Supporting information 1

The combination of calreticulin-targeting L-ASNase and anti-PD-L1 2 antibody modulates the tumor immune microenvironment to 3 synergistically enhance the antitumor efficacy of radiotherapy 4

5

6	Ying Zhang ^{1,9} , Venu Akhil ¹ , Ho Seong Seo ² , Hae Ran Park ² , Soo Hyun Kim ^{3,4} , Sung-Hwan You ^{1,5} , Zhipeng
7	Liu ⁶ , So-young Kim ^{1,5} , Rukhsora D. Sultonova ^{1,7,8} , Jung-Joon Min ^{1,5*} , and Yeongjin Hong ^{1,3,5*}
8	
9 10	¹ Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeollanam-do, Republic of Korea
11	² Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
12	³ Department of Microbiology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
13 14	⁴ Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
15	⁵ CNCure Biotech, Inc, Jeollanam-do, Republic of Korea
16 17	⁶ Brain Tumor Research Laboratory, Biomedical Research Institute, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
18	⁷ New Uzbekistan University, Tashkent, Uzbekistan
19	⁸ Republican Oncology Research Center Tashkent Region Branch, Tashkent, Uzbekistan
20	⁹ Current affiliation: State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese
21	Academy of Sciences, Shanghai, 201203, China
22	
23	

- 24 *Correspondence to Drs. Yeongjin Hong and Jung-Joon Min
- 25 Yeongjin Hong, Ph.D.
- 26 Department of Microbiology, Chonnam National University Medical School

43 **Figure S1. ASNS expression in CT-26 and MC-38 tumor cells treated with L-ASNase.** CT-26 and 44 MC-38 cells (4×10^4) cultured overnight were treated without (-) or with (+) L-ASNase (1 IU/mL) for 45 24 h. (**A**) Viability of tumor cells. Relative viability percentages were compared between (+) groups 46 and (-) groups. (**B**) ASNS expression levels. Western blot analysis of protein expression using anti-47 ASNS or anti-β-actin antibodies (upper panels). Band intensities were measured and expressed relative 48 to β-actin. Data are presented as the mean ± SEM (n = 3).

- 49
- 50
- 51
- -
- 52
- 53

Figure S2. ASNS expression in tumor cells treated with IR and CRT3LP. CT-26 and MC-38 cells were treated with 10 Gy IR and cultured for 24 h. CRT3LP or #DGRLP (1 IU/mL) were added for 4 h. Cells were washed and cultured for an additional 24 h. (A) ASNS expression in CT-26 cells and (B) in MC-38 cells. ASNS expression was assessed by western blotting using anti-ASNS antibody and anti-β-actin antibodies as controls (upper panels), and band intensities were quantified. The amounts of ASNS were normalized to that of β-actin (bottom panels). Data are presented as the mean ± SEM (n = 3).

- 144 ASNase and α PD-L1 in CT-26 tumor-bearing mice treated with IR (n = 3).

172 Figure S6. CRT-targeting L-ASNases synergistically enhance antitumor efficacy in MC-38

173tumor-bearing mice treated with IR. (A) Representative images of MC-38 tumor-bearing mice. (B)174Individual tumor growth curves for each group. (C) Changes in tumor size. (D) Kaplan–Meier survival175curves. (E) Changes in body weight. Data are presented as the mean \pm SEM (n \geq 4).