## Key resources table S1

| REAGENT or<br>RESOURCE         | SOURCE       | IDENTIFIER |  |  |
|--------------------------------|--------------|------------|--|--|
| Antibodies                     |              |            |  |  |
| Purified anti-mouse<br>CD16/32 | Biolegend    | 101302     |  |  |
| LIVE/DEAD™ Fixable             | Biolegend    | 423110     |  |  |
| Red Dead Cell Stain            |              |            |  |  |
| 7-AAD Viability Staining       | Biolegend    | 420404     |  |  |
| Solution                       |              |            |  |  |
| PE/Cyanine7 anti-              | Biolegend    | 103114     |  |  |
| mouse CD45                     |              |            |  |  |
| PerCP/Cyanine5.5 anti-         | Biolegend    | 157208     |  |  |
| mouse CD45 Antibody            |              |            |  |  |
| APC/Cyanine7 anti-             | Biolegend    | 157618     |  |  |
| mouse CD45 Antibody            |              |            |  |  |
| Brilliant Viloet 605™          | Biolegend    | 103140     |  |  |
| anti-mouse CD45                |              |            |  |  |
| Antibody                       |              |            |  |  |
| APC anti-mouse Ly-6G           | Biolegend    | 127614     |  |  |
| Antibody                       |              |            |  |  |
| APC anti-mouse/human           | Biolegend    | 101212     |  |  |
| CD11b Antibody                 |              |            |  |  |
| FITC anti-mouse CD170          | Biolegend    | 155504     |  |  |
| (Siglec-F) Antibody            |              |            |  |  |
| PE anti-mouse Siglec-E         | Biolegend    | 677103     |  |  |
| Antibody                       |              |            |  |  |
| APC anti-mouse CD182           | Biolegend    | 149312     |  |  |
| (CXCR2) Antibody               | <b>D</b> . 1 | 400505     |  |  |
| FITC Rat IgG2a, K              | Biolegend    | 400505     |  |  |
|                                | Dialogoard   | 407000     |  |  |
| PE anti-mouse Ly-6G            | Biolegend    | 127608     |  |  |
| Antibody                       | Dialogoard   | 101010     |  |  |
| PE/Cyanine/ anti-              | Biolegend    | 101216     |  |  |
| Antibody                       |              |            |  |  |
| FITC anti maura 54/90          | Riologond    | 122109     |  |  |
|                                |              | 123100     |  |  |
| DE anti mouso NK 1.1           | Riologond    | 156504     |  |  |
| Antibody                       |              | 150504     |  |  |
| DE/Cyprine7 anti               | Biolegand    | 102/18     |  |  |
| mouse CD31 Antibody            |              | 102410     |  |  |
| mouse CDST Antibody            |              |            |  |  |

| APC anti-mouse Ly-6C                          | Biolegend     | 128016 |  |
|-----------------------------------------------|---------------|--------|--|
| Antibody                                      |               |        |  |
| APC anti-mouse CD19                           | Biolegend     | 152410 |  |
| Antibody                                      |               |        |  |
| APC/Cyanine7 anti-                            | Biolegend     | 100222 |  |
| mouse CD3 Antibody                            |               |        |  |
| APC anti-mouse CD8b.2                         | Biolegend     | 140410 |  |
| Antibody                                      |               |        |  |
| Brilliant Viloet 510™                         | Biolegend     | 126631 |  |
| anti-mouse CD8b(Ly-3)                         |               |        |  |
| Antibody                                      |               |        |  |
| PE anti-mouse CD25                            | Biolegend     | 101903 |  |
| Antibody                                      |               |        |  |
| FITC anti-mouse CD69                          | Biolegend     | 104506 |  |
| Antibody                                      |               |        |  |
| FITC anti-mouse CD62L                         | Biolegend     | 161212 |  |
| Antibody                                      |               |        |  |
| PE anti-mouse                                 | Biolegend     | 124308 |  |
| CD274(B7-H, PD-L1)                            |               |        |  |
| Antibody                                      |               |        |  |
| APC anti-mouse CD4                            | Biolegend     | 100412 |  |
| Antibody                                      |               |        |  |
| PE anti-mouse CD4                             | Biolegend     | 100408 |  |
| Antibody                                      |               |        |  |
| Brilliant Viloet 510™                         | Biolegend     | 100234 |  |
| anti-mouse CD3                                |               |        |  |
| Antibody                                      |               |        |  |
| Brilliant Viloet 421™                         | Biolegend     | 126419 |  |
| anti-mouse FOXP3                              |               |        |  |
| Antibody                                      |               |        |  |
| PerCP/Cyanine5.5 anti-                        | Biolegend     | 313518 |  |
| house/mouse/rat                               |               |        |  |
| CD278(ICOS)Antibody                           |               |        |  |
| APC anti-mouse IFN- $\gamma$                  | Biolegend     | 505810 |  |
| Antibody                                      |               |        |  |
| PerCP/Cyanine5.5 anti-                        | Biolegend     | 504124 |  |
| mouse IL-4 Antibody                           | Ū             |        |  |
| APC anti-mouse IL-17A                         | Biolegend     | 506916 |  |
| Antibody                                      | Ū             |        |  |
| Brilliant Viloet 421™                         | Biolegend     | 505022 |  |
| anti-mouse IL-10                              | -             |        |  |
| Antibody                                      |               |        |  |
| Chemicals, peptides, and recombinant proteins |               |        |  |
| Lipopolysaccharide                            | Sigma-Aldrich | L2880  |  |

| Clophosome®-A-               | FormuMax       | F70101C-A    |  |
|------------------------------|----------------|--------------|--|
| Clodronate Liposomes         |                |              |  |
| (Anionic)                    |                |              |  |
| SB225002                     | Selleck        | S7651        |  |
| Mouse Siglec-F               | R&D            | MAB17061-100 |  |
| Antibody                     |                |              |  |
| Mouse IgG1 Isotype           | R&D            | MAB002       |  |
| Control                      |                |              |  |
| InVivoPlus anti-mouse        | BioXCell       | BP0050       |  |
| IL-10R (CD210)               |                |              |  |
| InVivoPlus rat IgG1          | BioXCell       | BP0088       |  |
| isotype control, anti-       |                |              |  |
| horseradish peroxidase       |                |              |  |
| InVivoPlus anti-mouse        | BioXCell       | BP0075-1     |  |
| Ly6G                         |                |              |  |
| InVivoPlus rat IgG2a         | BioXCell       | BP0089       |  |
| isotype control, anti-       |                |              |  |
| trinitrophenol               |                |              |  |
| InVivoMAb anti-mouse         | BioXCell       | BE0043-1     |  |
| IL-2                         |                |              |  |
| InVivoMAb rat IgG2a          | BioXCell       | BE0089       |  |
| isotype control, anti-       |                |              |  |
| trinitrophenol               |                |              |  |
| Recombinant IL-33            | Chamot         | CM030-MP     |  |
| Critical commercial assays   |                |              |  |
| Mouse CXCL1/KC               | R&D            | MKC00B-1     |  |
| Quantikine ELISA Kit         |                |              |  |
| Mouse CXCL2/MIP-2            | R&D            | MM200        |  |
| Quantikine ELISA Kit         |                |              |  |
| Mouse IFN-gamma              | R&D            | MIF00-1      |  |
| Quantikine ELISA Kit         |                |              |  |
| Mouse IL-10 Quantikine       | R&D            | M1000B-1     |  |
| ELISA Kit                    |                |              |  |
| EasySep <sup>™</sup> Mouse T | Stemcell       | 19851        |  |
| Cell I solution Kit          |                |              |  |
| Bacterial strains            |                |              |  |
| Escherichia coli             | BioVector NTCC | ACCC01634    |  |
|                              |                |              |  |

Key resources table S2

Primer list for the qPCR experiments.

| Gene(s)    | RT-qPCR Oligonucleotides |
|------------|--------------------------|
| m-GAPDH-F  | AGGTCGGTGTGAACGGATTTG    |
| m-GAPDH-R  | TGTAGACCATGTAGTTGAGGTCA  |
| m-IL-6-F   | TAGTCCTTCCTACCCCAATTTCC  |
| m-IL-6-R   | TTGGTCCTTAGCCACTCCTTC    |
| m-IFN-γ-F  | ATGAACGCTACACACTGCATC    |
| m- IFN-γ-R | CCATCCTTTTGCCAGTTCCTC    |
| m-TNFα-F   | AAGCCTGTAGCCCACGTCGTA    |
| m-TNFα-R   | GGCACCACTAGTTGGTTGTCTTTG |
| m-IL-10-F  | GGTTGCCAAGCCTTATCGGA     |
| m-IL-10-R  | GGGGAGAAATCGATGACAGC     |
| m-CXCL1-F  | CTGGGATTCACCTCAAGAACATC  |
| m-CXCL1-R  | CAGGGTCAAGGCAAGCCTC      |
| m-CXCL2-F  | CCAACCACCAGGCTACAGG      |
| m-CXCL2-R  | GCGTCACACTCAAGCTCTG      |
| m-CXCL3-F  | AGTGTGGCTATGACTTCGG      |
| m-CXCL3-R  | GAATTCACCTCAAGAACATCCA   |
| m-CXCL5-F  | TCCAGCTCGCCATTCATGC      |
| m-CXCL5-R  | TTGCGGCTATGACTGAGGAAG    |
| m-CXCL8-F  | TAAGTTCTTTAGCACTCCTTGG   |
| m-CXCL8-R  | TTCCTGATTTCTGCAGCTC      |

Figure S1 Indicators in the PICS mice model.

The PICS mice model was characterized by various indicators on the eighth day after cecal ligation and perforation (CLP).

**(A-B)** Proportion of macrophages and neutrophils in the spleens of PICS mice measured by flow cytometry.

**(C-F)** Proportion of neutrophils in the bone marrow and peripheral blood, and proportion of CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes in the spleens of PICS mice assessed by flow cytometry.

**(G-I)** Fluorescence intensity of PD-L1<sup>+</sup> CD4<sup>+</sup> T lymphocyte, PD-L1<sup>+</sup> CD8<sup>+</sup> T lymphocyte, and FoxP3<sup>+</sup> CD4<sup>+</sup> T lymphocyte in the spleens, as well as proportion of FoxP3<sup>+</sup> CD4<sup>+</sup> T lymphocytes, determined by flow cytometry.

(J) Expression of IL-10 in splenic CD45<sup>+</sup> immune cells of PICS mice detected by flow cytometry.

(**K**) Percentage calculated by subtracting the preoperative weight of mice from the weight at day 8 after CLP or sham surgery, then dividing by the preoperative weight of mice.

All indicators of the PICS group compared with the SHAM group and statistically analyzed by Student's *t* test. Data are presented as mean  $\pm$  SEM. n = 4-10, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001, \*\*\*\**P* < 0.0001.

Figure S2 Proportions of immune cells in the spleens.

(A) Flow cytometry used to detect the proportion of lymphocytes, monocytes, and granulocytes in the spleens of the mice.

**(B)** Flow cytometry used to detect the proportion of CD11b<sup>+</sup> immune cells in the spleen, peripheral blood, and bone marrow of the mice.

(C-J) Flow cytometry used to detect the proportion of B cells, NK cells, naive CD4<sup>+</sup>, CD8<sup>+</sup> T lymphocytes, Th1, Th2, Th17, and immature macrophages in the spleens of the mice. The results in the PICS and PICS+LPS 6 h groups were compared with the SHAM and SHAM+LPS 6 h groups, respectively, by one-way ANOVA followed by Dunnett's post hoc test. Data are presented as mean

± SEM. n = 3-10, *ns P* >0.05, \**P* <0.05, \*\**P* < 0.01, \*\*\**P* < 0.001, \*\*\*\**P* < 0.0001.

Figure S3 Function of Treg cells in the spleen of PICS mice after secondary challenge.

**(A-B)** Proportions of Treg cells, ICOS<sup>+</sup> Treg, and fluorescence intensity of ICOS<sup>+</sup> Treg in the spleens were examined by flow cytometry.

(C) Efficiency of depleted Treg cells in the spleen of PICS mice.

**(D-F)** After Treg cells depletion, proportion of CD45<sup>+</sup> immune cells and expression of IL-10, IL-6, IFN- $\gamma$ , and TNF- $\alpha$  in the spleens of PICS+LPS 6 h and PICS+Anti-IL-10R+LPS 6 h mice were examined by flow cytometry and enzyme-linked immunosorbent assay.

**(G-H)** Proportion of CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes in IL-10<sup>+</sup> CD45<sup>+</sup> immune cells and fluorescence intensity of TGF $\beta^+$  CD45<sup>+</sup> immune cells were detected by flow cytometry.

One-way ANOVA followed by Dunnett's post hoc test was applied in (A-B, G-H). Student's *t* test was applied in (D-F). Data are presented as mean  $\pm$  SEM. n = 3-7, *ns P* >0.05, \**P* <0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.

Figure S4 Expression of IL-10 in immune cells of the spleen.

(A) Expression of IL-10 in splenic neutrophils detected by flow cytometry.

(B) Relative mRNA expression of IL-6, IFN- $\gamma$ , and TNF- $\alpha$  in splenic neutrophils

of PICS mice and PICS+LPS 6 h mice examined by qPCR.

(C) Efficiency of depleting neutrophils in PICS mice.

**(D)** Apparent changes observed in the spleen after depleting neutrophils in PICS mice.

**(E-G)** Expression of IL-10 in NK cells, CD3<sup>+</sup>, and CD4<sup>+</sup> T lymphocytes of the spleens examined by flow cytometry.

One-way ANOVA followed by Dunnett's post hoc test was applied in (E-G). Student's *t* test was applied in (B). Data are presented as mean  $\pm$  SEM. n = 3-6, *ns P* >0.05, \**P* <0.05, \*\**P* < 0.01. Figure S5 Effects of depleting neutrophils on the spleen.

**(A-E)** Expression of IL-10 in the spleen and proportions of CD45<sup>+</sup> immune cells, CD3<sup>+</sup>, CD4<sup>+</sup>, and CD8<sup>+</sup> T lymphocytes after neutrophils depletion.

(F-H) Splenic neutrophils and T lymphocytes from PICS mice were sorted by flow cytometry. Neutrophils were stimulated with LPS (1  $\mu$ g/ml) in vitro for 6 h, and the supernatants were co-cultured with the T lymphocytes pre-incubated with Isotype or Anti-IL-10R for 6 h. Subsequently, T lymphocytes were stimulated with LPS for 6 h, and their function and activity were detected by flow cytometry. The relative mRNA expression of IFN- $\gamma$  in T lymphocytes was examined by qPCR.

Student's *t* test was applied in **(A-H)**. Data are presented as mean ± SEM. n = 3-7, *ns P* >0.05, \**P* <0.05, \*\**P* < 0.01, \*\*\*\**P* < 0.001, \*\*\*\**P* < 0.0001.

Figure S6 Impact of the macrophages on T lymphocytes in the spleen.

**(A-B)** Proportion of splenic macrophages and expression of IL-10 in the splenic macrophages after secondary challenge, examined by flow cytometry.

**(C)** Relative mRNA expression of IL-10 in splenic macrophages detected by qPCR.

(D) Efficiency of macrophage depletion in PICS mice.

(E-G) After macrophage depletion, proportion of CD45<sup>+</sup> immune cells in PICS+LPS 6 h mice and PICS+Liposomes+LPS 6 h mice, and the activity of CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes in the spleens were detected by flow cytometry. One-way ANOVA followed by Dunnett's post hoc test was applied in (A-C, F-G). Student's *t* test was applied in (E). Data are presented as mean ± SEM. n = 3-6, *ns P* >0.05, \**P* <0.05, \*\**P* < 0.01.

Figure S7 Expression of CXCLs in the spleen, T lymphocytes and macrophages. (A-E) Expression of CXCL1, CXCL2, CXCL3, CXCL5, and CXCL8 in splenic T lymphocytes of SHAM, PICS, and PICS+LPS 6 h mice.

(F-I) mRNA expression of CXCL1, CXCL2, CXCL3, and CXCL5 in the spleens

of SHAM, PICS, and PICS+LPS 6 h mice, detected by qPCR.

(J) mRNA expression of CXCL2 in splenic macrophages of SHAM, PICS, and PICS+LPS 6 h mice, detected by qPCR.

One-way ANOVA followed by Dunnett's post hoc test was applied in (A-J). Data are presented as mean  $\pm$  SEM. n = 3-6, *ns P* >0.05, \**P* <0.05, \**P* < 0.01, \*\*\*\**P* < 0.0001

Figure S8 Effects on immune cells with expanded eosinophils after secondary challenge.

**(A)** Proportion of Siglec-F<sup>-</sup> neutrophils after secondary challenge detected by flow cytometry.

**(B-H)** After intraperitoneally injecting IL-33 to expand eosinophils of in PICS mice, the proportions of Siglec-F<sup>-</sup> neutrophils, neutrophils, CD11b<sup>+</sup> cells, CD45<sup>+</sup> immune cells, CD3<sup>+</sup>, CD4<sup>+</sup>, and CD8<sup>+</sup> T lymphocytes in PICS+LPS 6 h mice and in PICS+IL-33+LPS 6 h mice were examined by flow cytometry.

One-way ANOVA followed by Dunnett's post hoc test was applied in (A). Student's *t* test was applied in (B-H). Data are presented as mean  $\pm$  SEM. n = 4-6, *ns P* >0.05, \**P* <0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.



PICS SHAM

Mean

IL-1⁰

IL-10+ CD45+ cells (MFI) 3000-2000 1000



Weight change (%) 0 -10--20

-30

















































F



