Figure S1 CNO significantly activates cells which expressing hM3Dq, and the number of $\mathbf{h M 3 D q}{ }^{+}$cells were comparable between the saline and foot shock groups.
(A) Mice were perfused for c -Fos staining at 90 min after CNO injection after the last behavioral experiment. (B) Representative images of c-Fos and hM3Dq expression in the VTA. Green: c-Fos; Red: hM3Dq; Blue: DAPI. Scale bar, left $200 \mu \mathrm{~m}$, right $50 \mu \mathrm{~m}$. White arrows indicate the $\mathrm{c}-\mathrm{Fos}^{+} \mathrm{hM} 3 \mathrm{Dq}^{+}$cells. (C) The proportion of $\mathrm{c}-\mathrm{Fos}^{+}$cells in the VTA hM3Dq ${ }^{+}$cells ( $\mathrm{c}-\mathrm{Fos}^{+} \mathrm{hM} 3 \mathrm{Dq}^{+}$cells $/ \mathrm{hM} 3 \mathrm{Dq}^{+}$cells). [Two-tailed Student's ttest: Saline $\mathrm{n}=7, \mathrm{CNO} \mathrm{n}=8, \mathrm{t}(13)=-8.119, \mathrm{P}<0.001]$. (D) Representative images of $\mathrm{hM}_{3} \mathrm{Dq}^{+}$cells in the VTA. Red: hM3Dq; Blue: DAPI. Scale bar, left $200 \mu \mathrm{~m}$, right 50 $\mu \mathrm{m}$. White arrows indicate the $\mathrm{hM} 3 \mathrm{Dq}^{+}$cells. (E) The number of $\mathrm{hM} 3 \mathrm{Dq}^{+}$cells per $\mathrm{mm}^{2}$ in the VTA. [Two-tailed Student's t -test: Home-cage-Ens $\mathrm{n}=8$, Shock-Ens $\mathrm{n}=7$, $\mathrm{t}(13)=1.738, \mathrm{P}=0.106] . * \mathrm{P}<0.05, * * \mathrm{P}<0.01, * * * \mathrm{P}<0.001$. Data are shown as mean $\pm$ SEM.

Figure S2 Fluorescence signal excited by 410 nm or 470 nm laser stimulation in the fiber photometry recording.
(A) Fiber photometry recording during sucrose consumption. Blue shading indicates the period of sucrose water consumption. (B) Fiber photometry recording during tail suspension. Blue shading indicates the period of tail suspended. The black line represents the signal excited by 410 nm light. The green line represents the signal excited by 470 nm light.

## Figure S3 Expression level of Drd2 mRNA in the VTA Mor-Ens and Shock-Ens.

(A) Schematic of the experimental procedure for single-molecule RNA fluorescence in situ hybridization (smFISH) for Drd2 mRNA in the VTA Mor-Ens and Shock-Ens after fiber photometry recording. (B) Representative images of $\operatorname{Drd2}$ mRNA signal in VTA.

Blue: DAPI; Green: $E g f p$; Red: $\operatorname{Drd} 2$. Scale bar: left $200 \mu \mathrm{~m}$, right $25 \mu \mathrm{~m}$. Dashed lines: outline of VTA or $E g f p^{+}$cell. (C) The proportion of $\operatorname{Drd} 2^{+}$cells in the VTA Mor-Ens or Shock-Ens ( $\operatorname{Drd} 2^{+} E g f p^{+}$cells / Egfp ${ }^{+}$cells). [Two-tailed Student's t-test: Shock-Ens n $=5$, Mor-Ens $\mathrm{n}=5, \mathrm{t}(8)=1.097, \mathrm{P}=0.305]$. (D) Cumulative probability curves and the violin plot depict the $\operatorname{Drd} 2 \mathrm{mRNA}$ signal intensity in each $E g f p^{+}$cell. [KolmogorovSmirnov test: Shock-Ens $\mathrm{n}=2596$ cells from 5 mice, Mor-Ens $\mathrm{n}=1728$ cells from 5 mice, $\mathrm{D}=0.025, \mathrm{P}=0.512]$. Data are shown as mean $\pm \mathrm{SEM}$

Fig. S1

## A

RAM-Cre


On Dox
Off Dox

On Dox
B


C


## E



Fig. $\mathbf{S} 2$


Fig. S3
A


On DOX
Off DOX
On DOX

B




## Supplementary Table 1: Statistical detail information for figures

| Figure | Response variable | groups | n define as | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | $p$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1C left | ${\mathrm{c}-\mathrm{Fos}^{+}}^{\text {cells cell per mm}}{ }^{2}$ | home-cage $\mathrm{n}=7$ | mice | $\mathrm{df}=130, \mathrm{p}=0.656$ | Mauchly's Test of Sphericity $\mathrm{df}=27, \mathrm{p}=0.102$ | Mixed Models | $\mathrm{F}(14,92)=11.28$ | $\mathrm{P}<0.001$ |
|  |  | $\begin{gathered} \text { shock } \mathrm{n}=6 \\ \hline \text { morphine } \mathrm{n}=4 \\ \hline \end{gathered}$ |  |  |  |  |  |  |
| 1C right | Percentage of total c- <br> $\mathrm{Fos}^{+}$cells (\%) | home-cage $\mathrm{n}=7$ | mice | $\mathrm{df}=130, \mathrm{p}=0.465$ | Mauchly's Test of Sphericity $\mathrm{df}=27, \mathrm{p}=0.02$ | Mixed Models | $F(14,106)=5.929$ | $\mathrm{P}<0.001$ |
|  |  | $\begin{gathered} \text { shock } \mathrm{n}=6 \\ \text { morphine } \mathrm{n}=4 \\ \hline \end{gathered}$ |  |  |  |  |  |  |
| 1D | Percentage of total c$\mathrm{Fos}^{+}$cells in this section | home-cage $\mathrm{n}=7$ | mice | $\mathrm{df}=51, \mathrm{p}=0.724$ | Mauchly's Test of Sphericity $\mathrm{df}=2, \mathrm{p}=0.686$ | Two-way Repeated Measures ANOVA | $\begin{gathered} \mathrm{F}(2.744,19.206)= \\ 5.929 \end{gathered}$ | $\mathrm{P}=0.117$ |
|  |  | $\begin{gathered} \text { shock } \mathrm{n}=6 \\ \hline \text { morphine } \mathrm{n}=4 \\ \hline \end{gathered}$ |  |  |  |  |  |  |
| 1E | Percentage of total c$\mathrm{Fos}^{+}$cells in this section | home-cage $\mathrm{n}=6$ | mice | $\mathrm{df}=48, \mathrm{p}=0.120$ | Mauchly's Test of Sphericity $\mathrm{df}=2, \mathrm{p}=0.636$ | Two-way Repeated Measures ANOVA | $\begin{gathered} \mathrm{F}(2.545,16.545)= \\ 2.708 \end{gathered}$ | $\mathrm{P}=0.086$ |
|  |  | $\begin{gathered} \text { shock } \mathrm{n}=6 \\ \text { morphine } \mathrm{n}=4 \end{gathered}$ |  |  |  |  |  |  |
| 1F | Percentage of total c$\mathrm{Fos}^{+}$cells in this section | home-cage $\mathrm{n}=6$ | mice | $\mathrm{df}=48, \mathrm{p}=0.375$ | Mauchly's Test of Sphericity $\mathrm{df}=2, \mathrm{p}=0.594$ | Two-way Repeated Measures ANOVA | $\begin{gathered} \mathrm{F}(2.377,15.448)= \\ 2.708 \end{gathered}$ | $\mathrm{P}=0.413$ |
|  |  | shock $\mathrm{n}=6$ morphine $\mathrm{n}=4$ |  |  |  |  |  |  |
| 1G | Percentage of total c- <br> $\mathrm{Fos}^{+}$cells in this section | home-cage $\mathrm{n}=7$ | mice | $\mathrm{df}=51, \mathrm{p}=0.070$ | Mauchly's Test of Sphericity $\mathrm{df}=2, \mathrm{p}=0.285$ | Two-way Repeated Measures ANOVA | $\mathrm{F}(4,28)=3.238$ | $\mathrm{P}=0.026$ |
|  |  | shock $\mathrm{n}=6$ |  |  |  |  | Bonferroni post hoc ml (0.6~) homecage vs morphine | $\mathrm{P}=0.020$ |
|  |  | morphine $\mathrm{n}=4$ |  |  |  |  |  |  |


| Figure | Response variable | groups | $\begin{array}{\|c\|} \hline \mathrm{n} \text { define } \\ \text { as } \\ \hline \end{array}$ | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | p value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1H | Percentage of total c- <br> $\mathrm{Fos}^{+}$cells in this section | home-cage $\mathrm{n}=5$ | mice | $\mathrm{df}=45, \mathrm{p}=0.320$ | Mauchly's Test of Sphericity $\mathrm{df}=2, \mathrm{p}=0.119$ | Two-way Repeated Measures ANOVA | $\mathrm{F}(4,24)=7.299$ | $\mathrm{P}=0.001$ |
|  |  | shock $\mathrm{n}=6$ |  |  |  |  | Bonferroni post hoc $\mathrm{ml}(0 \sim 0.3)$ homecage vs morphine | $\mathrm{P}=0.004$ |
|  |  | morphine $\mathrm{n}=4$ |  |  |  |  | Bonferroni post hoc ml (0.6~) homecage vs morphine | $\mathrm{P}=0.001$ |
|  |  |  |  |  |  |  | Bonferroni post hoc ml (0.6~) morphine vs shock | $\mathrm{P}=0.011$ |
| 1 I | Percentage of total c- <br> $\mathrm{Fos}^{+}$cells in this section | home-cage $\mathrm{n}=7$ | mice | $\mathrm{df}=51, \mathrm{p}=0.773$ | Mauchly's Test of Sphericity $\mathrm{df}=2, \mathrm{p}=0.471$ | Two-way Repeated Measures ANOVA | $\mathrm{F}(4,28)=9.277$ | $\mathrm{P}<0.001$ |
|  |  | shock $\mathrm{n}=6$ |  |  |  |  | Bonferroni post hoc $\mathrm{ml}(0 \sim 0.3)$ homecage vs morphine | $\mathrm{P}<0.001$ |
|  |  | morphine $\mathrm{n}=4$ |  |  |  |  | Bonferroni post hoc $\mathrm{ml}(0 \sim 0.3)$ shock vs morphine | $\mathrm{P}=0.007$ |
|  |  |  |  |  |  |  | Bonferroni post hoc ml ( $0.3 \sim 0.6$ ) homecage vs morphine | $\mathrm{P}=0.003$ |
|  |  |  |  |  |  |  | Bonferroni post hoc ml (0.3~0.6) shock vs morphine | $\mathrm{P}=0.043$ |


| Figure | Response variable | groups | n define as | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | p value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1K | distance from VTA bottom ( $\mu \mathrm{m}$ ) | home-cage, $\mathrm{n}=270$ cells, 7 mice | cell | $\mathrm{df}=270, \mathrm{p}<0.001$ | - | Kruskal-Wallis H Test | $\mathrm{H}=77.457$ | $\mathrm{P}<0.001$ |
|  |  | shock, $\mathrm{n}=374$ cells, 4 mice |  | $\mathrm{df}=374, \mathrm{p}<0.001$ |  |  | Bonferroni post hoc shock vs morphine | $\mathrm{P}<0.001$ |
|  |  | morphine, $\mathrm{n}=542$ cells, 4 mice |  | $\mathrm{df}=542, \mathrm{p}<0.001$ |  |  | Bonferroni post hoc homecage vs morphine | $\mathrm{P}<0.001$ |
| 1L | distance of paired cells ( $\mu \mathrm{m}$ ) | $\begin{array}{\|c} \hline \text { home-cage, } \mathrm{n}=1000, \\ 7 \text { mice } \end{array}$ | paired distances | $\mathrm{df}=1000, \mathrm{p}<0.001$ | - | Kruskal-Wallis H Test | $\mathrm{H}=68.955$ | $\mathrm{P}<0.001$ |
|  |  | shock, $\mathrm{n}=1000,4$ mice | paired distances | $\mathrm{df}=1000, \mathrm{p}<0.001$ |  |  | Bonferroni post hoc shock vs morphine | $\mathrm{P}<0.001$ |
|  |  | morphine, $\mathrm{n}=1000$, 4 mice | paired distances | df $=1000, \mathrm{p}<0.001$ |  |  | Bonferroni post hoc homecage vs morphine | $\mathrm{P}<0.001$ |
| 2D left | Preference score (s) | $\mathrm{n}=10$ | mice | $\mathrm{df}=10, \mathrm{p}=0.081$ | - | Paired t-test | $\mathrm{df}=9, \mathrm{t}=-4.486$ | $\mathrm{P}=0.002$ |
| 2D right | Bouts |  |  | $\mathrm{df}=10, \mathrm{p}=0.522$ |  |  | $\mathrm{df}=9, \mathrm{t}=0.900$ | $\mathrm{P}=0.392$ |
| 2 F left | Preference score (s) | $\mathrm{n}=9$ | mice | $\mathrm{df}=9, \mathrm{p}=0.483$ |  | Paired t-test | $\mathrm{df}=8, \mathrm{t}=0.709$ | $\mathrm{P}=0.498$ |
| 2 Fright | Bouts |  |  | $\mathrm{df}=9, \mathrm{p}=0.015$ | - | Wilcoxon Signed Ranks Test | $\mathrm{Z}=-0.841$ | $\mathrm{P}=0.400$ |
| 2H | CPP Socre (s) | Shock-Ens mCherry, $\mathrm{n}=13$ | mice | $\mathrm{df}=78, \mathrm{p}=0.460$ | Mauchly's Test of Sphericity $\mathrm{df}=0, \mathrm{p}=1.000$ (Greenhouse-Geisser) | Two-way Repeated Measures ANOVA (multivariate tests) | $F(2,36)=0.916$ | $\mathrm{P}=0.409$ |
|  |  | $\begin{gathered} \text { Shock-Ens hM3Dq, n } \\ =13 \\ \hline \end{gathered}$ |  |  |  |  |  |  |
|  |  | Homecage-Ens, hM3Dq, $n=13$ |  |  |  |  |  |  |


| Figure | Response variable | groups | $\begin{gathered} \hline \mathrm{n} \text { define } \\ \text { as } \end{gathered}$ | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | p value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 I | Time in open arms (s) | Shock-Ens mCherry, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.275$ | Levene's test$\begin{gathered} \mathrm{F}(2,39)=1.174, \mathrm{p}= \\ 0.320 \end{gathered}$ | One-way ANOVA | $\mathrm{F}(2,39)=6.022$ | $\mathrm{P}=0.005$ |
|  |  | Shock-Ens hM3Dq, n $=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.852$ |  |  | Bonferroni post hoc Shock-Ens hM3Dq vs Shock-Ens mCherry | $\mathrm{P}=0.004$ |
|  |  | Homecage-Ens $\mathrm{hM} 3 \mathrm{Dq}, \mathrm{n}=13$ |  | $\mathrm{df}=13, \mathrm{p}=0.183$ |  |  | Bonferroni post hoc Shock-Ens hM3Dq vs Homecage-Ens hM3Dq | $\mathrm{P}=0.039$ |
| 3 C | $\left(\mathrm{TH}^{+} \mathrm{EGFP}^{+}\right) / \mathrm{EGFP}^{+}$ | Shock-Ens, $\mathrm{n}=8$ | mice | $\mathrm{df}=63, \mathrm{p}=0.012$ | Mauchly's Test of Sphericity $\mathrm{df}=9, \mathrm{p}=0.250$ (Greenhouse-Geisser) | Mixed Models | $\mathrm{F}(4,39)=3.857$ | $\mathrm{P}<0.001$ |
|  |  | Mor-Ens, $\mathrm{n}=7$ |  |  |  |  | Bonferroni post hoc $\mathrm{ml}(-3.1,-3.2)$, Shock-Ens vs MorEns | $\mathrm{P}=0.013$ |
|  |  |  |  |  |  |  | ```Bonferroni post hoc \(\mathrm{ml}(-3.2,-3.3)\), Shock-Ens vs Mor- Ens``` | $\mathrm{P}=0.002$ |
|  |  |  |  |  |  |  | Bonferroni post hoc $\mathrm{ml}(-3.3,-3.4)$, Shock-Ens vs MorEns | $\mathrm{P}=0.004$ |
| 3D | $\left(\mathrm{TH}^{+} \mathrm{EGFP}^{+}\right) / \mathrm{EGFP}^{+}$ | Shock-Ens, $\mathrm{n}=8$ | mice | df $=8, \mathrm{p}=0.344$ | $\begin{gathered} \hline \text { Levene's test } \\ \mathrm{F}(7,6)=0.004, \mathrm{p}= \\ 0.953 \end{gathered}$ | Two-tailed Student's ttest | $\mathrm{df}=13, \mathrm{t}=-4.645$ | $\mathrm{P}<0.001$ |
|  |  | Mor-Ens, $\mathrm{n}=7$ |  | $\mathrm{df}=7, \mathrm{p}=0.604$ |  |  |  |  |


| Figure | Response variable | groups | n define as | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | $p$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3F | $\left(\mathrm{GABA}^{+} \mathrm{EGFP}^{+}\right) /$ EGFP ${ }^{+}$ | Shock-Ens, $\mathrm{n}=7$ | mice | $\mathrm{df}=70, \mathrm{p}=0.324$ | Mauchly's Test of Sphericity $\mathrm{df}=9, \mathrm{p}=0.188$ | Two-way Repeated Measures ANOVA | $\mathrm{F}(4,48)=0.438$ | $\mathrm{P}=0.780$ |
|  |  | Mor-Ens, $\mathrm{n}=7$ |  |  |  |  | $\begin{gathered} \hline \text { Fensembles }(1,12)= \\ 17.848 \\ \hline \end{gathered}$ | $\mathrm{P}=0.001$ |
|  |  |  |  |  |  |  | Bonferroni post hoc $\mathrm{ml}(-3.2,-3.3)$, <br> Shock-Ens vs Mor- <br> Ens | $\mathrm{P}=0.014$ |
|  |  |  |  |  |  |  | Bonferroni post hoc $\mathrm{ml}(-3.4,-3.5)$, <br> Shock-Ens vs Mor- <br> Ens | $\mathrm{P}=0.008$ |
|  |  |  |  |  |  |  | Bonferroni post hoc $\mathrm{ml}(-3.5,-3.6)$, <br> Shock-Ens vs Mor- <br> Ens | $\mathrm{P}=0.019$ |
| 3G | $\left(\mathrm{GABA}^{+} \mathrm{EGFP}^{+}\right)$ EGFP ${ }^{+}$ | Shock-Ens, $\mathrm{n}=7$ | mice | $\mathrm{df}=7, \mathrm{p}=0.624$ | $\begin{gathered} \text { Levene's test } \\ \mathrm{F}(6,6)=0.004, \mathrm{p}= \\ 0.951 \end{gathered}$ | Two-tailed Student's ttest | $\mathrm{df}=12, \mathrm{t}=4.433$ | $\mathrm{P}=0.001$ |
|  |  | Mor-Ens, $\mathrm{n}=7$ |  | $\mathrm{df}=7, \mathrm{p}=0.747$ |  |  |  |  |
| 4C | Start neurons | Shock-Ens, $\mathrm{n}=6$ | mice | $\mathrm{df}=6, \mathrm{p}=0.479$ | $\begin{gathered} \text { Levene's test } \\ \mathrm{F}(5,6)=2.187, \mathrm{p}= \\ 0.167 \end{gathered}$ | Two-tailed Student's ttest | $\mathrm{df}=11, \mathrm{t}=1.347$ | $\mathrm{P}=0.205$ |
|  |  | Mor-Ens, $\mathrm{n}=7$ |  | $\mathrm{df}=7, \mathrm{p}=0.052$ |  |  |  |  |
| 4D | Total input counts | Shock-Ens, $\mathrm{n}=6$ | mice | $\mathrm{df}=6, \mathrm{p}=0.342$ | Levene's test $F(5,6)=0.636, p=$ 0.442 | Two-tailed Student's ttest | $\mathrm{df}=11, \mathrm{t}=-0.861$ | $\mathrm{P}=0.408$ |
|  |  | Mor-Ens, $\mathrm{n}=7$ |  | $\mathrm{df}=7, \mathrm{p}=0.720$ |  |  |  |  |


| Figure | Response variable | groups | $\begin{array}{\|l\|} \hline \mathrm{n} \text { define } \\ \hline \end{array}$ as | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | p value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4E | \% Total inputs | Shock-Ens, $\mathrm{n}=6$ | mice | $\mathrm{df}=260, \mathrm{p}=0.268$ | Mauchly's Test of Sphericity $\mathrm{df}=189, \mathrm{p}=0.232$ (Greenhouse-Geisser) | Two-way Repeated Measures ANOVA | $\begin{gathered} \hline \mathrm{F}(4.417,48.592)= \\ 2.927 \end{gathered}$ | $\mathrm{P}=0.026$ |
|  |  | Mor-Ens, $\mathrm{n}=7$ |  |  |  |  | Fisher's LSD post hoc DMStr, Sock-Ens vs Mor-Ens | $\mathrm{P}=0.014$ |
|  |  |  |  |  |  |  | Fisher's LSD post hoc VP, Sock-Ens vs Mor-Ens | $\mathrm{P}=0.002$ |
|  |  |  |  |  |  |  | Fisher's LSD post hoc LHb, Sock-Ens vs Mor-Ens | $\mathrm{P}=0.015$ |
|  |  |  |  |  |  |  | Fisher's LSD post hoc MEZ, Sock-Ens vs Mor-Ens | $\mathrm{P}=0.020$ |
| 5C | Arborization on per neuron ( $\mu \mathrm{m}^{2}$ ) | Shock-Ens, $\mathrm{n}=5$ | mice | $\begin{gathered} \text { VP, Shock-Ens } \\ \mathrm{df}=5, \mathrm{p}=0.417 \end{gathered}$ | Levene's test $F(5,4)=0.508, p=$ | Two-tailed Student's ttest | $\mathrm{df}=7, \mathrm{t}=-4.364$ | $\mathrm{P}=0.003$ |
|  |  | Mor-Ens, $\mathrm{n}=4$ |  | $\begin{gathered} \text { VP, Mor-Ens } \\ \mathrm{df}=4, \mathrm{p}=0.270 \end{gathered}$ | $0.499$ |  | $\mathrm{dr}=7, \mathrm{t}=-4.364$ | $\mathrm{P}=0.003$ |
|  |  |  |  | $\begin{gathered} \text { ZI, Shock-Ens } \\ \mathrm{df}=5, \mathrm{p}=0.968 \end{gathered}$ | Levene's test |  |  |  |
|  |  |  |  | $\begin{gathered} \text { ZI, Mor-Ens } \\ \mathrm{df}=4, \mathrm{p}=0.429 \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{F}(5,4)=2.393, \mathrm{p}= \\ 0.166 \end{gathered}$ |  | $\mathrm{df}=7, \mathrm{t}=-2.563$ | $\mathrm{P}=0.037$ |
| 5D | Axon density (\% VTA intensity) | Shock-Ens, $\mathrm{n}=5$ | mice | $\begin{gathered} \text { ZI, Shock-Ens } \\ \mathrm{df}=5, \mathrm{p}=0.898 \\ \hline \end{gathered}$ | Levene's test$\begin{gathered} \mathrm{F}(5,4)= \\ 0.022, \mathrm{p}= \\ 0.886 \end{gathered}$ | Two-tailed Student's ttest | $\mathrm{df}=7, \mathrm{t}=-2.599$ | $\mathrm{P}=0.035$ |
|  |  | Mor-Ens, $\mathrm{n}=4$ |  | $\begin{gathered} \text { ZI, Mor-Ens } \\ \mathrm{df}=4, \mathrm{p}=0.601 \end{gathered}$ |  |  |  |  |


| Figure | Response variable | groups | $\begin{gathered} \hline \text { n define } \\ \text { as } \\ \hline \end{gathered}$ | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | p value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5E | Density fraction (\% all density) | Shock-Ens, $\mathrm{n}=5$ | mice | Gpe, Shock-Ens $\mathrm{df}=5, \mathrm{p}=0.961$ | $\begin{gathered} \text { Levene's test } \\ \mathrm{F}(5,4)=0.338, \mathrm{p} \\ =0.579 \end{gathered}$ | Two-tailed Student's ttest | $\mathrm{df}=7, \mathrm{t}=-3.406$ | $\mathrm{P}=0.011$ |
|  |  | Mor-Ens, $\mathrm{n}=4$ |  | $\begin{gathered} \text { Gpe, Mor-Ens } \\ \mathrm{df}=4, \mathrm{p}=0.466 \end{gathered}$ |  |  |  |  |
|  |  |  |  | $\begin{gathered} \text { ZI, Shock-Ens } \\ \mathrm{df}=5, \mathrm{p}=0.506 \end{gathered}$ | $\begin{gathered} \text { Levene's test } \\ \mathrm{F}(5,4)=0.398, \mathrm{p} \\ =0.548 \end{gathered}$ |  | $\mathrm{df}=7, \mathrm{t}=-2.673$ | $\mathrm{P}=0.032$ |
|  |  |  |  | $\begin{gathered} \text { ZI, Mor-Ens } \\ \mathrm{df}=4, \mathrm{p}=0.797 \end{gathered}$ |  |  |  |  |
|  |  |  |  | LDT, Shock-Ens $\mathrm{df}=5, \mathrm{p}=0.638$ | $\begin{gathered} \text { Levene's test } \\ \mathrm{F}(5,4)=2.595, \mathrm{p} \\ =0.151 \end{gathered}$ |  | $\mathrm{df}=7, \mathrm{t}=4.242$ | $\mathrm{P}=0.004$ |
|  |  |  |  | $\begin{gathered} \text { LDT, Mor-Ens } \\ \mathrm{df}=4, \mathrm{p}=0.579 \end{gathered}$ |  |  |  |  |
| 7 C | p-AKT1 intensity per cell | Shock-Ens, $\mathrm{n}=822$ cells, 5 mice | cell | $\mathrm{df}=822, \mathrm{p}<0.001$ |  | 7C left, Mann-Whitney | $\mathrm{U}=240371$ | $\mathrm{P}<0.001$ |
|  |  | Mor-Ens, $\mathrm{n}=754$ cells, 5 mice |  | df $=754, \mathrm{p}<0.001$ |  | 7C right, KolmogorovSmirnov test | $\mathrm{D}=0.179$ | P $<0.001$ |
| 7E | PLC $\beta$-3 intensity per cell | Shock-Ens, $\mathrm{n}=1340$ cells, 8 mice | cell | $\mathrm{df}=1340, \mathrm{p}<0.001$ | - | $\begin{gathered} \hline \text { 7E left, Mann-Whitney } \\ \text { test } \\ \hline \end{gathered}$ | $\mathrm{U}=898116$ | $\mathrm{P}=0.017$ |
|  |  | Mor-Ens, $\mathrm{n}=$ 1415cells, 8 mice |  | $\mathrm{df}=1415, \mathrm{p}<0.001$ |  | 7E right, KolmogorovSmirnov test | $\mathrm{D}=0.056$ | $\mathrm{P}=0.026$ |
| 8B middle | AUC (0-5s) | $\mathrm{n}=9$ | mice | $\mathrm{df}=9, \mathrm{p}=0.906$ | - | Paired t-test | $\mathrm{df}=8, \mathrm{t}=-3.494$ | $\mathrm{P}=0.008$ |
| 8B right | Peak |  |  | $\mathrm{df}=9, \mathrm{p}=0.837$ |  |  | $\mathrm{df}=8, \mathrm{t}=-2.845$ | $\mathrm{P}=0.022$ |
| 8 C left | AUC (0-5s) | $\mathrm{n}=8$ | mice | $\mathrm{df}=8, \mathrm{p}=0.410$ | - | Paired t-test | $\mathrm{df}=7, \mathrm{t}=0.061$ | $\mathrm{P}=0.953$ |
| 8C right | Peak |  |  | $\mathrm{df}=8, \mathrm{p}=0.320$ |  |  | $\mathrm{df}=7, \mathrm{t}=-0.712$ | $\mathrm{P}=0.500$ |
| 8D | AUC (0-40s) | $\mathrm{n}=9$ | mice | $\mathrm{df}=9, \mathrm{p}=0.700$ | - | Paired t-test | $\mathrm{df}=8, \mathrm{t}=-1.565$ | $\mathrm{P}=0.156$ |
| 8E | AUC (0-40s) | $\mathrm{n}=8$ | mice | $\mathrm{df}=8, \mathrm{p}=0.937$ | - | Paired t-test | $\mathrm{df}=7, \mathrm{t}=-1.396$ | $\mathrm{P}=0.205$ |
| 8 F middle | AUC (0-5s) | $\mathrm{n}=12$ | mice | $\mathrm{df}=12, \mathrm{p}=0.736$ | - | Paired t-test | $\mathrm{df}=11, \mathrm{t}=1.876$ | $\mathrm{P}=0.087$ |
| 8F right | Peak |  |  | $\mathrm{df}=12, \mathrm{p}=0.737$ |  |  | $\mathrm{df}=11, \mathrm{t}=0.757$ | $\mathrm{P}=0.465$ |
| 8G middle | AUC (0-5s) | $\mathrm{n}=11$ | mice | $\mathrm{df}=11, \mathrm{p}=0.374$ | - | Paired t-test | $\mathrm{df}=10, \mathrm{t}=1.984$ | $\mathrm{P}=0.075$ |
| 8G right | Peak |  |  | $\mathrm{df}=11, \mathrm{p}=0.058$ |  |  | $\mathrm{df}=10, \mathrm{t}=1.507$ | $\mathrm{P}=0.163$ |


| Figure | Response variable | groups | $\begin{gathered} \hline \text { n define } \\ \text { as } \end{gathered}$ | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | p value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8H | AUC (0-40s) | $\mathrm{n}=10$ | mice | $\mathrm{df}=10, \mathrm{p}=0.686$ | - | Paired t-test | $\mathrm{df}=9, \mathrm{t}=0.852$ | $\mathrm{P}=0.416$ |
| 8I | AUC (0-40s) | $\mathrm{n}=8$ | mice | $\mathrm{df}=8, \mathrm{p}=0.689$ | - | Paired t-test | $\mathrm{df}=7, \mathrm{t}=-3.714$ | $\mathrm{P}=0.008$ |
| 9B left | Distances (m) | Saline, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.359$ | $\begin{gathered} \mathrm{F}(2,41)=1.163, \mathrm{p}= \\ 0.323 \end{gathered}$ | One-way ANOVA | $F(2,43)=7.151$ | $\mathrm{P}=0.002$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.105$ |  |  | Bonferroni post hoc Saline vs Cariprazine | $\mathrm{P}=0.015$ |
|  |  | UNC9994, $\mathrm{n}=15$ |  | $\mathrm{df}=14, \mathrm{p}=0.981$ |  |  | Bonferroni post hoc UNC9994 vs Cariprazine | $\mathrm{P}=0.003$ |
| 9B right | Time in center (s) | Saline, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.289$ | $\begin{gathered} \mathrm{F}(2,41)=1.154, \mathrm{p}= \\ 0.325 \end{gathered}$ | One-way ANOVA | $F(2,43)=0.203$ | $\mathrm{P}=0.817$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.876$ |  |  |  |  |
|  |  | UNC9994, $\mathrm{n}=15$ |  | $\mathrm{df}=15, \mathrm{p}=0.980$ |  |  |  |  |
| 9C left | Distances (m) | Saline, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.590$ | $\begin{gathered} \mathrm{F}(2,41)=0.286, \mathrm{p}= \\ 0.753 \end{gathered}$ | One-way ANOVA | $F(2,43)=2.678$ | $\mathrm{P}=0.081$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.662$ |  |  |  |  |
|  |  | UNC9994, $\mathrm{n}=15$ |  | $\mathrm{df}=15, \mathrm{p}=0.466$ |  |  |  |  |
| 9 C middle | Time in open arms(s) | Saline, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.133$ | $\begin{gathered} \mathrm{F}(2,41)=1.248, \mathrm{p}= \\ 0.298 \end{gathered}$ | One-way ANOVA | $F(2,43)=2.028$ | $\mathrm{P}=0.145$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.724$ |  |  |  |  |
|  |  | UNC9994, $\mathrm{n}=15$ |  | $\mathrm{df}=15, \mathrm{p}=0.700$ |  |  |  |  |
| 9C right | Bouts | Saline, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.528$ | $\begin{gathered} \mathrm{F}(2,41)=0.435, \mathrm{p}= \\ 0.650 \end{gathered}$ | One-way ANOVA | $F(2,43)=2.997$ | $\mathrm{P}=0.061$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.728$ |  |  |  |  |
|  |  | UNC9994, $\mathrm{n}=15$ |  | $\mathrm{df}=15, \mathrm{p}=0.311$ |  |  |  |  |
| 9D left | Distances (m) | Saline, $\mathrm{n}=14$ | mice | $\mathrm{df}=14, \mathrm{p}=0.162$ | Levene's test$\begin{gathered} \mathrm{F}(2,39)=1.447, \mathrm{p}= \\ 0.248 \end{gathered}$ | One-way ANOVA | $F(2,41)=4.771$ | $\mathrm{P}=0.014$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.148$ |  |  | Bonferroni post hoc Saline vs Cariprazine | $\mathrm{P}=0.021$ |
|  |  | UNC9994, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.633$ |  |  |  |  |
| 9D right | Time in center (s) | Saline, $\mathrm{n}=14$ | mice | $\mathrm{df}=14, \mathrm{p}=0.232$ | - | Kruskal-Wallis H Test | $\mathrm{H}=0.457$ | $\mathrm{P}=0.796$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.295$ |  |  |  |  |
|  |  | UNC9994, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.004$ |  |  |  |  |


| Figure | Response variable | groups | $\begin{gathered} \text { n define } \\ \text { as } \end{gathered}$ | Normality Test (Shapiro-Wilk) | Homogeneity of variance | Statistical test | Test value | p value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9E left | Distances (m) | Saline, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.357$ | Levene's test$\begin{gathered} \mathrm{F}(2,40)=1.020, \mathrm{p}= \\ 0.370 \end{gathered}$ | One-way ANOVA | $F(2,42)=1.925$ | $\mathrm{P}=0.159$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.753$ |  |  |  |  |
|  |  | UNC9994, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.271$ |  |  |  |  |
| 9E middle | Time in open arms(s) | Saline, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.054$ | Levene's test$\begin{gathered} \mathrm{F}(2,40)=1.195, \mathrm{p}= \\ 0.313 \end{gathered}$ | One-way ANOVA | $F(2,42)=4.029$ | $\mathrm{P}=0.025$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.306$ |  |  | Bonferroni post hoc Saline vs Cariprazine | $\mathrm{P}=0.022$ |
|  |  | UNC9994, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.889$ |  |  |  |  |
| 9E right | Bouts | Saline, $\mathrm{n}=15$ | mice | $\mathrm{df}=15, \mathrm{p}=0.310$ | Levene's test$\begin{gathered} \mathrm{F}(2,40)=0.292, \mathrm{p}= \\ 0.749 \end{gathered}$ | One-way ANOVA | $F(2,42)=5.818$ | $\mathrm{P}=0.006$ |
|  |  | Cariprazine, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.475$ |  |  | Bonferroni post hoc Saline vs Cariprazine | $\mathrm{P}=0.010$ |
|  |  | UNC9994, $\mathrm{n}=14$ |  | $\mathrm{df}=14, \mathrm{p}=0.835$ |  |  | Bonferroni post hoc UNC9994 vs Cariprazine | $\mathrm{P}=0.026$ |
|  |  |  |  |  |  |  | Bonferroni post hoc Saline vs UNC9994 | $\mathrm{P}=1.000$ |
| Suppleme ntary 1C | $\begin{gathered} \left(\mathrm{c}-\mathrm{fos}^{+}\right. \\ \left.\mathrm{hM} 3 \mathrm{Dq}^{+}\right) / \mathrm{hM} 3 \mathrm{Dq}^{+} \\ \hline \end{gathered}$ | Saline, $\mathrm{n}=7$ | mice | df $=7, \mathrm{p}=0.698$ | $\begin{gathered} \text { Levene's test } \\ \mathrm{F}(6,7)=3.508, \mathrm{p}= \\ 0.084 \\ \hline \end{gathered}$ | Two-tailed Student's ttest | $\mathrm{df}=13, \mathrm{t}=-8.119$ | $\mathrm{P}<0.001$ |
|  |  | $\mathrm{CNO}, \mathrm{n}=8$ |  | $\mathrm{df}=8, \mathrm{p}=0.447$ |  |  |  |  |
| Suppleme ntary 1E | $\mathrm{hM} 3 \mathrm{Dq}^{+}$cells per mm ${ }^{2}$ | Home-cage, $\mathrm{n}=8$ | mice | $\mathrm{df}=8, \mathrm{p}=0.206$ | Levene's test$\begin{gathered} \mathrm{F}(7,6)=0.00, \mathrm{p}= \\ 0.987 \end{gathered}$ | Two-tailed Student's ttest | $\mathrm{df}=13, \mathrm{t}=1.738$ | $\mathrm{P}=0.106$ |
|  |  | Shock, $\mathrm{n}=7$ |  | $\mathrm{df}=7, \mathrm{p}=0.496$ |  |  |  |  |
| Suppleme ntary 3C | $\left(\mathrm{Drd} 2{ }^{+} \mathrm{EGFP}^{+}\right) / \mathrm{EGFP}^{+}$ | Shock-Ens, $\mathrm{n}=5$ | mice | $\mathrm{df}=5, \mathrm{p}=0.873$ | $\begin{gathered} \text { Levene's test } \\ \mathrm{F}(4,4)=3.812, \mathrm{p}= \\ 0.087 \end{gathered}$ | Two-tailed Student's ttest | $\mathrm{df}=8, \mathrm{t}=1.097$ | $\mathrm{P}=0.305$ |
|  |  | Mor-Ens, $\mathrm{n}=5$ |  | $\mathrm{df}=5, \mathrm{p}=0.448$ |  |  |  |  |
| Suppleme ntary 3D | Drd2 intensity | Shock-Ens, $\mathrm{n}=2596$ cells, 5 mice | cell | $\mathrm{df}=2596, \mathrm{p}<0.001$ |  | Kolmogorov-Smirnov test | $\mathrm{D}=0.025$ | $\mathrm{P}=0.512$ |
|  |  | Mor-Ens, $\mathrm{n}=1728$ cells, 5 mice |  | $\mathrm{df}=1728, \mathrm{p}<0.001$ |  |  |  |  |

