1	Supplementary Information
2	for
3 4	MK8722 initiates early-stage autophagy while inhibiting late-stage autophagy via FASN-dependent reprogramming of lipid metabolism
5	
6	

2 Figure S1. MK8722 inhibits the growth and migration of EOC cells *in vitro*.

1	(A) SKOV3 cell was incubated with 5, 10, 20, 40, 60, 80, 100 μ M MK8722 (MK) or an equal volume
2	of DMEM for 48 h, respectively. (B) SKOV3 cell was exposed to MK, and real-time cell activity was
3	measured using RTCA. (C) SKOV3 cell was incubated with MK (20 μ M, 40 μ M) or an equal volume
4	of DMEM culture solution for 48 h, and a colony formation assay was conducted. (D) SKOV3 cell was
5	cultured with the presence of MK (20 μM) or an equal volume DMEM culture for 48 h and then
6	subjected to Ki-67 immunofluorescence analysis. Scale bar: 15 μ m. (E) SKOV3 cell was plated with 20
7	μ M, 40 μ M MK or DMEM for 48 h to observe wound healing. Scale bar: 100 μ m. (F) Transwell
8	migration assay was used to evaluate the effect of 20 μM and 40 μM MK on the migration of SKOV3
9	cell. Scale bar: 100 µm. Results were exhibited as mean \pm SD; * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.
10	The results represent the mean value from three independent experiments $(n = 3)$, and representative
11	pictures are shown.

1

2 Figure S2. MK8722 enhances LC3B-II stability and spot formation in EOC cells and inhibits

3 lipophagy.

1	(A, B) Western blot analysis and quantification of ATG7, BECN1, LAMP2, P62/SQSTM1, and LC3B
2	II/I protein expression in A2780 and OV90 cells exposed to different concentrations of MK for 48 h.
3	(C-E) Western blot analysis and quantification of protein expression in A2780 and OV90 cells exposed
4	to different time of MK (20 mM). (F) qPCR analysis of p62/SQSTM1 and LC3B mRNA expression in
5	A2780 and OV90 cells treated with different concentrations of MK for 48 h. (G, H) Cells were treated
6	without or with MK (20 mM) in the presence or absence of 25 nM Baf for 24 h; the expression of
7	SQSTM1, LC3B-II and LAMP2 was analyzed by western blot. (I) Quantitative analysis of the
8	relationship between EGFP-LC3 and Nile red in A2780 and OV90 cells. Results were exhibited as
9	mean \pm SD; NS, not significant, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. The results represent the mean
10	value from three independent experiments ($n = 3$), and representative pictures are shown.

2 Figure S3. MK8722 leads to ROS accumulation and affects mitosis.

1	(A, C) Changes in intracellular ROS fluorescence intensity in A2780 and OV90 cells treated with or
2	without MK (20 μ M) were shown using DCFH-DA as a probe under inverted fluorescence microscopy.
3	Scale bar: 100 μ m. (B, D) Flow cytometry analysis demonstrated changes in intracellular ROS levels in
4	both cell lines with or without MK (20, 40 μ M) treatment. (E, F) Quantitative analysis of JC-1
5	monomer, JC-1 aggregate and mtSOX fluorescence intensity changes. (G, H) Flow cytometry analysis
6	showed that mitochondrial ROS changes in both cell lines with or without MK (20 μ M) treatment. (I, J)
7	Flow cytometry analysis showed that JC-1 aggregate (P1), JC-1 monomer (P2) changes in both cell
8	lines with or without MK (20 μ M) treatment. (K, L) Flow cytometry analysis demonstrated changes in
9	cell cycle in both cell lines with or without MK (20, 40 μ M) treatment. (M, N) Expression of cell
10	cycle-related proteins were determined by western blot. The protein expressions were quantitatively
11	analyzed. Results were exhibited as mean \pm SD; * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. The results
12	represent the mean value from three independent experiments $(n = 3)$, and representative pictures are
13	shown.
14	
15	
15	
16	
17	
18	
19	

1

2 Figure S4. MK8722 promotes autophagy upstream (PI3K, AKT, and mTOR), but suppresses

3 autophagic vesicle-lysosome fusion by FASN silencing suppressing Snare complex formation.

1	(A, B) Western blot analysis and quantification of mTOR, PI3K, and AKT protein expression in A2780
2	and OV90 cells exposed to different concentrations of MK for 48 h. (C, D) Qualitative analysis of the
3	relationship between EGFP-LC3 and LysoTracker in A2780 and OV90 cells. Left panel shows control,
4	right panel shows MK treatment. (E) Correlation analysis of FASN with STX17 and VAMP8 in ovarian
5	cancer patients downloaded from the TCGA-OA database using Pearson's analysis. (F) qRT-PCR
6	analysis of siRNA-1, 2, 3 knockdown efficiency at the transcriptional level in A2780 and OV90 cells.
7	(G) Quantitative analysis of yellow area produced by co-localization of STX17 with VAMP8 in A2780
8	and OV90, respectively. (H-J) PLA assay was performed in A2780 and OV90 cells treated with or
9	without MK (20 μM) and quantification of red fluorescence intensity. Results were exhibited as mean \pm
10	SD; NS, not significant, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. The results represent the mean value
11	from three independent experiments $(n = 3)$, and representative pictures are shown.

1

2 Figure S5. MK8722 causes the accumulation of lipid droplets *in vivo* and MK8722 has no adverse

3 effects.

1	(A, B) Monitoring the body weight of nude mice in the control group and the experimental group. (C)
2	Oil red O staining of frozen tumor sections. Quantitative analysis of positive staining areas (red). Scale
3	bars: 20 µm, 80 µm. (D-E) Changes of TP, GLU and ALT in the control group and the experimental
4	group. (F) H&E staining of paraffin sections from the heart, liver, spleen, lung, and kidney of nude
5	mice in the experimental and control groups. Scale bar: 80 μ m. Results are presented as mean \pm SD;
6	NS, not significant, *** $p < 0.001$. The results represent the mean value from three independent
7	experiments $(n = 3)$, and representative pictures are shown.