The DNA-dependent protein kinase catalytic subunit exacerbates endotoxemia-induced myocardial microvascular injury by disrupting the MOTS-c/JNK pathway and inducing profilin-mediated lamellipodia degradation

Supplemental Table 1. Demographics of septic patients diagnosed with (+) or without (-) septic cardiomyopathy (SC)

Patient characteristics	SC (-) patients (n=174)	SC (+) patients (n=66)
Age	64.9±15.8	77.7±15.2
Sex	Male (n=89)	Male (n=30)
Body weight (kg)	61.9±11.4	62.4±9.4
Comorbidities (n)		
Atrial fibrillation	8	25
Heart failure	13	28
Diabetes	9	34
Hypertension	4	12
Tumor	3	7
Coronary artery disease	35	7
Echocardiography		
Ejection fraction (%)	69.2±4.7	43.1±6.4
Mitral annular plane systolic excursion	15.1±2.7	9.8±3.7
(mm)		
Tricuspid annular plane systolic	21.3±2.7	13.8±4.1
excursion (mm)		
Fractional area change (%)	50.2±8.6	36.1±11.4
Pathogen		
Pseudomonas aeruginosa	51 (29.31%)	18 (27.27%)
Klebsiella pneumoniae	46 (26.43%)	15 (22.73%)
Enterobacter aerogenes	31 (17.82%)	10 (15.15%)
Proteus mirabilis	23 (13.22%)	8 (12.12%)
Escherichia coli	20 (11.50%)	7 (10.61%)
Acinetobacter baumannii	16 (9.20%)	6 (9.10%)
Stenotrophomonas maltophila	11 (6.32%)	4 (6.10%)
Enterococcus faecalis	10 (5.75%)	4 (6.10%)
Staphylococcus aureus	4 (2.30%)	2 (3.03%)

Staph	ylococcus epidermidis	2 (1.15%)	1 (1.52%)	_
Candi	ida albicans	3 (1.72%)	2 (3.03%)	
Clinical da	ta			
Maxir	num body temperature (°C)	37.7±1.8	38.3±1.2	
White	blood cells ($x10^{9}/L$)	10.5±1.9	$12.8{\pm}2.7$	
C-rea	ctive protein (mg/dL)	6.5±0.9	22.7±5.5	
Proca	lcitonin (ng/dL)	7.2±1.9	12.6±2.7	
Platel	ets $(x10^{9}/L)$	152.1±99.4	87.5±69.4	
Lactic	e acid (mmol/L)	1.9±0.24	4.86±1.92	
APAC	CHE II score	19±4	27±8.2	
SOFA	score	7.1±2.3	13.4±3.2	

Supplemental Table 2. Antibody information

Name	Catalogue number	Dilution factor
DNA-PKcs	Abcam, #ab32566	1:1000
p-DNA-PKcs	Abcam, #ab18192	1:1000
Profilin	Abcam, #ab124904	1:1000
p-Profilin	Abcam, #ab215752	1:1000
F-actin	Abcam, #ab205	1:1000
Albumin	Abcam, #ab192603	1:1000
JNK	Abcam, #ab307802	1:1000
p-JNK	Abcam, #ab307802	1:1000
ERK	Abcam, #ab184699	1:1000
p-ERK	Abcam, #ab192591	1:1000
GR-1	Abcam, #ab25377	1:1000
TnT	Abcam, #ab8295	1:1000
G-actin	Abcam, #ab123034	1:1000
eNOS	Abcam, #ab300071	1:1000
p-eNOS	Abcam, #ab215717	1:1000
MOTS-c	MyBioSource, #MBS542112	1:1000
Fibrin	Creative-biolabs, #MOB-0417ZL	1:1000

Gene	Forward Primer	Reverse Primer
Mouse <i>Il-6</i>	5'-CAGACTCGCGCCTCTAAGGAGT-3'	5'-GATAGCCGATCCGTCGAA-3'
Mouse	5'-GATAGCCGATCCGTCGAA-3'	5'-GCTACCACAACATCTGGACATT-3'
Mcp1		
Mouse	5'-AACCAATGATGCTGGGTTCAC-3'	5'-GCGCCGACTCAGAGGTGT-3'
Mmp9		
Mouse 18S	5'-TAGAGGGACAAGTGGCGTTC-3'	5'-CGCTGAGCCAGTCAGTGT-3'
Mouse <i>mt</i> -	5'-GCCCCAGATATAGCATTCCC-3'	5'-GTTCATCCTGTTCCT GCTCC-3'
COI		
Human	5'-ATCACCTTCGAGAAGCTGGA-3'	5'-ACTTCACCACCCTGAAGCAA-3'
NDUFA5		
Human	5'-GCCGGGGGCACAAGTGCTAT-3'	5'-CTTGGACAGCGCCTTGATGT-3'
UQCRC1		
Human	5'-AGCGCAAGTACCCACGTAAA-3'	5'-AGGGCCCTGTTCAACTAAGC-3'
MT-RNR1		
Mouse	5'-TCGATATTGAGCGTCCAACCT-3'	5'-CAAAGGCACGTTTGGCATACA-3'
Gapdh		
Human	5'-CCACTCCTCCACCTTTGACG-3'	5'- CCACCACCTGTTGCTGTAG -3'
GAPDH		

Supplemental Table 3. Primers for qPCR

Supplemental Table 4. DNA-PKcs activity in EPCs from septic intensive care unit patients. DNA-PKcs activity was analyzed with an ELISA kit. The association between DNA-PKcs activity and heart dysfunction was measured.

Parameters	Low DNA-PKcs activity	High DNA-PKcs activity	p-value
	(n=59)	(n=181)	
Heart rate (bpm)	89±12	104±17	< 0.001
Average arterial pressure	84±12	84±13	0.463
(mmHg)			
Central venous pressure	8.4±1.2	9.3±1.4	0.631
(mmHg)			
Ejection fraction (%)	66.5±4.3	45.2±7.6	< 0.001
Mitral annular plane systolic	14.5±2.9	10.9±3.3	< 0.001
excursion (mm)			
Tricuspid annular plane	20.4±3.1	15.2±3.6	< 0.001
systolic excursion (mm)			
Fractional area change (%)	47.7±10.8	39.2±11.9	< 0.001
Troponin I (µg/L)	0.03±0.01	0.27 ± 0.09	< 0.001
NT-ProBNP (ng/L)	998.5±376.8	4413.6±1755.2	< 0.001
Arterial blood lactate	1.7±0.6	2.5±0.8	0.004
(mmol/L)			
APACHE II score	20±3	24±3	0.015
SOFA score	10.2±2.5	12.4±2.6	0.026
FMD	7.7±0.9	6.3±1.2	0.037
endo-PAT RHI	2.02±0.16	1.29±0.23	0.013
CF-PWV	8.44±1.97	9.93±2.13	0.022
CAVI (m/s)	8.24±1.25	11.47±1.02	< 0.001
ABI	1.08 ± 0.09	0.87±0.15	< 0.001

NT-ProBNP, N-terminal pro-B-type natriuretic peptide.

Parameters	Vehicle		Lipopolysaccharide	
	DNA-PKcs ^{f/f}	DNA-PKcs ^{f/f} /Tie2 ^{Cre}	DNA-PKcs ^{f/f}	DNA-PKcs ^{f/f} /Tie2 ^{Cre}
FS, %	33.7±1.5	33.9±1.9	$20.9{\pm}1.4^{*}$	29.9±2.1 [#]
EF, %	62.4±4.7	63.5±4.2	$40.8{\pm}3.7^{*}$	56.8±3.3 [#]
IVS, mm	$0.81{\pm}0.03$	$0.80{\pm}0.04$	$0.69{\pm}0.02^{*}$	$0.79{\pm}0.04^{\#}$
PW, mm	$0.77 {\pm} 0.06$	$0.76 {\pm} 0.04$	0.76 ± 0.03	$0.78{\pm}0.04$
E/A	1.29±0.26	1.34±0.17	$0.88{\pm}0.09^{*}$	$1.15{\pm}0.16^{\#}$

Supplemental Table 5. Echocardiographic determination of heart function in *DNA-PKcs^{f/f}* and *DNA-PKcs^{f/f}/Tie2^{Cre}* mice in the presence of lipopolysaccharide.

EF, ejection fraction; IVS, interventricular septal thickness; PW, posterior wall thickness; FS, ratio of left ventricular fractional shortening; E/A, ratio of early to late ventricular filling velocities. *p<0.05 vs. vehicle+DNA- $PKcs^{f/f}$, #p<0.05 vs. lipopolysaccharide+DNA- $PKcs^{f/f}$.

Parameters	Vehicle		Lipopolysaccharide	
-	PBS	NU7441	PBS	NU7441
FS, %	34.1±1.8	34.0±1.7	$20.8{\pm}1.2^{*}$	31.6±1.7 [#]
EF, %	63.2±4.1	64.1±3.9	41.2±3.5*	60.2±3.7 [#]
IVS, mm	0.83 ± 0.04	0.82 ± 0.03	$0.68{\pm}0.04^{*}$	$0.80{\pm}0.02^{\#}$
PW, mm	0.78 ± 0.04	$0.79{\pm}0.05$	$0.77 {\pm} 0.05$	0.79 ± 0.05
E/A	1.35±0.22	1.31±0.24	$0.91{\pm}0.14^{*}$	1.25±0.19 [#]

Supplemental Table 6. Echocardiographic determination of heart function in WT mice treated with NU7441 in the presence of lipopolysaccharide.

EF, ejection fraction; IVS, interventricular septal thickness; PW, posterior wall thickness; FS, ratio of left ventricular fractional shortening; E/A, ratio of early to late ventricular filling velocities. *p<0.05 vs. vehicle+PBS, [#]p<0.05 vs. lipopolysaccharide+PBS.

Parameters	Low MOTS-c expression	High MOTS-c expression	p-value
	(n=62)	(n=179)	
Heart rate (bpm)	87±11	103±19	< 0.001
Average arterial pressure	85±12	84±12	0.586
(mmHg)			
Central venous pressure	8.6±1.1	9.5±1.3	0.572
(mmHg)			
Ejection fraction (%)	68.2±5.7	44.3±8.2	< 0.001
Mitral annular plane systolic	14.7±3.1	10.4±2.7	< 0.001
excursion (mm)			
Tricuspid annular plane	20.9±3.6	14.5±2.7	< 0.001
systolic excursion (mm)			
Fractional area change (%)	48.3±9.5	36.5±12.5	< 0.001
Troponin I (µg/L)	0.03±0.01	0.25±0.11	< 0.001
NT-ProBNP (ng/L)	924.8±314.2	4742.1±1925.3	< 0.001
Arterial blood lactate	1.6±0.4	2.8±0.7	< 0.001
(mmol/L)			
APACHE II score	19±3	25±3	< 0.001
SOFA score	9.8±1.7	13.2±2.4	0.011
FMD	8.1±0.7	6.1±1.1	< 0.001
endo-PAT RHI	2.21±0.09	1.17±0.15	< 0.001
CF-PWV	7.92±1.56	10.35±1.96	0.0013
CAVI (m/s)	7.95±1.33	12.10±1.15	< 0.001
ABI	1.09±0.21	0.85±0.13	< 0.001

Supplemental Table 7. The association between MOTS-c expression and heart dysfunction in EPCs isolated from septic intensive care unit patients. MOTS-c was analyzed using Western blotting.

NT-ProBNP, N-terminal pro-B-type natriuretic peptide.

Parameters	Vehicle		Lipopolysaccharide	
-	PBS	MOTS-c	PBS	MOTS-c
FS, %	33.9±1.6	33.6±1.8	21.3±1.4*	30.7±1.6 [#]
EF, %	64.3±3.8	63.1±3.2	42.4±3.1*	58.6±2.9 [#]
IVS, mm	$0.84{\pm}0.05$	0.83 ± 0.06	$0.65{\pm}0.05^*$	$0.79{\pm}0.04^{\#}$
PW, mm	$0.79{\pm}0.05$	$0.78{\pm}0.05$	$0.76 {\pm} 0.04$	0.77 ± 0.05
E/A	1.31 ± 0.24	1.28 ± 0.32	$0.87{\pm}0.12^{*}$	1.16±0.24 [#]

Supplemental Table 8. Echocardiographic determination of heart function in WT mice treated with MOTS-c in the presence of lipopolysaccharide.

EF, ejection fraction; IVS, interventricular septal thickness; PW, posterior wall thickness; FS, ratio of left ventricular fractional shortening; E/A, ratio of early to late ventricular filling velocities. *p<0.05 vs. vehicle+PBS, [#]p<0.05 vs. lipopolysaccharide+PBS.

Supplemental Figures

Supplemental Figure 1

Supplemental Figure 1

DNA-PKcs inhibition attenuates endotoxemia-induced myocardial coronary endothelial injury and heart dysfunction. WT mice were injected intraperitoneally with a single dose of lipopolysaccharide (10 mg/kg) to induce endotoxemia *in vivo*, and were evaluated after 72 hrs. The mice were injected with NU7441 (1 mg/kg) three days before lipopolysaccharide-induced endotoxemia. **A.** H&E staining of erythrocyte aggregation in microvessels after lipopolysaccharide treatment. **B, C.** Proteins were extracted from MCECs isolated from mice with or without lipopolysaccharide treatment, and fibrin expression was determined using Western blotting. **D-G.** ELISA kit analysis of cardiac injury biomarkers (serum TnT, CK-MB, LDH and BNP). **H.** Survival times of different mice in the presence or absence of lipopolysaccharide. *p<0.05.

Supplemental Figure 2

MOTS-c downregulation is associated with increased coronary injury and endothelial dysfunction. A-D. $CD34^+$ ECs and EPCs were isolated from septic patients' blood samples using flow cytometry. Then, qPCR was used to analyze *MOTS-c* transcription in $CD34^+$ ECs or EPCs. Western blotting analysis of MOTS-c expression in $CD34^+$ ECs or EPCs isolated from septic patients. *p<0.05.

Supplemental Figure 3

Supplemental Figure 3

MOTS-c have no effects on ERK5 and p38. A-D. *In vitro*, HCAECs were incubated with 10 μ g/mL lipopolysaccharide for 24 hrs. MOTS-c (10 μ M) or the vehicle (PBS) was added to the medium 24 hrs before lipopolysaccharide stress. ERK5-IN-1 (10 μ M, Selleck, cat. no.: S7334) and SB202190 (5 μ M, Selleck, cat. no.: S1077) were used to incubate with HCAECs to inhibit ERK5 and p38, respectively. Then, proteins were isolated from the cells, and Western blotting was used to evaluate p38 and ERK5 expression. E-H. ELISA kits were used to analyze the activities of ERK5, p38, JNK and ERK1/2 in HCAECs. *p<0.05.