Figure S1 CNO significantly activates cells which expressing hM3Dq, and the
 number of hM3Dq⁺ cells were comparable between the saline and foot shock
 groups.

(A) Mice were perfused for c-Fos staining at 90 min after CNO injection after the last 4 behavioral experiment. (B) Representative images of c-Fos and hM3Dq expression in 5 the VTA. Green: c-Fos; Red: hM3Dq; Blue: DAPI. Scale bar, left 200 µm, right 50 µm. 6 White arrows indicate the c-Fos⁺ hM3Dq⁺ cells. (C) The proportion of c-Fos⁺ cells in 7 the VTA hM3Dq⁺ cells (c-Fos⁺ hM3Dq⁺ cells / hM3Dq⁺ cells). [Two-tailed Student's t-8 test: Saline n = 7, CNO n = 8, t (13) = -8.119, P < 0.001]. (D) Representative images of 9 hM3Dq⁺ cells in the VTA. Red: hM3Dq; Blue: DAPI. Scale bar, left 200 µm, right 50 10 μ m. White arrows indicate the hM3Dq⁺ cells. (E) The number of hM3Dq⁺ cells per 11 mm^2 in the VTA. [Two-tailed Student's t-test: Home-cage-Ens n = 8, Shock-Ens n = 7, 12 t (13) = 1.738, P = 0.106]. *P < 0.05, **P < 0.01, ***P < 0.001. Data are shown as mean 13 ± SEM. 14

- 15
- 16 17

Figure S2 Fluorescence signal excited by 410 nm or 470 nm laser stimulation in the fiber photometry recording.

(A) Fiber photometry recording during sucrose consumption. Blue shading indicates
the period of sucrose water consumption. (B) Fiber photometry recording during tail
suspension. Blue shading indicates the period of tail suspended. The black line
represents the signal excited by 410 nm light. The green line represents the signal
excited by 470 nm light.

- 25 26
- 27 Figure S3 Expression level of *Drd2* mRNA in the VTA Mor-Ens and Shock-Ens.
- 28 (A) Schematic of the experimental procedure for single-molecule RNA fluorescence in
- 29 situ hybridization (smFISH) for *Drd2* mRNA in the VTA Mor-Ens and Shock-Ens after
- 30 fiber photometry recording. (B) Representative images of *Drd2* mRNA signal in VTA.

- 31 Blue: DAPI; Green: *Egfp*; Red: *Drd2*. Scale bar: left 200 μm, right 25 μm. Dashed lines:
- outline of VTA or $Egfp^+$ cell. (C) The proportion of $Drd2^+$ cells in the VTA Mor-Ens or
- 33 Shock-Ens ($Drd2^+ Egfp^+$ cells / $Egfp^+$ cells). [Two-tailed Student's t-test: Shock-Ens n
- 34 = 5, Mor-Ens n = 5, t (8) = 1.097, P = 0.305]. (D) Cumulative probability curves and
- 35 the violin plot depict the *Drd2* mRNA signal intensity in each $Egfp^+$ cell. [Kolmogorov-
- 36 Smirnov test: Shock-Ens n = 2596 cells from 5 mice, Mor-Ens n = 1728 cells from 5
- 37 mice, D = 0.025, P = 0.512]. Data are shown as mean \pm SEM
- 38

Fig. S3

Figure	Response variable	groups	n define as	Normality Test (Shapiro-Wilk)	Homogeneity of variance	Statistical test	Test value	p value
		home-cage $n = 7$		· · · · ·	Mauchly's Test of			
1C left	$c-Fos^+$ cells cell per mm ²	shock $n = 6$	mice	df = 130, p = 0.656	p = 0.656 Sphericity	Mixed Models	F(14, 92) = 11.28	P < 0.001
	1	morphine $n = 4$		_	df = 27, p = 0.102			
	Percentage of total c-	home-cage $n = 7$			Mauchly's Test of			
1C right	$\Gamma = \frac{1}{2} = $	shock $n = 6$	mice	df = 130, p = 0.465	Sphericity	Mixed Models	F(14, 106) = 5.929	P < 0.001
	Fos cells (%)	morphine $n = 4$			df = 27, p = 0.02			
	Percentage of total c-	home-cage $n = 7$	mice		Mauchly's Test of	Two way Dopostod	F(2,744,10,206) =	
1D	Fos ^{$+$} cells in this section	shock $n = 6$		df = 51, p = 0.724	Sphericity	Mansuras ANOVA	wo-way Repeated Measures ANOVA $F(2.744, 19.206) =$ 5.929wo-way Repeated wo-way Repeated $F(2.545, 16.545) =$	P = 0.117
		morphine $n = 4$			df = 2, p = 0.686	Measures ANOVA	5.929	
	Percentage of total c-	home-cage $n = 6$	mice		Mauchly's Test of	Two way Perested	F(2, 545, 16, 545) =	
1E		shock $n = 6$		df = 48, p = 0.120	Sphericity Two-way Repeated $F(2.545, 16.545) =$	P = 0.086		
	Fos cells in this section	morphine $n = 4$			df = 2, p = 0.636	Measures ANOVA	2.708	
	Percentage of total c-	home-cage $n = 6$			Mauchly's Test of	Two way Dopostod	F(2, 277, 15, 448) =	
1F	$\Gamma + 11$ $\cdot 11$	shock $n = 6$	mice	df = 48, p = 0.375	Sphericity	Mansuras ANOVA	$\Gamma(2.377, 13.448) = 2.708$	P = 0.413
	Fos cells in this section	morphine $n = 4$			df = 2, p = 0.594	Measures ANOVA	2.708	
		home-cage $n = 7$					F(4, 28) = 3.238	P = 0.026
	Percentage of total c-				Mauchly's Test of	Two way Dapastad	Bonferroni post hoc	
1G	Fos ^{$+$} cells in this section	shock $n = 6$	mice	df = 51, p = 0.070	Sphericity	Maagurag ANOVA	ml (0.6~) homecage	P = 0.020
					df = 2, p = 0.285	ivicasures ANOVA	vs morphine	
		morphine $n = 4$						

Supplementary Table 1: Statistical detail information for figures

Einne	D		n define	Normality Test	Homogeneity of	Statistics1 to st	T t 1	
Figure	Response variable	groups	as	(Shapiro-Wilk)	variance	Statistical test	Test value	p value
		home-cage $n = 5$	5				F(4, 24) = 7.299	P = 0.001
							Bonferroni post hoc	
		shock $n = 6$					ml (0~0.3) homecage	P = 0.004
					Mauchly's Test of		vs morphine	
1H	Percentage of total c-		mice	df = 45, p = 0.320	Sphericity	Two-way Repeated	Bonferroni post hoc	
	Fos^{+} cells in this section	morphine $n = 4$			df = 2, p = 0.119	Measures ANOVA	ml (0.6~) homecage	P = 0.001
			-		71		vs morphine	
							Bonferroni post hoc	
							ml (0.6 \sim) morphine	P = 0.011
							vs shock	
		home-cage $n = 7$					F(4, 28) = 9.277	P < 0.001
							Bonferroni post hoc	
		shock $n = 6$					ml (0~0.3) homecage	P < 0.001
							vs morphine	
							Bonferroni post hoc	P < 0.001 P < 0.001 P = 0.007
		morphine $n = 4$			Mauchly's Test of		ml (0~0.3) shock vs	P = 0.007
11	Percentage of total c-		mice	$df = 51 \ n = 0.773$	Sphericity	Two-way Repeated	morphine	
	Fos ⁺ cells in this section		milee	ui 51,p 0.775	df = 2 $p = 0.471$	Measures ANOVA	Bonferroni post hoc	
					ar 2, p 0.171		ml (0.3~0.6)	P = 0.003
							homecage vs	1 - 0.005
							morphine	
							Bonferroni post hoc	
							ml (0.3~0.6) shock vs	P = 0.043
							morphine	

Figure	Response variable	groups	n define as	Normality Test (Shapiro-Wilk)	Homogeneity of variance	Statistical test	Test value	p value
1K		home-cage, n = 270 cells, 7 mice		df = 270, p < 0.001			H = 77.457	P < 0.001
	distance from VTA	shock, n = 374 cells, 4 mice	cell	df = 374, p < 0.001		Kruskal-Wallis H Test	Bonferroni post hoc shock vs morphine	P < 0.001
	bottonii (µiii)	$ \frac{1}{10000000000000000000000000000000000$	Bonferroni post hoc homecage vs morphine	P < 0.001				
		home-cage, n = 1000, 7 mice	paired distances	df = 1000, p < 0.001			H = 68.955	P < 0.001
1L	distance of paired cells (µm)	shock, n = 1000, 4 mice	paired distances	df = 1000, p < 0.001		Kruskal-Wallis H Test	Bonferroni post hoc shock vs morphine	P < 0.001
		morphine, n = 1000, 4 mice	paired distances	df = 1000, p < 0.001			Bonferroni post hoc homecage vs morphine	P < 0.001
2D left	Preference score (s)	n = 10	miaa	df = 10, p = 0.081		Daired t test	df = 9, t = -4.486	P = 0.002
2D right	Bouts	$\Pi = 10$	mice	df = 10, p = 0.522		Failed t-test	df = 9, t = 0.900	P = 0.392
2F left	Preference score (s)			df = 9, p = 0.483		Paired t-test	df = 8, t = 0.709	P = 0.498
2F right	Bouts	n = 9	mice	df = 9, p = 0.015		Wilcoxon Signed Ranks Test	Z = -0.841	P = 0.400
	CPP Socre (s)	Shock-Ens mCherry, n = 13	mice	df = 78, p = 0.460	Mauchly's Test of Sphericity df = 0, p = 1.000 (Greenhouse-Geisser)	Two-way Repeated Measures ANOVA (multivariate tests)	F(2, 36) = 0.916	
2H		Shock-Ens hM3Dq, n = 13						P = 0.409
		Homecage-Ens, hM3Dq, n = 13						

Figure	Response variable	groups	n define as	Normality Test (Shapiro-Wilk)	Homogeneity of variance	Statistical test	Test value	p value
		Shock-Ens mCherry, n = 15		df = 15, p = 0.275			F(2, 39) = 6.022	P = 0.005
21	Time in open arms (s)	Shock-Ens hM3Dq, n = 14	mice	df = 14, p = 0.852	Levene's test F(2, 39) = 1.174, p = 0 320	One-way ANOVA	Bonferroni post hoc Shock-Ens hM3Dq vs Shock-Ens mCherry	P = 0.004
		Homecage-Ens hM3Dq, n = 13		df = 13, p = 0.183	0.020	B	Test value $F(2, 39) = 6.022$ HBonferroni post hoc Shock-Ens hM3Dq vs Shock-Ens mCherryHBonferroni post hoc Shock-Ens hM3Dq vs Homecage-Ens hM3DqHF (4, 39) = 3.857HBonferroni post hoc ml (-3.1, -3.2), Shock-Ens vs Mor- EnsHBonferroni post hoc ml (-3.2, -3.3), Shock-Ens vs Mor- EnsHBonferroni post hoc ml (-3.3, -3.4), Shock-Ens vs Mor- EnsHBonferroni post hoc 	P = 0.039
	(TH ⁺ EGFP ⁺)/ EGFP ⁺	Shock-Ens, $n = 8$					F (4, 39) = 3.857	P < 0.001
		Mor-Ens, n = 7	mice		Maughhile Test of	Mixed Models	Bonferroni post hoc ml (-3.1, -3.2), Shock-Ens vs Mor- Ens	P = 0.013
3C				df = 63, p = 0.012 df = 63, p = 0.012 (Greenhouse-Geisser)	Sphericity df = 9, p = 0.250 (Greenhouse-Geisser)		Bonferroni post hoc ml (-3.2, -3.3), Shock-Ens vs Mor- Ens	P = 0.002
						Bonferroni post hoc ml (-3.3, -3.4), Shock-Ens vs Mor- Ens	P = 0.004	
		Shock-Ens, $n = 8$		df = 8, p = 0.344	Levene's test	Two-tailed Student's t		
3D	$(TH^+ EGFP^+)/ EGFP^+$	Mor-Ens, $n = 7$	mice	df = 7, p = 0.604	F(7,6) = 0.004, p = 0.953	test	df = 13, t = -4.645	P < 0.001

Figure	Response variable	groups	n define as	Normality Test (Shapiro-Wilk)	Homogeneity of variance	Statistical test	Test value	p value
		Shock-Ens, $n = 7$					F(4, 48) = 0.438	P = 0.780
		Mor-Ens, $n = 7$					Fensembles(1, 12) = 17.848	P = 0.001
3F	(GABA ⁺ EGFP ⁺)/ EGFP ⁺		mice		x)varianceStatistical testFes24Mauchly's Test of Sphericity df = 9, p = 0.188Two-way Repeated Measures ANOVA $F(4, 48)$ Fensemb 1724Sphericity df = 9, p = 0.188Two-way Repeated Measures ANOVABonferror ml (-3) Shock-E 	Bonferroni post hoc ml (-3.2, -3.3), Shock-Ens vs Mor- Ens	P = 0.014	
				df = 70, p = 0.324		Bonferroni post hoc ml (-3.4, -3.5), Shock-Ens vs Mor- Ens	P = 0.008	
							Bonferroni post hoc ml (-3.5, -3.6), Shock-Ens vs Mor- Ens	P = 0.019
20	(GABA ⁺ EGFP ⁺)/	Shock-Ens, $n = 7$		df = 7, p = 0.624	Levene's test $F(c, c) = 0.004$ r =	Two-tailed Student's t-	4f = 12 + 4422	D = 0.001
30	\mathbf{EGFP}^+	Mor-Ens, $n = 7$	mice	df = 7, p = 0.747	F(0,0) = 0.004, p = 0.951	test	d1 = 12, t = 4.433	P = 0.001
40	Start neurons	Shock-Ens, $n = 6$	mice	df = 6, p = 0.479	Levene's test $F(5,6) = 2.187$ n =	Two-tailed Student's t-	df = 11 + 1347	P = 0.205
40	Start neurons	Mor-Ens, $n = 7$	inice	df = 7, p = 0.052	0.167	test	ur – 11, t – 1.547	1 - 0.205
4D	Total input counts	Shock-Ens, $n = 6$	miaa	df = 6, p = 0.342	Levene's test $F(5,6) = 0.636$, $r = -$	Two-tailed Student's t-	df = 11 + 0.961	P = 0.409
4D	rotar input counts	Mor-Ens, $n = 7$	mice	df = 7, p = 0.720	1(3,0) - 0.030, p = 0.442	test	ui – 11, t – -0.801	r – 0.408

Figure	Response variable	groups	n define as	Normality Test (Shapiro-Wilk)	Homogeneity of variance	Statistical test	Test value	p value
		Shock-Ens, $n = 6$	k-Ens, n = 6 Ens, n = 7 mice				F(4.417, 48.592) = 2.927	P = 0.026
		Mor-Ens, $n = 7$					Fisher's LSD post hoc DMStr, Sock-Ens vs Mor-Ens	P = 0.014
4E	% Total inputs			df = 260, p = 0.268	Mauchly's Test of Sphericity df = 189, p = 0.232	Two-way Repeated Measures ANOVA	Fisher's LSD post hoc VP, Sock-Ens vs Mor-Ens	P = 0.002
					(Greenhouse-Geisser)	Greenhouse-Geisser) Greenhouse-Geisser) Fisher's LSD post hoc LHb, Sock-Ens vs Mor-Ens		P = 0.015
							Fisher's LSD post hoc MEZ, Sock-Ens vs Mor-Ens	P = 0.020
		Shock-Ens, $n = 5$	-	VP, Shock-Ens df = 5, $p = 0.417$	Levene's test F(5,4) = 0.508, p =		df = 7, t = -4.364	P = 0.003
50	Arborization on per	Mor-Ens, $n = 4$	mice -	VP, Mor-Ens df = 4, p = 0.270	0.499	Two-tailed Student's t-		
50	neuron (µm ²)			ZI, Shock-Ens df = 5, p = 0.968	Levene's test F(5 4) = 2 393 n =	test	df = 7 t = -2563	P = 0.037
				ZI, Mor-Ens $df = 4$, $p = 0.429$	0.166		di 7, t 2.505	1 0.057
5D	Axon density (% VTA intensity)	Shock-Ens, $n = 5$	mice -	ZI, Shock-Ens df = 5, $p = 0.898$	Levene's test $F(5,4) = 0.022$ m =	Two-tailed Student's t- test	df = 7 t = 2500	P = 0.025
50		Mor-Ens, $n = 4$		ZI, Mor-Ens df = 4, $p = 0.601$	F(5,4) = 0.022, p = 0.886		$u_1 = 7, t = -2.399$	1 - 0.035

Figure	Response variable	groups	n define	Normality Test	Homogeneity	Statistical test	Test value	p value
8	1	8 1	as	(Shapıro-Wilk)	of variance			1
		Shock-Ens, $n = 5$		Gpe, Shock-Ens df = 5, $p = 0.961$	Levene's test F(5,4) = 0.338, p = 0.579		df = 7 t = -3.406	P = 0.011
		Mor Eng. $n = 4$	-	Gpe, Mor-Ens			ur 7, t 5.100	1 - 0.011
		wor-Ens, n – 4		df = 4, p = 0.466				
				ZI, Shock-Ens	Levene's test			
5E	Density fraction (% all		mice	df = 5, p = 0.506	F(5,4) = 0.398, p	Two-tailed Student's t-	df = 7, t = -2.673	P = 0.032
-	density)			ZI, Mor-Ens	= 0.548	test	.,	
				df = 4, p = 0.797				
				LDT, Shock-Ens	Levene's test			
				df = 5, p = 0.638	F(5,4) = 2.595, p		df = 7, t = 4.242	P = 0.004
				LDT, Mor-Ens	= 0.151		·	
				df = 4, p = 0.579				
	n AVT1 intensity non	Shock-Ens, $n = 822$		df = 822, p < 0.001		/C left, Mann-Whitney	U = 240371	P < 0.001
7C	p-AK11 intensity per	Mor-Ens. $n = 754$	cell			7C right Kolmogorov-		
	con	cells, 5 mice		df = 754, p < 0.001		Smirnov test	D = 0.179	P < 0.001
		Shock-Ens, $n = 1340$		10 10 10 0001		7E left, Mann-Whitney	TT 000116	D 0.015
76	PLCβ-3 intensity per	cells, 8 mice	a a 11	df = 1340, p < 0.001		test	U = 898116	P = 0.017
/E	cell	Mor-Ens, n =	cen	$df = 1415 \ p < 0.001$		7E right, Kolmogorov-	D = 0.056	P = 0.026
		1415cells, 8 mice		ui – 1415, p < 0.001		Smirnov test	D = 0.050	1 - 0.020
8B middle	AUC (0-5s)	$\mathbf{n} = 0$	mice	df = 9, p = 0.906		Paired t-test	df = 8, t = -3.494	P = 0.008
8B right	Peak	пу	miee	df = 9, p = 0.837		T anea t-test	df = 8, t = -2.845	P = 0.022
8C left	AUC (0-5s)			df = 8, p = 0.410		Deine 14 test	df = 7, t = 0.061	P = 0.953
8C right	Peak	$n - \delta$	mice	df = 8, p = 0.320		Paired t-test	df = 7, t = -0.712	P = 0.500
8D	AUC (0-40s)	n = 9	mice	df = 9, p = 0.700		Paired t-test	df = 8, t = -1.565	P = 0.156
8E	AUC (0-40s)	n = 8	mice	df = 8, p = 0.937		Paired t-test	df = 7, t = -1.396	P = 0.205
8F middle	AUC (0-5s)			df = 12, p = 0.736		Daine 14 to at	df = 11, t = 1.876	P = 0.087
8F right	Peak	n = 12	mice	df = 12, p = 0.737		Paired t-test	df = 11, t = 0.757	P = 0.465
8G middle	AUC (0-5s)	n = 11		df = 11, p = 0.374		Daired t test	df = 10, t = 1.984	P = 0.075
8G right	Peak	$\Pi = 11$	mice	df = 11, p = 0.058	1	Paired t-test	df = 10, t = 1.507	P = 0.163

Figure	Response variable	groups	n define as	Normality Test (Shapiro-Wilk)	Homogeneity of variance	Statistical test	Test value	p value
8H	AUC (0-40s)	n = 10	mice	df = 10, p = 0.686		Paired t-test	df = 9, t = 0.852	P = 0.416
8I	AUC (0-40s)	n = 8	mice	df = 8, p = 0.689		Paired t-test	df = 7, t = -3.714	P = 0.008
		Saline, $n = 15$		df = 15, p = 0.359			F(2, 43) = 7.151	P = 0.002
0B left	Distances (m)	Cariprazine, n = 14		df = 14, p = 0.105	F(2, 41) = 1.163, p =	One-way ANOVA	Bonferroni post hoc Saline vs Cariprazine	P = 0.015
)D kit	Distances (III)	UNC9994, n = 15	inice	df = 14, p = 0.981	0.323		Bonferroni post hoc UNC9994 vs Cariprazine	P = 0.003
		Saline, $n = 15$		df = 15, p = 0.289	F(2, 41) = 1.154			
9B right	Time in center (s)	Cariprazine, n = 14	mice	df = 14, p = 0.876	F(2, 41) = 1.154, p = 0.325	One-way ANOVA	F(2, 43) = 0.203	P = 0.817
		UNC99994, n = 15		df = 15, p = 0.980	0.325			
9C left	Distances (m)	Saline, $n = 15$	_	df = 15, p = 0.590	F(2, 41) = 0.286, p = 0.753		F(2, 43) = 2.678	
		Cariprazine, n = 14	mice	df = 14, p = 0.662		One-way ANOVA		P = 0.081
		UNC99994, n = 15		df = 15, p = 0.466	0.,25			
		Saline, n = 15	_	df = 15, p = 0.133	F(2, 41) = 1.248, p = 0.298	One-way ANOVA	F(2, 43) = 2.028	P = 0.145
9C middle	Time in open arms(s)	Cariprazine, n = 14	mice	df = 14, p = 0.724				
		UNC99994, n = 15		df = 15, p = 0.700	0.270			
		Saline, $n = 15$	_	df = 15, p = 0.528	E(2, 41) = 0.425, n = 0.425			
9C right	Bouts	Cariprazine, n = 14	mice	df = 14, p = 0.728	$\Gamma(2, 41) = 0.433, p = 0.650$	One-way ANOVA	F(2, 43) = 2.997	P = 0.061
		UNC99994, n = 15		df = 15, p = 0.311	0.020			
		Saline, $n = 14$	_	df = 14, p = 0.162	Levene's test		F(2, 41) = 4.771	P = 0.014
9D left	Distances (m)	Cariprazine, n = 14	mice	df = 14, p = 0.148	F(2, 39) = 1.447, p = 0.248	One-way ANOVA	Bonferroni post hoc Saline vs Cariprazine	P = 0.021
		UNC9994, n = 14		df = 14, p = 0.633	0.248			
		Saline, $n = 14$		df = 14, p = 0.232				
9D right	Time in center (s)	Cariprazine, n = 14	mice	df = 14, p = 0.295]	Kruskal-Wallis H Test	H = 0.457	P = 0.796
		UNC9994, n = 14		df = 14, p = 0.004]			

Figure	Response variable	groups	n define as	Normality Test (Shapiro-Wilk)	Homogeneity of variance	Statistical test	Test value	p value
		Saline, $n = 15$		df = 15, p = 0.357	Levene's test			
9E left	Distances (m)	Cariprazine, n = 14	mice	df = 14, p = 0.753	F(2, 40) = 1.020, p =	One-way ANOVA	F(2, 42) = 1.925	P = 0.159
		UNC9994, n = 14		df = 14, p = 0.271	0.370			
		Saline, $n = 15$		df = 15, p = 0.054	I and a la tast		F(2, 42) = 4.029	P = 0.025
9E middle	Time in open arms(s)	Cariprazine, n = 14	mice	df = 14, p = 0.306	F(2, 40) = 1.195, p = 0.212	One-way ANOVA	Bonferroni post hoc Saline vs Cariprazine	P = 0.022
		UNC9994, n = 14		df = 14, p = 0.889	0.315			
		Saline, $n = 15$		df = 15, p = 0.310	Levene's test F(2, 40) = 0.292, p = 0.749 One-way ANOVA		F(2, 42) = 5.818	P = 0.006
	Bouts	Cariprazine, n = 14	mice	df = 14, p = 0.475		Bonferroni post hoc Saline vs Cariprazine	P = 0.010	
9E right		UNC9994, n = 14		df = 14, p = 0.835		One-way ANOVA	Bonferroni post hoc UNC9994 vs Cariprazine	P = 0.026
							Bonferroni post hoc Saline vs UNC9994	P = 1.000
Suppleme	(c-fos ⁺	Saline, $n = 7$		df = 7, p = 0.698	Levene's test	Two-tailed Student's t-		
ntary 1C	hM3Dq ⁺)/hM3Dq ⁺	CNO, n = 8	mice	df = 8, p = 0.447	F(6,7) = 3.508, p = 0.084	test	df = 13, t = -8.119	P < 0.001
Suppleme		Home-cage, $n = 8$		df = 8, p = 0.206	Levene's test	Two-tailed Student's t-		
ntary 1E	$hM3Dq^+$ cells per mm ²	Shock, $n = 7$	mice	df = 7, p = 0.496	F(7,6) = 0.00, p = 0.987	test	df = 13, t = 1.738	P = 0.106
Suppleme		Shock-Ens, $n = 5$		df = 5, p = 0.873	Levene's test	Two-tailed Student's t-		
ntary 3C	(Drd2 ⁺ EGFP ⁺)/EGFP ⁺	Mor-Ens, $n = 5$	mice	df = 5, p = 0.448	F(4,4) = 3.812, p = 0.087	test	df = 8, t = 1.097	P = 0.305
Suppleme	Drd2 intensity	Shock-Ens, n = 2596 cells, 5 mice	cell	df = $2596, p < 0.001$		Kolmogorov-Smirnov test	D = 0.025	P = 0.512
ntary 3D		Mor-Ens, n = 1728 cells, 5 mice		df = 1728, $p < 0.001$				