

3 recruitment. A, The morphology of LLC-EVs was evaluated by electron microscopy (EM). Scale bar, 100 nm. B, The size distribution of LLC-EVs was analyzed by 4 nanoparticle tracking analysis (NTA). C, The indicated proteins in LLC-lyts and LLC-5 EVs were detected by western blotting. **D**, Mice were treated according to the protocol 6 shown in Figure 1A, except that 5 µg LLC-EVs were injected via the indicated routes. 7 8 The LLC-Luci lung tumor size was monitored with an IVIS on Day 30. E, F, Mice were treated according to the protocol shown in Figure 1A. LLC-Luci lung tumors were 9 treated with 5 µg B16F10-EVs (E) or 4T1-EVs (F). The lung tumor size was monitored 10 with an IVIS on Day 30. G, The indicated TIL subsets from the mice described in Figure 11 1F were detected by flow cytometry. H, I, Mice were subcutaneously inoculated with 12 1×10^{6} LLC cells on Day 0 and intrapleurally injected with 5 µg LLC-EVs on Days 2, 13

4, 6, 8 and 10. DCs and T cells in the lungs were analyzed by flow cytometry on Day 15 18 (H), and the tumor size was measured (I). Representative results from three 16 independent experiments are shown (n = 3, except for n = 5 in E, I). *P < 0.05; **P <17 0.01; ***P < 0.001; ns, not significant (unpaired two-tailed Student's *t* test; mean and 18 s.d.). 19

Figure S2. TEV-induced CCL21a secretion from pMCs promotes lung migration of 21 22 DCs. A, Mice received i.v. or intrapleural injection of 100 µg VivoTrack 680-labeled (A) or 20 µg PKH26-labeled (B) LLC-EVs. Twenty-four hours later, the distribution of 23 EVs in the indicated organs was detected with an IVIS (A), and that in the lungs was 24 detected by fluorescence microscopy (B). C, Mesothelin on adherent (p-pMCs) and 25 nonadherent cells isolated from pleura was detected by flow cytometry. **D**, P-pMCs and 26 40L cells were treated with 2.5 µg ml⁻¹ CFSE-labeled LLC-EVs for 24 h, and uptake of 27 EVs was detected by fluorescence microscopy. E-G, Mice were treated with LLC-Luci 28 cells and CFSE-labeled LLC-EVs as shown in Figure 1E, except that 0.25 mg kg⁻¹ 29 Cyto-D was also intrapleurally injected 2 h after each EV injection. The incorporation 30 of EVs into the pleura was detected by stereomicroscopy (E), the DC frequency among 31 TILs was determined by flow cytometry (F), and the lung tumor size was monitored by 32

33	IVIS (G). H, 40L cells were stimulated with the indicated LLC-EV concentrations for
34	24 h. Cell viability was measured by a CCK8 assay. I, K, BMDCs (I) and 40L cells (K)
35	were transfected with negative control (NC) siRNAs or the indicated targeting siRNAs,
36	and the silencing efficiency was confirmed by western blotting. J, 40L cells were
37	stimulated with 2.5 μg ml $^{-1}$ LLC-EVs for 24 h, 48 h and 72 h. Cell viability was
38	measured by a CCK8 assay. The Ccl19 and Ccl21a mRNA levels in these cells were
39	measured by real-time PCR. L, Mice were treated with intrapleural injection of 10 μ g
40	cholesterol-conjugated Ccl21a siRNAs or NC siRNAs for 24 h. Then, the parietal
41	pleura was acquired from the above mice, and total RNA was extracted from 0.25 cm^2
42	pleural in 1 ml Trizol. The Ccl21a mRNA was measured by real-time PCR. Scale bar,
43	25 μ m. Representative results from three independent experiments are shown ($n = 3$).
44	* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; ns, not significant (unpaired two-tailed Student's
45	<i>t</i> test; mean and s.d.).
46	

47

Figure S3. A decrease in CD93 level of pMCs induces CCL21a secretion by TEVs. A, 48 **B**, mRNA levels in 40L cells with or without LLC-EV treatment were analyzed by 49 50 RNA-Seq. All DEGs (A) and the DEGs with $|Log_2FC| \ge 2$ (B) are shown. C, The correlation of Ccl21a expression with that of the DEGs in **B** was analyzed. **D**, The 51 indicated information for the DEGs in **B** is shown. **E**, The pleural Cd93 and Ccl21a 52 mRNA levels in healthy and LLC lung tumor-bearing mice were measured by real-time 53 PCR. F, The silencing efficiency of CD93 in 40L cells was confirmed by western 54 blotting. G, CD93 in p-pMCs with LLC-EV stimulation was detected by western 55 56 blotting. H, Mice were treated with intrapleural injection of 10 µg cholesterolconjugated Cd93 siRNAs or NC siRNAs for 24 h. Then, the parietal pleura was 57

58	acquired from the above mice.	and total RNA was extracted	d from 0.25 cm ² pleural in 1
	1 .		1

- 59 ml Trizol. The Cd93 mRNA was measured by real-time PCR. Representative results
- 60 from two independent experiments are shown (n = 3, except for n = 12 in **E**). ***P <
- 61 0.001; ns, not significant (unpaired two-tailed Student's *t* test; mean and s.d.).

Figure S4. CD93 of pMCs is downregulated by TEV-derived miR-5110. A-C, LLC-63 EVs were digested with 10 µg ml⁻¹ protease K for 2 h with electroporation. The 64 digestion efficiency of the membrane-associated and internal proteins was confirmed 65 by flow cytometry (A) and western blotting (B), as represented by CD9 (A) and Alix 66 (B). 40L cells were stimulated with these EVs for 24 h, and the CCL21a levels in the 67 supernatants of these cells were measured by ELISA (C). D, E, The RNA content in 68 LLC-EVs digested with 10 µg ml⁻¹ RNase I for 2 h was measured (**D**); 40L cells were 69 stimulated with these EVs for 24 h, and CCL21a levels in the supernatants of these cells 70 were measured by ELISA (E). F, 40L cells were stimulated with MLE-12EVs for 24 h, 71 and the CCL21a levels in the supernatants of these cells were measured by ELISA. G, 72 miRNAs in MLE-12-EVs and LLC-EVs were analyzed by a miRNA array approach; 73 the enriched miRNAs in LLC-EVs are shown. H, The upstream miRNAs of Cd93 were 74

75	predicted with the miRDB and TargetScan databases. I, Alignment of the enriched
76	miRNAs and the predicted upstream miRNAs of CD93. J, Overexpression of miR-
77	5110 or miR-5107-5p in 40L cells transfected with the indicated mimics for 24 h was
78	confirmed by real-time PCR. K, The miR-5110 target sequence in the Cd93 3'-UTR
79	and the corresponding mutated sequence are shown. L, 40L cells were stimulated with
80	2.5 μ g ml ⁻¹ LLC-EVs for 24 h with or without 5 μ g ml ⁻¹ ACTD. Then, total RNAs in
81	these cells were isolated and quantified. M, Inhibition of miR-5110 in 40L cells
82	transfected with the miR-5110 inhibitor was confirmed by real-time PCR. N, O, 40L
83	cells transfected with the miR-5110 inhibitor were stimulated with 2.5 μ g ml ⁻¹ B16F10-
84	EVs and 4T1-EVs for 24 h. CD93 (N) and CCL21a (O) in these cells were detected by
85	western blotting (N) and ELISA (O), respectively. P, Mice were intrapleurally injected
86	LLC-EVs, along with or without 0.125 mg kg ⁻¹ ATCD injection 2 h ahead. Total RNAs
87	in the pleura were isolated and measured by real-time PCR 8 h later. Q, miRNA-5110
88	levels in the indicated EVs were determined by real-time PCR. Representative results
89	from three independent experiments are shown ($n = 3$). *** $P < 0.001$; ns, not significant
90	(unpaired two-tailed Student's t test, except for one-way ANOVA followed by Tukey's
91	test in C, L, P, O; mean and s.d.).

Figure S5. A decreased CD93 level of pMCs indicates increased T-cell responses in 94 humans. A, Cd93 and Ccl21 mRNA levels in NCI-H2452 cells and HUVECs were 95 measured by real-time PCR. B, C, The silencing efficiency of CD93 in NCI-H2452 96 cells (B) and CCR7 in DCs (C) was confirmed by western blotting. D, Representative 97 immunofluorescence images of cell precipitates from MPEs. E, Representative 98 99 immunohistochemical images of lung tumor tissues. Scale bar, 25 µm. Representative results from three independent experiments are shown (n = 3). ***P < 0.001; ns, not 100 significant (unpaired two-tailed Student's *t* test; mean and s.d.). 101

Figure S6. C1q is the ligand of CD93 responsible for regulating CCL21 in pleural MCs. 104 A, overexpression of C1qA, MMRN2 and IGFBP7 in 40L or NCI-H2452 cells was 105 confirmed by western blotting. **B**, *Ccl21a* mRNA levels in cells of **A** were measured by 106 real-time PCR. C, The silencing effect of C1qA in the liver was confirmed by western 107 blotting. D, Schematic of full-length and truncated CD93. E-G, 40L cells were 108 transfected with the indicated truncations for 48 h. Levels of Cd93 truncation (E) and 109 110 Ccl21a mRNA (F) were measured by real-time PCR (E, F). CCL21a protein levels in the supernatants of these cells were measured by ELISA (G). Representative results 111 from three independent experiments are shown (n = 3). **P < 0.01; ***P < 0.001; ns, 112 113 not significant (one-way ANOVA followed by Tukey's test except for unpaired twotailed Student's *t* test in **e**; mean and s.d.). 114

- 115
- 116

Figure S7. CD93 specific binding ani-CD93 has satisfying biosafety. A, The K_d of 118 M057 binding to mouse CD93 was determined by ELISA. B, Staining of bone marrow 119 cells from WT or Cd93^{-/-} mice with M057. C, IVIS detection of WT or Cd93^{-/-} murine 120 121 pleura with i.v. injection of Alexa Fluor 680-labeled M057 for 24 h. D, E, 40L cells were transfected with Cd93 siRNA for 24 h, along with or without CD93 122 overexpression for another 24 h. The Cd93 mRNA levels in these cells were measured 123 124 by real-time PCR (**D**). These cells were then treated with 10 μ g ml⁻¹ M057 for 24 h, and CCL21a in cell culture supernatants were measured by ELISA (E). F, LLC lung tumor-125 bearing mice were intravenously injected with the indicated doses of M057 for 24 h. 126 The Ccl21a mRNA level in the pleura was measured by real-time PCR. G, H, Healthy 127 mice were intravenously injected with 100 µg M057 every other day. The levels of ALT, 128 AST, bilirubin and creatinine in sera were measured by ELISA (G), and 129 histopathological damage in the heart, liver, spleen, lungs and kidneys was detected by 130 H&E staining (Scale bar, $40 \mu m$) (H) after the fifth injection. 131

Figure S8. CD93 specific binding ani-CD93 has satisfying biosafety. A, Mouse 134 primary ECs were treated with 10 µg ml⁻¹ M057 for 24 h in the presence of 2 µg ml⁻¹ 135 IGFBP7 followed by calcein-AM staining. Then, tube formation was detected by 136 fluorescence microscopy and statistically analyzed. B, C, LLC lung tumor-bearing mice 137 were intravenously injected with 100 µg M057 on Days 14, 16, 18, 20 and 22. Tumor 138 tissues were collected and stained with NG2 and CD31 or aSMA and CD31 and 139 quantitatively analyzed (B), or tumor endothelial permeability was assessed by 140 perfusion with 5 mg FITC-dextran (70 kDa) (C) on Day 25. D, LLC-Luci lung tumor-141 bearing mice were intravenously injected with serial doses of anti-VEGFR Days 14, 16, 142 18, 20 and 22. Lung tumor size was monitored with an IVIS on Day 25. E, LLC lung 143 tumor-bearing $Ccr^{7-/-}$ mice were intravenously injected with 40 µg anti-VEGFR or 100 144 µg M057 Days 14, 16, 18, 20 and 22. Lung tumor size was monitored with an IVIS on 145 Day 25. Representative results from three independent experiments are shown (n = 3). 146

- 147 Scale bar, 50 μ m. *P < 0.05; **P < 0.01; ***P < 0.001 (one-way ANOVA followed by
- 148 Tukey's test in **A**, **D**, **E**; unpaired two-tailed Student's *t* test in **B**, **C**; mean and s.d.).

Table S1: Clinical characteristics of patients with MPE (n = 33)		
Characteristics	Number of patients	
Gender		
Male	17	
Female	16	
Age		
\leq 50	2	
50-75	24	
> 75	7	
Histological subtype		
Adenocarcinoma	25	
Squamous cell carcinoma	8	
History of therapy		
Surgery	1	
Chemotherapy	19	
None	13	
149		

Table S2: Clinical characteristics of lung cancer patients (n = 73)		
Characteristics	Number of patients	
Gender		
Male	40	
Female	33	
Age		
\leq 50	7	
50-75	65	
> 75	1	
Histological subtype		
Adenocarcinoma	45	
Squamous cell carcinoma	26	
Adenosquamous carcinoma	2	

Table S3: Clinical characteristics of lung cancer patients with anti-PD-1 therapy (n = 60)		
Characteristics	Number of patients	
Gender		
Male	57	
Female	3	
Age		
\leq 50	1	
50-75	42	
> 75	17	
Histological subtype		
Adenocarcinoma	14	
Squamous cell carcinoma	44	
Large cell carcinoma	2	
PD-L1 expression		
<1%	13	
1-50%	23	
≥50%	20	
Unknown	4	
αPD-1 preparations used for treatment		
Pembrolizuma	9	
Nivolumab	4	
Tislelizumab	22	
Sintilimab	16	
Camrelizumab	4	
Durvalumab	1	
Toripalimab	4	
151		

Table S4: The information of antibodies used in this study			
Antibodies	Resource	Identifier	Dilution ratio
Fixable Viability Dye eFluor 450	eBioscience	Cat# 65-0863-14	1:500
Fixable Viability Dye eFluor 520	eBioscience	Cat# 65-0867-14	1:500
anti-mouse CD45 PB	BioLegend	Cat# 103126	1:500
anti-mouse CD45.2 APC	eBioscience	Cat# 17-0454-82	1:500
anti-mouse CD45.1 FITC	eBioscience	Cat# 11-0453-81	1:500
anti-mouse CD4 PE	eBioscience	Cat# 12-0041-83	1:500
anti-mouse CD8a APC	BioLegend	Cat# 100712	1:500
anti-mouse MHCII APC	eBioscience	Cat# 17-5321-82	1:500
anti-mouse CD11c PE	eBioscience	Cat# 12-0114-82	1:500
anti-mouse CD11b PE	eBioscience	Cat# 12-0112-83	1:500
anti-mouse F4/80 APC	BioLegend	Cat# 123116	1:500
anti-mouse Ly6G APC	BioLegend	Cat# 127641	1:500
anti-mouse NK1.1 PE	eBioscience	Cat# 12-5941-83	1:500
anti-mouse CD19 PE	eBioscience	Cat# 12-0193-82	1:500
anti-mouse CCR7 PE	eBioscience	Cat# 12-1979-42	1:500
anti-mouse biotin-conjugated CD8a	eBioscience	Cat# 13-0081-85	3 μg ml ⁻¹
anti-mouse biotin-conjugated CD9	BioLegend	Cat# 124804	1:125
purified anti-mouse CD63	BioLegend	Cat# 353039	1:125
anti-mouse/human CD4	Abcam	Cat# ab288724	1:1000 (IHC); 1:200
anti-mouse CD8α	Abcam	Cat# ab217344	1:200
anti-human CD8α	Abcam	Cat# ab237709	1:1000
anti-mouse CD11c	Abcam	Cat# ab219799	1:200
anti-human CD11c	Abcam	Cat# ab52632	1:1000
anti-mouse Mesothelin	Abcam	Cat# ab236546	1:200
anti-mouse/human CD93	Affinity	Cat# DF8338	1:1000 (WB); 1:200 (IF)
anti-mouse/human CCL21	Affinity	Cat# DF6681	1:200
anti-mouse/human CD81	Affinity	Cat# DF2306	1:1000
anti-mouse/human Grp94	Abclonal	Cat# A0989	1:1000
anti-mouse/human Alix	Abclonal	Cat# A2215	1:1000
anti-mouse/human CD63	Abclonal	Cat# A19023	1:1000
anti-mouse/human Tsg101	Abclonal	Cat# A1692	1:1000
anti-mouse/human Hsp70	Abclonal	Cat# A0284	1:1000
anti-human Hemoglobin A1	Abclonal	Cat# A9293	1:1000
anti-mouse CCL19	Abclonal	Cat# A16972	1:1000
anti-mouse CCR1	Abclonal	Cat# A18341	1:1000
anti-mouse CCR2	Abclonal	Cat# A2855	1:1000
anti-mouse CCR5	Abclonal	Cat# A20261	1:1000
anti-mouse CCR6	Abclonal	Cat# A16206	1:1000

anti-mouse CCR7	Abcam	Cat# ab32527	1:2000
anti-mouse CXCR4	Proteintech	Cat# 11073-2-AP	1:1000
anti-mouse/human C1qA	Proteintech	Cat# 11602-1-AP	1:1000
anti-mouse/human IGFBP7	Proteintech	Cat# 19961-1-	1:1000
anti-mouse MMRN2	Abmart	Cat# PK59393S	1:1000
anti-human MMRN2	Absin	Cat# abs101735	1:1000
anti-mouse/human GAPDH	Proteintech	Cat# 60004-1-Ig	1:1000
anti-mouse CD31	Proteintech	Cat# 66065-2-Ig	1:200
anti-mouse aSMA	Proteintech	Cat# 67735-1-Ig	1:200
anti-mouse NG2	Proteintech	Cat# 55027-1-	1:200
anti-mouse CD4	BioXcell	Cat# BP0003-1	60 µg every two days
anti-mouse CD8α	BioXcell	Cat# BP0061	16 µg every two days
anti-mouse VEGFR2	BioXcell	Cat# BP0060	40 µg every two days
Goat anti-mouse IgG HRP	MultiSciences	Cat# GAM0072	1:1000
Goat anti-rabbit IgG HRP	MultiSciences	Cat# GAR0072	1:1000
anti-Rabbit IgG H&L (Alexa Fluor 488)	MultiSciences	Cat# GAR4882	1:200
anti-Mouse IgG H&L (Alexa Fluor 488)	MultiSciences	Cat# GAM4882	1:200
anti-Rabbit IgG H&L (Alexa Fluor 594)	MultiSciences	Cat# GAR5942	1:200

153 Abbreviations: IHC, immunohistochemistry; IF, immunofluorescence; WB, western

154 blotting.

Table S5:	The sea	uences of	f olig	gonucl	eotid	es

Primers for qPCR	
Name	Sequence (5' to 3')
mCcl21a-F	GTGATGGAGGGGGTCAGGA
mCcl21a-R	GGGATGGGACAGCCTAAACT
<i>mCd93-</i> F	ATCTCAACTGGTTTGTTCCTGC
<i>mCd93-</i> R	ACTCTTCACGGTGGCAAGATT
<i>mGAPDH</i> -F	CATCACTGCCACCCAGAAGACTG
<i>mGAPDH</i> -R	ATGCCAGTGAGCTTCCCGTTCAG
mmu-miR-5110-F	CAGATGGAGGAGGTAGAGGGTG
mmu-miR-5110-R	GTGCAGGGTCCGAGGT
mmu-miR-5107-5p-F	GAGACTTGTGGGCAGAGGAGG
mmu-miR-5107-5p-R	TATGGTTGTTGACGACTGGTTGAC
U6-F	CAGCACATATACTAAAATTGGAACG
U6-R	ACGAATTTGCGTGTCATCC
hsa-miR-5193-F	CGACGACTCCTCCTCTACCTCAT
hsa-miR-5193-R	TATGGTTGTAGAGCAGTGGTTGAC
MiRNA mimics and inhibitors	
Name	Sequence (5' to 3')
mmu-miR-5110 mimic	GGAGGAGGUAGAGGGUGGUGGAAUU
mmu-miR-5107-5p mimic	UGGGCAGAGGAGGCAGGGACA
miRNA mimic NC	UUCUCCGAACGUGUCACGUTT
mmu-miR-5110 inhibitor	AAUUCCACCACCCUCUACCUCCUCC
mmu-miR-5107-5p inhibitor	UGUCCCUGCCUCUGCCCA
miRNA inhibitor NC	CAGUACUUUUGUGUAGUACAA
siRNAs for gene knockdown	
Name	Sequence (5' to 3')
<i>mCcr1</i> siRNA F	CCCUGUAUUCUCUAGUGUUUAdTdT
<i>mCcr1</i> siRNA R	UAAACACUAGAGAAUACAGGGdTdT
<i>mCcr2</i> siRNA F	AGGUCUCGGUUGGGUUGUAAAdTdT
<i>mCcr2</i> siRNA R	UUUACAACCCAACCGAGACCUdTdT
<i>mCcr5</i> siRNA F	CCAUGCUGUGUUUGCUUUAAAdTdT
mCcr5 siRNA R	UUUAAAGCAAACACAGCAUGGdTdT
mCcr6 siRNA F	CCCGUGUUGUAUGCGUUUAUUdTdT
mCcr6 siRNA R	AAUAAACGCAUACAACACGGGdTdT
<i>mCcr7</i> siRNA F	AGGGCAUCUUUGGCAUCUAUdTdT
<i>mCcr7</i> siRNA R	UAUAGAUGCCAAAGAUGCCCUdTdT
	COULCOUCCOLLAUITATAT

<i>mCxcr4</i> siRNA R	AUAAUAUGGCAGCCAGCAGGCdTdT
<i>mCcl19</i> siRNA F	GAAGUCUUCUGCCAAGAACAAdTdT
mCcl19 siRNA R	UUGUUCUUGGCAGAAGACUUCdTdT
<i>mCcl21a</i> siRNA F	AGGAAGCAAGAACCAAGUUUAdTdT
<i>mCcl21a</i> siRNA R	UAAACUUGGUUCUUGCUUCCUdTdT
<i>mCd93</i> siRNA F	CUCCUGUAAAGAGGGCUAUAUdTdT
<i>mCd93</i> siRNA R	AUAUAGCCCUCUUUACAGGAGdTdT
<i>hCd93</i> siRNA F	CGAGACUCAGAGUCAUUAUUUdTdT
<i>hCd93</i> siRNA R	AAAUAAUGACUCUGAGUCUCGdTdT
<i>hCcl21</i> siRNA F	CACUCUUUCUCCUGCUUUAACdTdT
hCcl21 siRNA R	GUUAAAGCAGGAGAAAGAGUGdTdT
<i>hCcr7</i> siRNA F	UACACUUUGUUCGAGUCUUUGdTdT
<i>hCcr7</i> siRNA R	CAAAGACUCGAACAAAGUGUAdTdT
NC siRNA F	UUCUCCGAACGUGUCACGUdTdT
NC siRNA R	ACGUGACACGUUCGGAGAAdTdT
mClqa ASO	ATTGCCTGGATTGCCTTTC
NC ASO	CAGTACTTTTGTGTAGTACAA
Taqman probe	
Name	Sequence (5' to 3')
mmu-miR-5110 Taqman probe	CATCCCTATCCAACCATACAGACAATTCCAC
hsa-miR-5193 Taqman probe	CCTATCCAACCATACAGACACTGGG
miRNA detection probe	
Name	Sequence (5' to 3')
mmu-miR-5110 probe	AATTCCACCACCCTCTACCTCCTCC
hsa-miR-5193 probe	ACTGGGATGAGGTAGAGGAGGA
155	