ T-cell infiltration in 
tumors. Interestingly, GPX4 knockdown significantly 
inhibited PD-L1 expression in MFC cells (Figure 12F), 
while an increase in PD-L1 expression was observed 
in the subcutaneous tumor model (Figure 12G). We 
speculated that GPX4 knockdown enhanced CD8+ 
T-cell infiltration, which might lead to PD-L1 
overexpression by other immunosuppressive cells to 
inhibit CD8+ T cells. Based on this result, we found 
that knockdown of GPX4 combined with PD-L1 
inhibitor therapy can improve immunotherapy 
efficacy in gastric cancer (Figure 12H), suggesting a 
new therapeutic strategy for this disease. 

Discussion 
Studies have shown that HDAC regulators play 

an indispensable role in regulating the TME [17, 38]. 
Most previous studies have explored the function of a 
single HDAC or a class of HDACs, but different 
HDACs play highly heterogeneous roles in regulating 
the TME and antitumor effects [38-40]. Therefore, our 
study reveals the mechanism underlying TME 
differences and provides a new therapeutic strategy 
for gastric cancer by comprehensively analyzing 
HDAC-related TME features and quantifying TME 
indicators. 

In this study, we performed multiomics analysis 
of HDACs in gastric cancer, including analysis of gene 
mutations, somatic CNVs, and transcriptome 
expression levels. We found that different HDACs 
have certain genomic characteristics, even within the 
same class of HDACs. To explore whether HDAC 
expression is related to the TME, ssGSEA and 
correlation analysis were performed. We found that 
HDAC expression was significantly correlated with 
cell infiltration in the TME (Figure 1B). However, the 
correlations of HDACs with TME cell infiltration 
levels were highly heterogeneous. For example, a 
significant positive correlation was found between 
HDAC9 expression and cell infiltration in the TME, 
which is consistent with previous reports that HDAC9 
could activate the innate immune system and regulate 
Treg cells [41]. In addition, we found that the high 
expression of HDAC11 may cause tumor cell immune 
desertion and inhibit cell infiltration in the TME. This 
is consistent with a report showing that HDAC11 is a 
negative regulator of the inflammatory T-cell 
response and that HDAC11 deficiency leads to a 
weaker inhibitory response to regulatory T cells [42, 

43]. These results indicate that HDACs play a critical 
role in the TME and regulate cell infiltration in a 
heterogeneous manner. Expression of a single HDAC 
may not be sufficient for accurately assessing the TME 
status. Therefore, exploring the overall HDAC 
expression pattern will help obtain a deeper 
understanding of the gastric cancer TME. 

In this study, we identified three different 
HDAC subtypes based on the expression profile 
characteristics of HDACs. HDAC cluster A had the 
worst prognosis, while cluster C had the best. To 
explore the characteristics of different HDAC clusters, 
we identified signaling pathways between certain 
clusters through gene enrichment analysis. In this 
study, we found that HDAC cluster A activated EMT 
signals, and this activation in gastric cancer could be 
related to a poor prognosis [44, 45]. HDAC cluster C 
was enriched in antigen presentation and CD8+ T-cell 
receptor activation and highly enriched in the 
mismatch repair pathway, suggesting that HDAC 
cluster C was related to stronger immune cell 
infiltration and immunogenicity [46]. Researchers 
have reported that solid tumors can be divided into 
immunoinflammatory types (“hot” tumors) and 
immune exclusion types (“cold” tumors) based on 
TME characteristics [47-49]. According to this study, 
different HDAC clusters were significantly related to 
cell infiltration levels in the immune microen-
vironment of gastric cancer. Cluster C was extensively 
enriched in activated T cells, DCs, and other 
immunosuppressive cells, while cluster A had a high 
infiltration level of immunosuppressive cells, such as 
MDSCs and regulatory T cells (Figure S4). This 
indicates that HDAC cluster C may be related to the 
characteristics of “hot” tumors and that patients with 
this subtype may benefit more from immunotherapy 
than those with other subtypes. 

Although HDAC expression is significantly 
correlated with TME cell infiltration and the 
identification of TME subtype characteristics in 
gastric cancer (Figure 1 and Figure S2), it is difficult to 
quantify TME indicators based on HDAC clusters. We 
analyzed the gene characteristics between different 
HDAC clusters, and PCA and the Boruta algorithm 
were used to construct the HDS model to evaluate the 
HDAC cluster characteristics and quantify the TME of 
gastric cancer. Based on the median value, we divided 
gastric cancer samples into high- and low-HDS 
groups, and the high-HDS group had a better 
prognosis (Figure 3). Studies have revealed that MSI 
tumors have a high mutation burden and respond 
well to immune checkpoint inhibitor therapy [50, 51], 
and EBV-positive tumors are characterized by a 
significant infiltration of immune cells [10, 52]. Matrix 
activation in EMT and gastric cancer subtypes has 
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been identified as the key driver of checkpoint 
inhibitor therapy failure [53]. Our research showed 
that the HDS significantly differed among different 
gastric cancer subtypes. The HDS was highest in the 
MSI-H and EBV subtypes and lowest in the EMT and 
GS subtypes (Figure 3). These findings suggest that 
the HDS could effectively stratify gastric cancer 
subtypes and has a close connection with the gastric 
cancer TME. 

Furthermore, we explored whether the HDS 
could be used as an indicator to quantify the TME. 
There is evidence that the expression characteristics of 
antigen-presenting molecules, costimulatory mole-
cules, and coinhibitory molecules can reflect tumor 
immunogenicity and immune escape [50, 54]. We 
found that the HDS was positively correlated with 
antigen-presenting molecules and costimulatory 
molecules (Figure 3F). To examine the relationship 
between the HDS and TME, we analyzed six gastric 
cancer cohorts in the TCGA and GEO databases 
(Figure 4A). A significant positive correlation was 
found between the HDS and the enrichment scores of 
immune cells, including activated CD4+ T cells, 
activated CD8+ T cells, NKT cells and TH17 cells. 
However, immunosuppressive cells such as M2 
macrophages, MDSCs, pDCs, and stromal cells 
(fibroblasts and endothelial cells) were negatively 
correlated with the HDS. Interestingly, we found that 
the HDS was positively correlated with the 
enrichment score for Treg cells. This result suggests 
that patients with gastric cancer with a high HDS have 
stronger immunogenicity; however, those with a high 
HDS have higher expression levels of cosuppressive 
molecules and may have stronger immune escape. 
This result was verified through RNA-seq and 
immunohistochemical analysis, which showed that 
patients with a high HDS had significant CD8+ T-cell 
infiltration and high PD-L1 expression. High PD-L1 
expression has been proven to be the means by which 
tumor cells evade immune cell-mediated killing 
[55-58]. These findings suggest that patients with a 
high HDS may benefit from immune checkpoint 
inhibitor treatment. 

To explore whether a high HDS could be used to 
predict immunotherapy efficacy, we analyzed two 
cohorts of patients treated with pembrolizumab for 
advanced gastric cancer (Figure 5). In the PRJEB40416 
cohort, the HDS-predicted immunotherapy effect 
achieved an AUC of 0.776, while the CPS was unable 
to do so (AUC = 0.381). In the PRJEB25780 cohort, the 
same HDS model for predicting immunotherapy 
efficacy had an AUC of 0.71. However, when we 
combined the MSI status and CPS, we found that the 
predictive efficacy was as high as 0.96. This result 
suggests that the assessment of the HDS combined 

with traditional immunotherapy efficacy indicators 
could significantly increase the predictive power. The 
above findings reveal that patients with high-HDS 
gastric cancer have a better prognosis and can benefit 
from immunotherapy. However, for patients with 
low-HDS gastric cancer (“cold” tumors), the 
development of a treatment strategy is difficult. 
Therefore, it is necessary to decipher the key factors 
underlying the immunosuppressive state of low-HDS 
tumors. 

Single-cell transcriptome sequencing has been 
shown to be an important method for characterizing 
the TME [59]. Therefore, we further identified the 
reason for the intrinsic TME difference between high- 
and low-HDS tumors by single-cell transcriptome 
sequencing analysis. Endothelial cells and fibroblasts 
play key roles in promoting tumor immunosup-
pressive microenvironments [21, 60, 61]. Through 
single-cell sequencing analysis, we found that the 
frequency and intensity of communication between 
endothelial cells and fibroblasts with T cells and NK 
cells in the low-HDS group was much higher than 
that in the high-HDS group (Figure 7B). By 
reclustering stromal cells, we found that SFRP2+ 
fibroblasts, MYH11+ fibroblasts, CD234+ endothelial 
cells, and CD69+ fibroblasts may frequently 
communicate with T and NK cells in low-HDS tumors 
by MIF signaling. However, it was not observed in 
high-HDS tumors (Figure 7F). Cancer-associated 
fibroblasts provide an immunosuppressive microen-
vironment via MIF signaling [62]. MIF-CD74 
signaling was found to promote the production of 
lactic acid and inhibit the activation of T cells [63]. 
Blocking MIF signaling may enhance CD8+ T-cell and 
CD4+ T-cell infiltration and improve immunotherapy 
efficacy [63]. Blocking their inhibition of T cells and 
NK cells via MIF signals is an important strategy to 
enhance immune cell infiltration in patients with 
low-HDS tumors. Tumor-infiltrating pDCs reduce 
IFN-α production and promote the expansion of 
Tregs, thus contributing to tumor immune tolerance 
and progression [64]. Melanoma pDCs express 
indoleamine 2,3-dioxygenase, which consumes 
tryptophan and leads to T-cell impotence and 
immune tolerance [65]. This evidence suggests that 
pDCs induce immunosuppressive immune responses. 
In this study, we found that CCL17+ pDCs frequently 
communicate with T cells and NK cells through MIF 
signaling in low-HDS tumors (Figure 8E). We further 
analyzed the ligands and receptors associated with 
the MIF signaling pathway in CCL17+ pDCs, T cells 
and NK cells. The results showed that the expression 
of MIF in CCL17+ pDCs in tumors with a low HDS 
was higher than that in CCL17+ pDCs in tumors with 
a high HDS. These results suggest that endothelial 
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cells, fibroblasts, and pDCs may frequently commu-
nicate with T cells and NK cells through high 
expression of MIF in low-HDS tumors. Finally, we 
tested the mouse subcutaneous tumor model and 
found that blocking the communication network of 
MIFs may contribute to increasing the infiltration 
level of T cells in the TME of low-HDS tumors. 
However, further animal studies may be needed to 
confirm which cell type plays a more profound role in 
the MIF-regulated signaling pathway, which is also a 
limitation of this study. 

Due to the lack of tumor cells in single-cell 
transcriptome sequencing data, it is impossible to 
mine tumor cell targets to improve patient prognosis. 
The CTRP and PRISM databases can be combined 
with the CCLE database to explore therapeutic targets 
for different cancer types based on the gene 
expression characteristics of tumor cell lines [35, 36]. 
Through algorithm analyses, we found that GPX4 
inhibitors were more effective in patients with 
low-HDS tumors than in those with high-HDS tumors 
(Figure 10A). GPX4 is the key protein for ferroptosis; 
it induces lipid peroxidation, inhibits ferroptosis, and 
inhibits the infiltration of TME cells [66]. We knocked 
down GPX4 expression in AGS cells and found that 
multiple metabolic and immune signaling pathways 
were activated. In addition, the expression levels of 
costimulatory molecules also increased, while the 
expression level of PD-L1 mRNA was significantly 
reduced. This implies that GPX4 knockdown may 
enhance tumor cell immunogenicity and prevent 
tumor cells from escaping immune surveillance. In in 
vivo and in vitro studies, GPX4 expression in MFC cells 
was downregulated, which significantly enhanced 
CD8+ T-cell infiltration and cytotoxicity. GPX4 knock-
down combined with PD-L1 inhibitors significantly 
enhanced immunotherapy efficacy (Figure 12). This 
provides a theoretical basis for improving tumor 
immunogenicity and formulating treatment strategies 
for patients with low-HDS tumors. 

In conclusion, this study revealed that the HDS 
could accurately reflect the subtype characteristics 
and provide a quantitative measure of the TME in 
gastric cancer. A high HDS may indicate a “hot” 
tumor that can benefit from immunotherapy. In addi-
tion, a low HDS may activate the immune micro-
environment by inhibiting the MIF signaling pathway 
in the TME and regulating GPX4 expression in tumor 
cells. We believe these findings will contribute to 
discovering new therapeutic targets and developing 
effective treatment strategies for gastric cancer. 

Abbreviations 
HDACs: Histone deacetylases; HDS: HDACs 

score; TME: Tumor microenvironment; SCNV: 

Somatic copy number variation; GEO: Gene Expres-
sion Omnibus; NMF: Nonnegative matrix 
factorization; CPS: combined positive score; PCA: 
principal component analysis. 

Supplementary Material  
Supplementary figures and tables. 
https://www.thno.org/v13p4574s1.zip  

Acknowledgements 
We thank Dr. Boxi Kang for providing paired 

transcriptome data from single-cell sequencing 
samples. We thank Amoy Diagnostics Co., Ltd 
(AmoyDx) for providing transcriptome sequencing. 

Funding 
This work was supported by the National 

Natural Science Foundation of China (Grant No. 
82272841), Beijing Natural Science Foundation 
(Z220014 and 7182171), Beijing Xisike Clinical 
Oncology Research Foundation (Y-bayer202001-0122) 
and Beijing Bethune Charitable Foundation 
(No.2159000087). 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 

Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for 
clinicians. 2021; 71: 209-49. 

2. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, 
Abdel-Rahman O, et al. Global, Regional, and National Cancer Incidence, 
Mortality, Years of Life Lost, Years Lived With Disability, and 
Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A 
Systematic Analysis for the Global Burden of Disease Study. JAMA oncology. 
2019; 5: 1749-68. 

3. Maman S, Witz IP. A history of exploring cancer in context. Nature reviews 
Cancer. 2018; 18: 359-76. 

4. Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, 
Martínez-Ciarpaglini C, Cabeza-Segura M, et al. The role of tumor-associated 
macrophages in gastric cancer development and their potential as a 
therapeutic target. Cancer treatment reviews. 2020; 86: 102015. 

5. Jiang Y, Xie J, Huang W, Chen H, Xi S, Han Z, et al. Tumor Immune 
Microenvironment and Chemosensitivity Signature for Predicting Response to 
Chemotherapy in Gastric Cancer. Cancer immunology research. 2019; 7: 
2065-73. 

6. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer 
immunotherapy. Clinical cancer research: an official journal of the American 
Association for Cancer Research. 2015; 21: 687-92. 

7. Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of 
cancer-associated fibroblast within the tumor microenvironment. Advanced 
drug delivery reviews. 2016; 99: 186-96. 

8. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, et al. Tumor Microenvironment 
Characterization in Gastric Cancer Identifies Prognostic and 
Immunotherapeutically Relevant Gene Signatures. Cancer immunology 
research. 2019; 7: 737-50. 

9. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord 
JP, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High 
Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the 
Phase II KEYNOTE-158 Study. Journal of clinical oncology: official journal of 
the American Society of Clinical Oncology. 2020; 38: 1-10. 

10. Saito M, Kono K. Landscape of EBV-positive gastric cancer. Gastric cancer: 
official journal of the International Gastric Cancer Association and the 
Japanese Gastric Cancer Association. 2021; 24: 983-9. 



Theranostics 2023, Vol. 13, Issue 13 
 

 
https://www.thno.org 

4599 

11. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. 
Comprehensive molecular characterization of clinical responses to PD-1 
inhibition in metastatic gastric cancer. Nature medicine. 2018; 24: 1449-58. 

12. Park HS, Kim J, Ahn SH, Ryu HY. Epigenetic Targeting of Histone 
Deacetylases in Diagnostics and Treatment of Depression. International 
journal of molecular sciences. 2021; 22. 

13. Zhang L, Liu F, Meng Z, Luo Q, Pan D, Qian Y. Inhibited HDAC3 promotes 
microRNA-376c-3p to suppress malignant phenotypes of gastric cancer cells 
by reducing WNT2b. Genomics. 2021. 

14. Orr JA, Hamilton PW. Histone acetylation and chromatin pattern in cancer. A 
review. Analytical and quantitative cytology and histology. 2007; 29: 17-31. 

15. Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et 
al. Class IIa HDAC inhibition reduces breast tumours and metastases through 
anti-tumour macrophages. Nature. 2017; 543: 428-32. 

16. Hicks KC, Knudson KM, Lee KL, Hamilton DH, Hodge JW, Figg WD, et al. 
Cooperative Immune-Mediated Mechanisms of the HDAC Inhibitor 
Entinostat, an IL15 Superagonist, and a Cancer Vaccine Effectively Synergize 
as a Novel Cancer Therapy. Clinical cancer research: an official journal of the 
American Association for Cancer Research. 2020; 26: 704-16. 

17. Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress 
for HDAC as a putative target for epigenetic remodeling and functionality of 
immune cells. International journal of biological sciences. 2021; 17: 3381-400. 

18. Li T, Zhang C, Hassan S, Liu X, Song F, Chen K, et al. Histone deacetylase 6 in 
cancer. Journal of hematology & oncology. 2018; 11: 111. 

19. von Knethen A, Heinicke U, Weigert A, Zacharowski K, Brüne B. Histone 
Deacetylation Inhibitors as Modulators of Regulatory T Cells. International 
journal of molecular sciences. 2020; 21. 

20. Tay RE, Olawoyin O, Cejas P, Xie Y, Meyer CA, Ito Y, et al. Hdac3 is an 
epigenetic inhibitor of the cytotoxicity program in CD8 T cells. The Journal of 
experimental medicine. 2020; 217. 

21. Kang B, Camps J, Fan B, Jiang H, Ibrahim MM, Hu X, et al. Parallel single-cell 
and bulk transcriptome analyses reveal key features of the gastric tumor 
microenvironment. Genome biology. 2022; 23: 265. 

22. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix 
factorization. Nature. 1999; 401: 788-91. 

23. Xu T, Le TD, Liu L, Su N, Wang R, Sun B, et al. CancerSubtypes: an 
R/Bioconductor package for molecular cancer subtype identification, 
validation and visualization. Bioinformatics (Oxford, England). 2017; 33: 
3131-3. 

24. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. 
TGFβ attenuates tumour response to PD-L1 blockade by contributing to 
exclusion of T cells. Nature. 2018; 554: 544-8. 

25. Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, et 
al. Tumor immune microenvironment characterization in clear cell renal cell 
carcinoma identifies prognostic and immunotherapeutically relevant 
messenger RNA signatures. Genome biology. 2016; 17: 231. 

26. Lin J, Shi J, Guo H, Yang X, Jiang Y, Long J, et al. Alterations in DNA Damage 
Repair Genes in Primary Liver Cancer. Clinical cancer research: an official 
journal of the American Association for Cancer Research. 2019; 25: 4701-11. 

27. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et 
al. Pan-cancer Immunogenomic Analyses Reveal 
Genotype-Immunophenotype Relationships and Predictors of Response to 
Checkpoint Blockade. Cell reports. 2017; 18: 248-62. 

28. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, 
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics 
(Oxford, England). 2011; 27: 1739-40. 

29. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. Omics: a journal of integrative biology. 
2012; 16: 284-7. 

30. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust 
enumeration of cell subsets from tissue expression profiles. Nature methods. 
2015; 12: 453-7. 

31. Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods 
for random forests and omics data sets. Briefings in bioinformatics. 2019; 20: 
492-503. 

32. Chong W, Shang L, Liu J, Fang Z, Du F, Wu H, et al. m(6)A regulator-based 
methylation modification patterns characterized by distinct tumor 
microenvironment immune profiles in colon cancer. Theranostics. 2021; 11: 
2201-17. 

33. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. 
Inference and analysis of cell-cell communication using CellChat. Nature 
communications. 2021; 12: 1088. 

34. Anghel CV, Quon G, Haider S, Nguyen F, Deshwar AG, Morris QD, et al. 
ISOpureR: an R implementation of a computational purification algorithm of 
mixed tumour profiles. BMC bioinformatics. 2015; 16: 156. 

35. Yang C, Huang X, Li Y, Chen J, Lv Y, Dai S. Prognosis and personalized 
treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico 
strategy towards precision oncology. Briefings in bioinformatics. 2021; 22. 

36. Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, et al. An 
interactive resource to identify cancer genetic and lineage dependencies 
targeted by small molecules. Cell. 2013; 154: 1151-61. 

37. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular 
analysis of gastric cancer identifies subtypes associated with distinct clinical 
outcomes. Nature medicine. 2015; 21: 449-56. 

38. Karagiannis D, Rampias T. HDAC Inhibitors: Dissecting Mechanisms of 
Action to Counter Tumor Heterogeneity. Cancers. 2021; 13. 

39. Fan Y, Peng X, Wang Y, Li B, Zhao G. Comprehensive Analysis of HDAC 
Family Identifies HDAC1 as a Prognostic and Immune Infiltration Indicator 
and HDAC1-Related Signature for Prognosis in Glioma. Frontiers in 
molecular biosciences. 2021; 8: 720020. 

40. Mamdani H, Jalal SI. Histone Deacetylase Inhibition in Non-small Cell Lung 
Cancer: Hype or Hope? Frontiers in cell and developmental biology. 2020; 8: 
582370. 

41. Yang C, Croteau S, Hardy P. Histone deacetylase (HDAC) 9: versatile 
biological functions and emerging roles in human cancer. Cellular oncology 
(Dordrecht). 2021; 44: 997-1017. 

42. Yanginlar C, Logie C. HDAC11 is a regulator of diverse immune functions. 
Biochimica et biophysica acta Gene regulatory mechanisms. 2018; 1861: 54-9. 

43. Woods DM, Woan KV, Cheng F, Sodré AL, Wang D, Wu Y, et al. T cells 
lacking HDAC11 have increased effector functions and mediate enhanced 
alloreactivity in a murine model. Blood. 2017; 130: 146-55. 

44. Puliga E, Corso S, Pietrantonio F, Giordano S. Microsatellite instability in 
Gastric Cancer: Between lights and shadows. Cancer treatment reviews. 2021; 
95: 102175. 

45. Katona BW, Rustgi AK. Gastric Cancer Genomics: Advances and 
Future Directions. Cellular and molecular gastroenterology and hepatology. 
2017; 3: 211-7. 

46. Jiang M, Jia K, Wang L, Li W, Chen B, Liu Y, et al. Alterations of DNA damage 
response pathway: Biomarker and therapeutic strategy for cancer 
immunotherapy. Acta pharmaceutica Sinica B. 2021; 11: 2983-94. 

47. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. 
Understanding the tumor immune microenvironment (TIME) for effective 
therapy. Nature medicine. 2018; 24: 541-50. 

48. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set 
point. Nature. 2017; 541: 321-30. 

49. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells 
in the tumour microenvironment. Nature reviews Immunology. 2015; 15: 
669-82. 

50. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating 
immunity's roles in cancer suppression and promotion. Science (New York, 
NY). 2011; 331: 1565-70. 

51. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, 
Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic 
urothelial carcinoma who have progressed following treatment with 
platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 
(London, England). 2016; 387: 1909-20. 

52. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint 
blockade: response evaluation and biomarker development. Nature reviews 
Clinical oncology. 2017; 14: 655-68. 

53. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and 
Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated 
Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical 
KEYNOTE-059 Trial. JAMA oncology. 2018; 4: e180013. 

54. Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical 
immuno-oncology landscape. Annals of oncology: official journal of the 
European Society for Medical Oncology. 2018; 29: 84-91. 

55. Miliotis C, Slack FJ. miR-105-5p regulates PD-L1 expression and tumor 
immunogenicity in gastric cancer. Cancer letters. 2021; 518: 115-26. 

56. Li Q, Zhou ZW, Lu J, Luo H, Wang SN, Peng Y, et al. PD-L1(P146R) is 
prognostic and a negative predictor of response to immunotherapy in gastric 
cancer. Molecular therapy: the journal of the American Society of Gene 
Therapy. 2021. 

57. Refolo MG, Lotesoriere C, Messa C, Caruso MG, D'Alessandro R. Integrated 
immune gene expression signature and molecular classification in gastric 
cancer: New insights. Journal of leukocyte biology. 2020; 108: 633-46. 

58. Tada Y, Togashi Y, Kotani D, Kuwata T, Sato E, Kawazoe A, et al. Targeting 
VEGFR2 with Ramucirumab strongly impacts effector/ activated regulatory T 
cells and CD8(+) T cells in the tumor microenvironment. Journal for 
immunotherapy of cancer. 2018; 6: 106. 

59. Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, et al. Applications of single-cell 
sequencing in cancer research: progress and perspectives. Journal of 
hematology & oncology. 2021; 14: 91. 

60. Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G. 
Endothelial intercellular adhesion molecule-1 expression is suppressed in 
human malignancies: the role of angiogenic factors. Cancer research. 1996; 56: 
1111-17. 

61. Davidson S, Coles M, Thomas T, Kollias G, Ludewig B, Turley S, et al. 
Fibroblasts as immune regulators in infection, inflammation and cancer. 
Nature reviews Immunology. 2021; 21: 704-17. 

62. Zhu GQ, Tang Z, Huang R, Qu WF, Fang Y, Yang R, et al. CD36(+) 
cancer-associated fibroblasts provide immunosuppressive microenvironment 
for hepatocellular carcinoma via secretion of macrophage migration inhibitory 
factor. Cell discovery. 2023; 9: 25. 

63. de Azevedo RA, Shoshan E, Whang S, Markel G, Jaiswal AR, Liu A, et al. MIF 
inhibition as a strategy for overcoming resistance to immune checkpoint 
blockade therapy in melanoma. Oncoimmunology. 2020; 9: 1846915. 

64. Sisirak V, Faget J, Gobert M, Goutagny N, Vey N, Treilleux I, et al. Impaired 
IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell 



Theranostics 2023, Vol. 13, Issue 13 
 

 
https://www.thno.org 

4600 

expansion that may contribute to breast cancer progression. Cancer research. 
2012; 72: 5188-97. 

65. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, et al. Expression 
of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in 
tumor-draining lymph nodes. The Journal of clinical investigation. 2004; 114: 
280-90. 

66. Xu H, Ye D, Ren M, Zhang H, Bi F. Ferroptosis in the tumor 
microenvironment: perspectives for immunotherapy. Trends in molecular 
medicine. 2021; 27: 856-67. 


