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Abstract 

Rationale: Multimodal imaging provides important pharmacokinetic and dosimetry information during 
nanomedicine development and optimization. However, accurate quantitation is time-consuming, 
resource intensive, and requires anatomical expertise. 
Methods: We present NanoMASK: a 3D U-Net adapted deep learning tool capable of rapid, automatic 
organ segmentation of multimodal imaging data that can output key clinical dosimetry metrics without 
manual intervention. This model was trained on 355 manually-contoured PET/CT data volumes of mice 
injected with a variety of nanomaterials and imaged over 48 hours.  
Results: NanoMASK produced 3-dimensional contours of the heart, lungs, liver, spleen, kidneys, and 
tumor with high volumetric accuracy (pan-organ average %DSC of 92.5). Pharmacokinetic metrics 
including %ID/cc, %ID, and SUVmax achieved correlation coefficients exceeding R = 0.987 and relative 
mean errors below 0.2%. NanoMASK was applied to novel datasets of lipid nanoparticles and 
antibody-drug conjugates with a minimal drop in accuracy, illustrating its generalizability to different 
classes of nanomedicines. Furthermore, 20 additional auto-segmentation models were developed using 
training data subsets based on image modality, experimental imaging timepoint, and tumor status. These 
were used to explore the fundamental biases and dependencies of auto-segmentation models built on a 
3D U-Net architecture, revealing significant differential impacts on organ segmentation accuracy. 
Conclusions: NanoMASK is an easy-to-use, adaptable tool for improving accuracy and throughput in 
imaging-based pharmacokinetic studies of nanomedicine. It has been made publicly available to all readers 
for automatic segmentation and pharmacokinetic analysis across a diverse array of nanoparticles, 
expediting agent development. 

Keywords: Deep Learning, Nanomedicine, Pharmacokinetics, Auto-Segmentation, Radioimaging, Functional Imaging, 
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Introduction 
Preclinical nanomedicine development relies 

upon accurate interpretation of pharmacokinetic data. 
Although longitudinal imaging studies can reduce the 
time and resource burden associated with developing 

novel agents, optimization across the multitude of 
parameters that influence agent circulation and 
biodistribution (formulation, dosage, time frame, 
experimental model, etc.) quickly cause studies to 
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exponentially increase in size and cost. For 
experiments that extract quantitative data from 
imaging techniques such as PET, SPECT, or 
whole-body fluorescence, manually generating 
contours for specific organs of interest is often 
excluded outright due to the massive investment of 
time and requirement to operate within inflexible, 
proprietary imaging software. In aggregate, these 
obstacles contribute to the vast under-utilization of 
informative preclinical imaging data and force 
researchers to subsist on simplified — and often 
incorrect [1,2] — representations of their pharmaco-
kinetic data. 

Deep learning is an increasingly accessible 
strategy used in the process of nanomaterial 
development [3,4]. A variety of models and 
techniques have been developed that attempt to 
predict supramolecular physicochemical properties to 
optimize agent design before moving into animal 
work, from liposomal encapsulation efficiency [5] to 
metal oxide nanoparticle toxicity [6] to the photonic 
properties of core-shell nanoparticles [7]. Other works 
push further to outright predict nanomedicine 
absorption, distribution, metabolism, excretion, and 
toxicity (ADMET) kinetics based on agent 
characterization and in vivo delivery kinetic data 
[8,9]. This work, alongside increasingly sophisticated 
physiologically based pharmacokinetic (PBPK) 
models, can help direct and provide intentionality to 
nanomedicine design and its evaluation at an early 
stage of study, improving the robustness and safety of 
agents that ultimately transition to clinical trials. 

However, preclinical imaging of nanomedicines 
has only been explored in a limited capacity using 
machine learning techniques. Kingston et al. 
combined 3D microscopy of optically-cleared tissues 
with an adaptive learning strategy to automate 
measurements of nanoparticle distribution, and they 

subsequently used Support Vector Machine modeling 
to predict nanoparticle delivery to micrometastases 
[10]. Auto-segmentation models have been developed 
for use on anatomical CT or MR imaging for 
whole-body mouse scans [11–13], improving 
workflows for organ volumetry and metastasis 
quantification. However, models capable of input of 
both anatomical (i.e., CT, MRI) and functional (i.e., 
PET, SPECT) whole-body scans for auto-segmentation 
and estimation of key pharmacokinetic outputs have 
not been explored in the field of nanomedicine, 
despite the immediate and widespread applicability 
of such tools. Increasing access and investigations of 
these techniques would provide a clear strategy to 
optimize and streamline the process of preclinical 
drug development [14]. 

Here, we explore the application of a 3D U-Net 
adapted deep neural network to a multifaceted 
database of longitudinal radioimaging PET/CT 
whole-body scans of mice, dubbed NanoMASK 
(Nanomedicine Multimodal AI-based Segmentation 
for PharmacoKinetics) (Figure 1). This tool uses a 
training database containing 355 paired imaging 
datasets of healthy or 4T1 orthotopic breast 
tumor-bearing mice acquired up to 48-hour 
post-injection of a variety of different lipid-shelled 
microbubbles, agents which exhibit pharmacokinetic 
profiles similar to lipid nanoparticles [15]. Through 
this work, we demonstrate NanoMASK’s ability to 
generate highly accurate, automated, three-dimen-
sional contours of multiple organ systems relative to 
the manually contoured ground truth. Furthermore, 
these machine-generated contours were used to 
extract important pharmacokinetic measures for the 
functional imaging data that correlated highly with 
the values extracted from manual data processing. We 
explore the dependencies of the NanoMASK model 
on various dimensions of this dataset, including 

 

 
Figure 1: The NanoMASK pipeline streamlines nanomedicine development through automatic analysis of raw anatomical and functional imaging data. It produces high quality, 
3-dimensional organ contours and important pharmacokinetic variables such as %ID/cc, organ volume, and SUVmax. 
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modality, imaging timepoint, and tumor status, to 
highlight the importance of training on a 
nanomaterial-centric dataset with varied functional 
imaging contrast and its implications for auto- 
segmentation accuracy. Finally, we validate this 
model’s generalizability through application to 
external datasets with different nanoparticles, 
experimental timeframes, and imaging systems. The 
trained NanoMASK model is freely accessible on 
Github at https://github.com/bowang-lab/ 
NanoMASK. 

Methods 
Dataset Details 

All deep learning techniques were applied to a 
combined PET/CT dataset generated by the Zheng 
Lab as part of a comprehensive pharmacokinetic 
study of a library of custom-formulated, lipid-shelled 
microbubbles (n=355; 71 mice each measured across 5 
timepoints). All animal experiments were conducted 
in compliance with the guidelines and requirements 
of the University Health Network Animal Care 
Committee (AUP 4299, 5922, and 2843.8). 
Microbubbles made with lipids of chain length 
varying from 16 to 22 carbons and with inclusion or 
exclusion of an anionic phosphatidic acid lipid 
component were formulated with lipid-conjugated 
porphyrin (pyropheophorbide conjugated to 
1-(palmitoyl/stearoyl/behenoyl)-2-hydroxy-sn-glyce
ro-3-phosphocholine, synthesis described in [16]). A 
simple, one-pot chelation strategy was developed that 
yielded sonication-stable, purification-free association 
of the microbubbles to 64Cu, allowing for quantitative 
tracking of microbubbles and their subsequent 
circulating structures across 5 timepoints (1 h, 3.5 h, 6 
h, 24 h, 48 h). Studies were conducted in both healthy 
BALB/c mice and mice bearing orthotopic breast 
tumors established with a 4T1 murine mammary 
carcinoma cell line. Following their initial echogenic 
phase during which they can provide ultrasound 
contrast, microbubbles transition into smaller, non- 
echogenic structures and shell fragments with 
two-phase circulation kinetics possessing a long- 
phase half-life that varies between 5 and 11 hours, 
depending on formulation. This pharmacokinetic 
profile matches well to other supramolecular, 
PEGylated, lipid-based systems (such as lipid 
nanoparticles and liposomes) that undergo 
hepatobiliary clearance [17]. Furthermore, the general 
organ biodistribution patterns of lipid-shelled 
microbubbles over 48 hours are similar to lipid-based 
nanoparticles, including predominant uptake within 
the liver and the spleen and clearance from organs 
such as the heart, lungs, and kidneys that generally 

match blood clearance kinetics. 
PET/CT acquisitions were conducted using a 

variety of equipment combinations due to availability 
(either a combination of (1) Siemens for PET & 
eXplore Locus Ultra, General Electric for CT; (2) 
Siemens for PET & X-Rad SmART+ system for CT; or 
(3) NanoScan, Mediso for combined PET/CT). 
Co-registration was made possible when utilizing 
separate equipment for PET/CT through a 
cross-compatible animal bed. All 355 PET/CT data 
volumes were quantitatively analyzed through 
individual, manual contouring of the liver, spleen, 
kidneys, heart, lungs, and tumor in each image 
volume using INVEON research workplace software, 
version 4.2 (IRW; Siemens Healthcare, Ballerup, 
Denmark). Full-organ, three-dimensional contours 
were constructed, and methodology was validated 
through consult with a radiation oncologist (detailed 
in Appendix A). Voxel intensity data for each organ 
was exported for processing in Matlab®, version 9.8, 
R2020b (MathWorks, Natick, Massachusetts, United 
States). Key pharmacokinetic and biodistribution 
readouts, including %ID/cc, organ volume, and total 
organ exposure as represented by the area under 
curve across the full timeseries (%ID/cc * h), were 
calculated for each organ using the inscribed 
segmentations alongside the injected dose 
decay-corrected to the time of imaging. These are 
referred to as “ground-truth” in comparison to 
readouts generated through the auto-segmentation 
method. 

Data Preparation 
To prepare the PET/CT imaging data for 

processing by the 3D U-Net model architecture 
underlying NanoMASK, it was necessary to ensure 
that all data was of consistent format and size. PET 
and CT datasets, as well as the target organ contours, 
were re-exported to a common data format (3D 
NIFTI). All contours were amalgamated into a single 
file, retaining their identifying index. Accurate 
co-registration of PET/CT data following 
re-formatting was ensured by applying the affine 
transform matrices generated in Inveon Research 
Workplace using a non-proprietary image analysis 
software (Simple ITK). 

Re-exported and co-registered data was further 
prepared by cropping the foreground to exclude 
distal structures such as the head, tail, and animal 
bed. To compensate for imaging data collected on 
different machines with different geometries, all CT 
datasets underwent a global voxel intensity normali-
zation based on the foreground voxel intensities 
across all training cases. PET datasets were 
normalized individually by adjusting voxel intensity 
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based on the Z-score (mean subtraction and division 
by standard deviation) for each 3D image volume. 
Finally, all data volumes were resampled to conform 
to the same voxel geometry (0.15 mm x 0.15 mm x 0.80 
mm for sagittal, coronal, and axial axes, respectively). 
These same data preparation steps were applied to the 
external datasets used to validate NanoMASK’s 
generalizability to other nanomedicines.  

Deep Learning Architecture 
NanoMASK uses 3D U-Net [18] as its base 

network architecture, which contains an encoder and 
a decoder network. The encoder network aims to 
extract multiscale image features from the input CT 
and PET image at different spatial resolutions. The 
decoder network is used to aggregate the multi-scale 
information and reconstruct the fine-grained spatial 
information. Moreover, skip connects are used to 
bridge the encoder features and decoder features at 
the same resolution, which can improve the 
localization precision of target organs. Both the 
encoder and decoder networks have six resolutions 
and each resolution has two blocks with 
convolutional layers, instance normalization [19], and 
leaky ReLU non-linearity [20]. The network input 
patch size is (64, 160, 160). The first two 
downsampling operations are only performed on the 
axes with larger dimensions, resulting in a feature 
map size of (64, 40, 40). The next three downsampling 
operations are applied to all the axes, resulting in a 
feature map size of (8, 5, 5). The last downsampling 
operation is only performed on the first axis, resulting 
in the final bottleneck feature maps with a size of (4, 5, 
5). The initial number of kernels is 32, which is 
doubled with each downsampling operation up to a 
maximum of 320. The downsampling operator in the 
encoder is implemented as strided convolution while 
the upsampling operator in decoder is based on 
transposed convolution. A schematic of this 
architecture can be seen in Figure S9. 

Training and Testing Protocols 
Validation of model accuracy was performed 

using a 5-fold cross-validation approach. The dataset 
was randomly split into 5 approximately equal 
groups. The model was trained a total of 5 times, with 
each iteration using 4 of the 5 groups (80%) and 
testing on the remaining 1 group (20%), such that all 
data volumes participated in the training set during 4 
iterations and the testing set for 1 iteration. 

The subsetted models designed to evaluate the 
impact of modality, timepoint, tumor status, and 
input organ importance were trained using the same 
training/testing split as the parent NanoMASK 
model, when possible. The ’PET Only’ and ’CT Only’ 
models were trained using an 80/20 split, training on 

the same 80% of the dataset (using either only the PET 
or only the CT as input) and tested on the remaining 
20% of the combined PET/CT dataset. The ’1 h Only’, 
’3.5 h Only’, ’6 h Only’, ’24 h Only’, and ’48 h Only’ 
models were trained on a randomly selected 80% of 
the data collected at the stated experimental timepoint 
post-injection of the PET contrast agent and tested on 
all the remaining data. The ’Healthy Only’ and 
’Tumor-Bearing Only’ models were trained on a 
randomly chosen 80% of those respective populations 
within the data and tested on both the remaining 20% 
of that population and 100% of the other population 
(the dataset is comprised of roughly ∼35% healthy 
animals and ∼65% tumor-bearing animals). For the 
’Heart Subtracted’, ’Lungs Subtracted’, ’Kidneys 
Subtracted’, ’Liver Subtracted’, ’Spleen Subtracted’, 
and ’Tumor Subtracted’ models, the same 80/20 data 
split was used as the parent NanoMASK model, with 
the stated restrictions on the input contours provided 
during training. Details for each models 
training/testing split can be found in Supplementary 
Table 2. 

Model Evaluation and Statistical Analysis 

The segmentation quality from the deep learning 
model was assessed by two quantitative measures: 
Dice similarity coefficient (DSC) and absolute value of 
relative volume difference (VD). DSC is a widely used 
metric for evaluating medical image segmentation 
which measures the region overlap between the 3D 
segmentation mask from the deep learning model and 
the ground-truth mask from human experts [21]. 
Volume is an important biomarker for organ 
quantification and VD measures the volume 
difference between the segmentation mask and 
ground-truth mask. Let G and S denote the 
segmentation and ground truth, respectively. DSC is 
defined by 

𝐷𝐷𝐷𝐷𝐷𝐷(𝐺𝐺, 𝐷𝐷) = 2‖𝐺𝐺⋂𝑆𝑆‖ 
‖𝐺𝐺‖+ ‖𝑆𝑆‖

    (1) 

where the value ranges from 0 (indicating no 
overlap) to 1 (indicating perfect overlap). VD is 
defined by 

𝑉𝑉𝐷𝐷(𝐺𝐺, 𝐷𝐷) =  �𝑉𝑉(𝑆𝑆)−𝑉𝑉(𝐺𝐺)
𝑉𝑉(𝐺𝐺)

�   (2) 

where V (·) is the mask volume. There is no 
upper bound for the VD score, but the perfect score is 
0, indicating consistent volume between G and S. 

The auto-segmentation accuracy of parent 
NanoMASK model was compared to the experimental 
subsetted models using one-sided t-tests for the DSC 
calculated for each organ, utilizing an adjusted 
significance threshold of α = 0.05 after Bonferroni 
correction for multiple comparisons. 
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The quality of pharmacokinetic predictions of 
the auto-segmented models was assessed using 
correlation measures, Bland-Altman plots, and 
individuals measures of error. Linear models of y ∼ x 
were fit for each measure and each model, where y 
was the value produced by the auto-segmentation 
model and x was the value produced from the 
ground-truth manual contours. The Pearson 
correlation coefficient was calculated for each 
relationship as a metric for accuracy in prediction. 
Bland-Altman plots were generated to assess the 
agreement between auto-segmentation and 
ground-truth output by plotting the difference of the 
measures (y − x) against their average ((y + x)/2) [22]. 
Furthermore, 5 different statistical parameters were 
used to quantitatively evaluate the difference between 
model prediction and ground truth, including the 
mean absolute error (MAE), the root mean squared 
error (RMSE), the mean absolute relative error 
(MARE), the root mean squared relative error 
(RMSRE), and the uncertainty at 95% (U95). These are 
defined as 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1     (3) 

𝑅𝑅𝑀𝑀𝐷𝐷𝑀𝑀 =  �1
𝑛𝑛
∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1    (4) 

𝑀𝑀𝑀𝑀𝑅𝑅𝑀𝑀 = 1
𝑛𝑛
∑ �𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖
�𝑛𝑛

𝑖𝑖=1     (5) 

𝑅𝑅𝑀𝑀𝐷𝐷𝑅𝑅𝑀𝑀 =  �1
𝑛𝑛
∑ �𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖
�
2

𝑛𝑛
𝑖𝑖=1    (6) 

𝑈𝑈95 = 1.96√𝐷𝐷𝐷𝐷2 + 𝑅𝑅𝑀𝑀𝐷𝐷𝑀𝑀2   (7) 

where n is the number of values for a particular 
measure that are being compared, xi is the ith 
ground-truth value, and yi is the ith predicted value. 
All data plotting, significance calculations, and error 
estimations were performed in R. 

In addition, we visualized saliency maps to 
highlight important regions of an input image that 
contributed the most to the model’s contouring 
decisions. The saliency maps were generated by 
gradient-weighted class activation mapping 
(Grad-CAM) [23], which used the gradients of the 
predicted class with respect to the feature maps of the 
last convolutional layer in the model to determine the 
importance of each feature map. The resulting 
weights were used to generate a heatmap that 
highlights the important regions of the input image. 

Results 
NanoMASK Produces Accurate Organ 
Contours and Pharmacokinetic Predictions 

NanoMASK’s auto-segmentation performed 
very well following 5-fold cross validation. Machine- 

generated contours were easily visualized alongside 
the base PET/CT data and appeared virtually indis-
tinguishable when viewed next to the ground-truth 
contours (Figure 2A,B). When quantitatively assessed, 
machine-generated contours displayed high spatial 
overlap with ground-truth contours for all organs 
tested (Figure 2C,D). This was measured using both 
the Dice similarity coefficient (% DSC), a widely used 
spatial overlap index wherein 0% represents no 
overlap and 100% represents complete overlap, and 
the percent volume difference (% VD), for which 
lower values indicate an enclosed volume more 
similar between the two segmentation methods. The 
heart, lungs, liver, tumor, and kidneys achieved the 
highest quality of auto-segmentation (%DSCs of 94.4 ± 
1.5%, 95.6 ± 2.3%, 92.6 ± 1.8%, 92.6 ± 2.0 %, and 89.0 ± 
3.2%, respectively), while the spleen was modestly 
lower (84.1 ± 8.1%). The accuracy of the outputted 
contour volumes was comparable for tested data 
obtained from different agent compositions, 
measurement timepoints, and whether animals were 
healthy or tumor-bearing, despite each of these 
variables impacting the signal contrast profile of the 
PET functional data within each imaging volume 
(Figure S1). Saliency maps, which illustrate the areas 
most focused upon by the model in making its 
predictions, suggest an intuitive decision-making 
framework used by NanoMASK for choosing 
contoured regions (Figure S2). 

Machine-generated contours were capable of 
reproducing key pharmacokinetic outputs 
comparable to analysis of the ground-truth data 
(Figure 2E,F). Metrics of interest that were calculated 
include the percent injected dose per cubic centimeter 
(%ID/cc); percent injected dose (%ID); mean, 
maximum, and minimum standard uptake values 
(SUVmean, SUVmax, SUVmin); mean, maximum, and 
minimum PET voxel intensity; total region volume; 
and standard deviation of intensity. These values 
were highly correlated between the ground-truth and 
machine-generated contours: of particular import-
ance, the %ID/cc, %ID, SUVmax, and total region 
volume achieved Pearson correlation coefficients of 
0.992, 0.998, 0.987, and 0.996, respectively (others 
found in Figure S3). Beyond correlation, several other 
measures of model accuracy, including MARE, MAE, 
RMSRE, RMSE, and U95, were calculated to compare 
the quality of NanoMASK predictions to those 
calculated from manual contours (Supplementary 
Table 1). These too showed very high prediction 
accuracy, and they provide the additional benefit of 
orienting the relative accuracy of NanoMASK with 
regard to the actual values of the pharmacokinetic 
metrics being calculated.  
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Figure 2: NanoMASK auto-segmentation performance and comparison to manually segmented ground truth. Sample co-registered PET/CT data volume of mouse 
thorax/abdominal region showcasing multiple views of either A) manually-contoured or B) machine-generated contours of 3D organ volume segmentations for the heart (red), 
lungs (green), liver (dark blue), spleen (yellow), kidneys (light blue), and tumor (purple). C) Dice similarity coefficient (% DSC) and D) percentage volume difference (% VD) for 
each organ, showing high coherence between manual and machine generated organ volumes. E) Percent injected dose per cubic centimeter (%ID/cc) and F) maximum standard 
uptake value (SUVmax) are two important pharmacokinetic and clinical metrics extracted from machine-generated contours which show a very high correlation to the manually 
calculated values. Data points in E and F comprise results from all contoured organs collectively. 

 

Importance of Modality, Timepoint, Tumor 
Status, and Input Organs on Quality of 
Prediction 

The relative importance of the different input 
features used by this auto-segmentation algorithm 
were evaluated systematically. This was achieved 
through developing a series of additional auto- 
segmentation models trained on specific subsets of 
input data to observe which characteristics result in 

the greatest drop in quality when removed or 
subsetted. While this helps to explore the inherent 
dependencies, strengths, and weaknesses of the 
NanoMASK model, it also hopes to provide a more 
general insight as to the necessary qualities of a 
multimodal preclinical training dataset in order to 
build a model that outputs high quality contours and 
accurate pharmacokinetic predictions. Additionally, 
these tests may indicate which external datasets are 
most suitable for segmentation using the NanoMASK 
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model, allowing for a more intentional way to apply 
this model in a generalizable manner. 

The impact of imaging modality on auto- 
segmentation accuracy was investigated by training 
two separate models on solely CT or PET imaging 
data. While NanoMASK utilizes both PET and CT 
data as inputs, the exact contribution weight of each 
modality on the outputted contours cannot be directly 
parsed. The contribution of PET data is of particular 
interest, as unlike CT data, it is affected by the injected 
nanoparticle and changes over time. The auto- 
segmentation accuracy of these modality-subsetted 
models compared to the original NanoMASK model 
(hereafter referred to as the parent model) is shown in 
Figure 3Ai-iv (additional organs shown in Figure 
S4Ai-ii). The model trained on only CT data had a 
slightly reduced contouring accuracy for the liver and 
the spleen relative to the fully trained model (p < 
0.005), but no drop in accuracy was observed for the 
heart, lungs, kidneys, or tumor (p > 0.05). In contrast, 
the model trained on only PET data exhibited an 
opposite trend, showing a decline in contouring 
accuracy for the heart, lungs, kidneys, and tumor (p < 
0.005), but a negligible change in accuracy for the liver 
and spleen (p > 0.05 and p > 0.01, respectively). 
Comparison of saliency maps generated by 
NanoMASK, the PET exclusive model, and the CT 
exclusive model qualitatively illustrate that the PET 
exclusive model makes predictions based on organ 
features more similar to those highlighted by 
NanoMASK than the CT exclusive model, particularly 
at later timepoints (Figure S6). 

The impact of experimental timepoint on the 
contouring accuracy and metric output of 
NanoMASK was evaluated by comparison to five 
separate subsetted models, each having training data 
restricted to a single experimental timepoint. 
Post-injection timepoint is an important imaging 
parameter because nanoparticles produce vastly 
different contrast profiles depending on the location 
of the circulating or extravasated material, with early 
timepoints (1 h, 3.5 h, 6 h) predominated by a vascular 
signal that highlights perfusion-dominated organs 
such as the heart, lungs, and kidneys and late 
timepoints (24 h, 48 h) emphasizing tissues into which 
the agent may preferentially accumulate, such as the 
tumor, liver, and spleen (Figure 3Bi). The results can 
be seen in Figure 3Bii-iv (additional organs shown in 
Figure S4Bi-iii), and tables showing measures of 
significance comparing each subsetted model to the 
parent NanoMASK model can be seen in Figure S5. 
Contouring accuracy of the heart experienced the 
greatest decline using timepoint-subsetted models. 
The model trained on the earliest timepoint of 1 h 
performed very poorly when contouring hearts for 

data collected at 24 h or 48 h post-injection; inversely, 
the models trained at the later timepoints of 24 h and 
48 h experienced a similar decrease in heart 
contouring accuracy for data collected at 1 h and 3.5 h. 
Tumor contouring experienced the same trend in 
accuracy decline as the heart, but of a smaller 
magnitude. The lungs and kidneys, despite having a 
similar PET signal profile over time to the heart, only 
saw a notable decline in accuracy when the model 
trained on later timepoints (48 h) was tested on earlier 
data (1 h, 3.5 h). The liver contours experienced no 
decline in accuracy when using models based on early 
timepoint (1 h, 3.5 h, 6 h) data, but did have a drop in 
accuracy for models based on late timepoint (24 h, 48 
h) data, specifically for the data collected at 1 h and 3.5 
h post-injection. Spleen contouring accuracy was not 
affected across these different models. Unsurpri-
singly, these timepoint-sensitivities were validated to 
be due to differences in functional imaging when 
trained on models subsetted by both timepoint and 
image modality (Figure S8). Importantly, the parent 
model (trained on all timepoints) generated contours 
with the greatest accuracy relative to the 
timepoint-specific models. This was true even when 
using testing data that corresponded to the same 
timepoint used to train each subsetted model. Overall, 
these timepoint-specific models show that an 
auto-segmentation model trained on input data from 
a diversity of experimental timepoints leads to more 
robust auto-segmentation predictions across a variety 
of testing data volumes. 

The effect of training on data collected from 
tumor-bearing mice and training on healthy mice, and 
vice versa, was tested. While the presence of a tumor 
can directly affect a nanoparticle’s biodistribution in 
that it serves as a site of preferential uptake, it can also 
impact off-site nanoparticle biodistribution compared 
to healthy mice (Figure 3Ci), although the mechanism 
as to how the immunoreactive, inflammatory state of 
a tumor-bearing mouse enables this change is 
controversial [24–27]. The comparison between the 
parent NanoMASK model and two separate models 
trained on just healthy or tumor-bearing mice can be 
seen in Figure 3Cii-iv (additional organs shown in 
Figure S4Ci-ii). Training only on data from healthy 
animals resulted in a small but significant decrease in 
contouring accuracy for all organs, with the greatest 
decreases observed for the liver, spleen, and kidneys. 
This was due to declining segmentation quality for 
tumor-bearing animals, with no reduction in quality 
for the healthy animals. In contrast, the model trained 
only on data from tumor-bearing animals showed the 
inverse: a decrease in auto-segmentation quality for 
the healthy animals, with no drop in quality observed 
for the tumor-bearing animals. The only organ 
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exception was the liver, which had a drop in quality 
for both healthy and tumor-bearing animals when 
using the model trained only on tumor-bearing mice. 
Overall, this illustrates that auto-segmentation 
models are sensitive to tumor status. Even when 
trained on animals of a particular tumor status and 
tested on that same category of data volumes, the 
quality of contouring did not exceed that of the parent 
NanoMASK model, and in fact showed an increase in 
variance. This test highlights the importance of 
constructing a model built upon a diverse dataset, 
including both healthy and tumor-bearing animals, 
such that it can operate optimally across a variety of 
test cases. 

Finally, organ interdependency was tested using 
six different models trained on all-minus-one 
inputted organ contours, including iterations 
withholding the heart, lungs, kidneys, liver, spleen, 
and tumor, respectively. From a molecular imaging 

perspective, PET contrast is derived from the amount 
of radio-chelated drug present in an area at a 
particular timepoint; thus, the relative signals within 
organs of shared biological systems are intrinsically 
linked to one another via their pharmacokinetic 
interdependence. Organs that share a common 
mechanism of drug retention or elimination — such as 
the mononuclear phagocytic systems within the liver 
and spleen or the perfusion-dominated signals with 
the heart, lungs, and kidneys — may provide 
additional information to the model in unexpected 
ways. Their relative impact on contouring accuracy 
and clinical output metrics are summarized in Figure 
S7. Across all models, there was no reduction in 
contouring accuracy for any organ given the exclusion 
of any other input organ from the model. This 
suggests a high level of independence in 
segmentation prediction for each organ relative to the 
other segmentations provided by the model. 

 

 
Figure 3: Elucidating the importance of imaging modality, timepoint, and tumor status on auto-segmentation performance through comparison of the parent NanoMASK model 
to 20+ subsetted models. A) CT Only model produced comparable contours to the NanoMASK model for the heart and tumor (p > 0.05), but performed worse for the liver 
and the spleen (p < 0.005). In contrast, a PET Only model generated less accurate contours for the heart and tumor (p < 0.005), but comparable contours for the spleen (p > 0.05) 
and liver (p > 0.01). B) Sample time series data shows how PET signal can vary over time in each organ. Models trained only on later timepoints (48 h Only) displayed a notable 
decrease in contouring accuracy when tested on data from earlier timepoints (1 h, 3.5 h) for the heart, lungs, liver, kidneys, and tumor. Additionally, contouring accuracy of the 
heart was much worse for later timepoints (24 h, 48 h) when created using the model trained only on early timepoints (1 h Only). C) Tumor-bearing animals experience 
differential dose exposure compared to healthy animals. A Healthy Only model showed a decrease of auto-segmentation quality across all organs when tested on tumor-bearing 
animals (p < 0.05), in tandem with a Tumor-Bearing Only model performing worse on healthy animals. The optimized NanoMASK model outperformed all subset models (A-C), 
even when tested on their individual training data, illustrating the importance of a diversified, robust training group. * and ** represent significance via a one-sided t-test using an 
adjusted significance threshold of α = 0.05 or α = 0.005, respectively, after Bonferroni correction for multiple comparisons, while ‘ns’ means non-significant. 
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NanoMASK Model Validation Across Multiple 
Classes of Nanomedicines 

NanoMASK performed very well at generating 
high quality auto-segmentations and accurately 
outputting key pharmacokinetic variables when 
applied to in-house PET/CT preclinical data. 
Furthermore, the algorithms trained on a subset of the 

multidimensional training dataset illustrated that 
prediction quality is improved by building a model 
on data across different timepoints, tumor status, and 
with input from both modalities. However, to validate 
the generalizability of this model, it is necessary to test 
its application on more diverse datasets. 

 
 

 
Figure 4: Validation of NanoMASK model on external nanomedicine datasets. NanoMASK generated visually accurate contours for pre-clinical imaging of A) lipid nanoparticles 
and D) antibody-drug radioimmunoconjugates. B) Volumetric accuracy of NanoMASK compared to manually contoured organs for the liver and kidneys of the lipid nanoparticle 
dataset E) and the heart, lungs, liver, and kidneys of the antibody-drug conjugate dataset, showing a high degree of agreement. C,F) The accuracy of the pharmacokinetic output 
of %ID/cc was shown to be very high for both datasets. 
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The NanoMASK model was externally validated 

using two new datasets representing important 
categories of nanomedicines: (a) a PET/CT dataset of 
64Cu-chelated porphysomes (n=30), a lipid 
nanoparticle with a size of 110 nm and which exhibits 
primarily hepatobiliary clearance (t1/2 = 11.1 h [28]), 
and (b) a PET/CT dataset of 64Cu-DOTA- 
panitumumab-F(ab’)2 [29] (n=12), an antibody-drug 
conjugate (∼110 kDa) with slow systemic clearance 
and a nonlinear pharmacokinetic profile due to 
target-mediated drug disposition [27,30]. Both 
datasets were imaged on different PET and CT 
instruments than the initial training dataset, and there 
was no coordination in imaging acquisition 
parameters. Quantitative evaluation of NanoMASK 
performance was feasible for all six target organs of 
the antibody-drug conjugate dataset and the liver and 
kidneys for the lipid nanoparticle dataset based upon 
availability of the manual contours (Figure 4). 

Both datasets were easily prepared for 
NanoMASK using a simple data exportation 
procedure, and co-registration was confirmed 
visually. Qualitatively, the generated contours for all 
relevant organ systems were well matched to the 3D 
data volumes for both datasets. For the lipid nano-
particle dataset, the overlap of auto-segmentations 
and the ground-truth manual contours for the liver 
and kidneys were 81.5% and 80.0%, respectively. On 
inspection of the performance across the different 
timepoints within the dataset, NanoMASK performed 
best on data from intermediate timepoints (6 h, 12 h, 
24 h) and less optimally at extreme timepoints (3 h, 48 
h). These coefficients, while representing a decrease 
compared to the house-trained testing data, are still 
reasonably accurate. Importantly, the pharmaco-
kinetic parameters extracted from NanoMASK 
compared very well to those calculated from the 
manual contours, showing correlations that exceed 
0.997, 0.984, 0.996 for %ID/cc, %ID, SUVmean, 
respectively. Thus, while there is a moderate drop in 
volumetric accuracy when tested in a new dataset, the 
extracted clinical metrics remain highly accurate. For 
the antibody-drug conjugate, the DSC for the heart, 
lungs, liver, and kidneys were 90.4%, 87.3%, 87.2%, 
and 78.9%, respectively. There were no observed 
performance differences across the different 
timepoints (6 h, 24 h, 48 h) in the dataset. This 
represents an even higher accuracy than the lipid 
nanoparticle data, showing that it is highly 
generalizable to different nanostructures if the form of 
the data is suitable for input into the model. However, 
NanoMASK was not able to generate sufficiently 
accurate contours for the spleen (likely due to 
differences in CT contrast) or the tumor (likely due to 

a different subcutaneous location and a 10-fold size 
difference). The pharmacokinetic parameters 
extracted for the antibody-drug conjugate data also 
matched very well to those from manual contours, 
with correlations of 0.998, 0.996, and 0.986 for %ID/cc, 
%ID, and SUVmax, respectively. 

Overall, these test cases showcase how 
NanoMASK can be easily and generally applied to 
generate informative, 3-dimensional auto-segmenta-
tions for key organ systems and extract critical 
pharmacokinetic data that is almost indistinguishable 
from that which was calculated through the more 
time-intensive, manual contouring procedure. 

Discussion 

A Readily-Applicable Auto-Segmentation 
Model for Multimodal Preclinical Data 

In this study, we introduced NanoMASK, a 3D 
U-Net-based deep-learning tool capable of highly 
accurate, 3-dimensional organ auto-segmentation for 
PET/CT multimodal imaging data in mice. For an 
automated tool to suitably serve this purpose, it 
would need to be robustly trained to work across a 
variety of image settings, provide contouring for 
many organs of pharmacokinetic interest, work 
rapidly in an unsupervised fashion, and match or 
exceed the accuracy of manual contours constructed 
with input from a nuclear imaging expert. 
NanoMASK meets all these criteria. It was trained 
using 355 input PET/CT data volumes, the largest 
training dataset for a preclinical auto-segmentation 
project that the authors can determine. This inclusion 
of data across different agent formulations, 
experimental timepoints, animal tumor status, and 
PET/CT instruments and settings was explicitly 
shown to enable greater generalizability to test data 
than models trained on fewer, less diverse datasets. 
NanoMASK can provide contours for six major 
organs of interest that comprise key systems related to 
agent circulation, processing, and excretion, including 
orthotopic breast tumors. It can generate contours in 
less than a minute without any manual input beyond 
the base PET/CT imaging data, and the thousands of 
produced contours were shown to be highly accurate 
across several measures of volumetric comparison. 
NanoMASK’s base code and the full model are 
publicly available for immediate and rapid 
application to any user’s own dataset. We hope to 
continue to improve the accuracy and usability of this 
model as we incorporate more varied data into our 
training set and reframe the model using SAUNet, an 
architecture optimized for interpretability [31]. 
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The ability to operate on multimodal data and 
automatically produce key pharmacokinetic readouts 
is a unique feature of NanoMASK that sets it apart 
from currently available preclinical auto-segmen-
tation models. This interpretation of functional 
imaging data is often the primary desired result of 
preclinical imaging in drug development, and its 
direct incorporation into this model’s operation 
improves its utility and further helps this tool 
streamline the analysis of in vivo work. Parameters 
such as %ID/cc, %ID, SUVmax, and mean PET 
intensity are shown to be extremely accurate across 
thousands of comparisons to manually calculated 
values. For instance, MAREs for the heart, lungs, 
kidneys, liver, spleen, and tumor for the %ID/cc were 
all below 0.2%, a prediction accuracy that easily 
surpasses that of interoperator accuracy comparisons 
[11,32]. Additional pharmacokinetic calculations that 
utilize functional imaging intensity and experimental 
data, such as organ residence time or radiation 
equivalent dose, could easily be incorporated into the 
model outputs to suit the primary measures of a 
particular study. 

When applied to new datasets, NanoMASK 
continued to produce highly accurate contours. This 
included testing on radio-imaging studies of lipid 
nanoparticles and antibody-drug conjugates, which 
represent two of the most widely used classes of 
nanomedicines in both preclinical development and 
clinical application. Furthermore, these two drug 
classes possess different pharmacokinetic profiles, 
and thus they give different contrast profiles over 
time to organs of circulation (heart, lungs) as well as 
organs of clearance (liver, spleen, kidneys) and sites of 
uptake (tumor, healthy tissue). NanoMASK’s success 
in handling this data suggests that it is likely 
generalizable to other varieties of nanomedicine that 
can be evaluated using a PET/CT platform [33,34], 
including radio-functionalized inorganic nanocons-
tructs such as mesoporous silica nanoparticles [35], 
gold nanoparticles [36,37], superparamagnetic iron 
oxide nanoparticles [38], and quantum dots [39]; 
alternate lipid structures such as lipoprotein-like 
nanoparticles [40], microbubbles [41], and nanodrop-
lets [42]; and polymer-based nanostructures such as 
nanospheres [43] and dendrimers [44]. These agents, 
which often undergo a significant course of preclinical 
optimization to assess the pharmacokinetic impact of 
changes to formulation and dosage, are ideal 
candidates for input to this model, which poses to 
massively expedite the process of image volume 
analysis. While not explicitly trained and tested on 
molecular PET contrast agents, it would be a future 
area of interest to see if NanoMASK can operate well 
on agents beyond the nano-paradigm. 

Fundamental Lessons about Multimodal 
Auto-Segmentation Models Learned from 
NanoMASK Subsetted Experiments 

With continuing breakthroughs in model 
architecture and potentials for personal adaptation to 
ideally suit a particular dataset, this work acknow-
ledges that further improvements to NanoMASK’s 
model architecture and usability are inevitable. Thus, 
several additional tests were performed to probe more 
fundamental concepts related to the quality and 
diversity of training data used to build a U-Net-based 
auto-segmentation model in the hopes of assisting 
others wishing to construct similar models optimized 
for their experimental pipeline. In this, we discovered 
several key factors that we believe to be broadly 
generalizable principles for multimodal image 
analysis. 

First, all the auto-segmentation models that were 
constructed on subsetted datasets along a particular 
dimension — timepoint, modality, tumor status, or 
input organ — failed to outperform the parent 
NanoMASK model in terms of contouring accuracy, 
even when tested only on the same experimental 
subset used to train the model. This suggests that 
broader training datasets are ideal for model 
construction, even if the model’s intended application 
only represents a subset of the training data. 

Second, using functional imaging (PET, in this 
case) in combination with typical anatomical imaging 
(CT, in this case) improved overall auto-segmentation 
outcomes. Given the variability of functional imaging 
across timepoint and agent formulation, it was not 
hypothesized to consistently improve auto-segmenta-
tion quality, but this work shows it provides modest 
improvements in volumetric accuracy and pharmaco-
kinetic predictions. Furthermore, even the subsetted 
model trained on only the functional imaging 
performed unexpectedly well, outperforming the 
model trained purely on anatomical imaging with 
regards to outputs for organs exhibiting high 
functional imaging contrast (liver and spleen). This 
tracks intuitively with the fact that these two organs 
represent the majority of signal derived from the 
nanoparticle dataset, as these agents showcase a 
highly hepatic and splenic mode of processing and 
clearance typical to nanomaterials. While abandoning 
anatomical imaging is not advised, this illustrates that 
well-trained models are powerful tools that can 
generate contours on data which would be impossible 
to contour manually. 

Third, diversity in experimental timepoints of 
training data was found to be incredibly important to 
maintain auto-segmentation accuracy in tested data. 
All organs (excluding the spleen) were contoured 
more poorly when using a model trained on an early 
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timepoint and tested on later timepoints, and vice 
versa. This suggests that any auto-segmentation 
model that is to be applied to pre-clinical data across a 
diversity of experimental timepoints should be 
trained on data that spans those experimental 
timepoints. 

Fourth, tumor status was a significant factor for 
auto-segmentation volumetric accuracy. Preclinical 
work across multiple classes of nanoparticles have 
shown that tumor burden can alter the pharmaco-
kinetic profile of an agent, such as through changes in 
sites of active uptake [27] or cancer-induced 
physiological changes such as increased splenic 
activity [26]. If volumetric accuracy is the goal of 
auto-segmentation, the model used should be trained 
on both healthy and diseased animal phenotypes. 
Furthermore, to obtain accurate tumor contouring 
and classification, models should be trained using 
tumor locations similar to those of the test dataset. 

Finally, there was no measurable interdepen-
dency between the different organs NanoMASK was 
trained to output. This suggests that models built 
using a 3D U-Net architecture can be readily modified 
to predict auto-segmentations for more (or less) 
organs without expecting any change in overall 
accuracy. This may include auto-segmentation 
functionality for other important tissues such as the 
bone marrow (site of immunomodulation), the brain 
(a key negative control), or the bladder (a site of rapid 
excretion for smaller sized therapeutics). 

Conclusion 
In this work, we introduced NanoMASK, the 

first auto-segmentation tool developed specifically for 
applications in nanomedicine. It combines both 
anatomical and functional imaging data to produce 
high quality contours of key organ systems related to 
agent pharmacokinetics and biodistribution. It was 
shown to be highly robust across different qualities of 
input data and generalizable to several nanomedicine 
classes. Importantly, it can generate pharmacokinetic 
outputs automatically with extremely high accuracy 
relative to manually calculated data. This poses to 
dramatically reduce the time and expertise required 
to utilize nanomedicine preclinical imaging data to its 
fullest potential. It is our hope that open-access usage 
of this model or its principal architecture will 
integrate easily into the preclinical pipeline for 
nanomedicine platform optimization and expedite its 
more laborious aspects. 
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Appendix A: Full Organ, 
Three-Dimensional Contouring Protocols 

The training data for NanoMASK comprised of 
355 PET/CT volumes, all of which were manually 
contoured to identify functional contrast within the 
heart, lungs, liver, spleen, kidneys, and tumor. 
Volumes were constructed to realistically cover the 
full organs rather than a simpler volumetric 
volume-of-interest that may not fully represent the 
entire organ, an important consideration for accuracy 
given the heterogeneous, asymmetrical nature of 
these organs. The techniques utilized were informed 
through consultation with a nuclear imaging expert. 
The procedure was guided in part by the co-registered 
CT data. All contours involved drawing separates 2D 
areas across multiple slices of the anatomical plane 
and interpolating across them to generate volumes 
representative of the contoured area. After their 
individual construction, the different organ contours 
were evaluated together to ensure no overlap. Full 
instructions for the protocols used to contour each 
organ are detailed below. 

Heart/Lungs — The entire thoracic cavity was 
contoured across the sagittal plane using the rib cage 
as a guide. This volume was thresholded using the CT 
intensity data to provide a rough estimate of the lungs 
within the thorax, given their echolucency on CT. This 
approximation of the lungs was manually adjusted to 
ensure inclusion of the less echolucent bronchi, 
bronchioles, and pleura. An initial estimate of the 
contour of the heart was generated based on the 
differential volume between the thorax and lung 
contours. This was manually adjusted to ensure that 
the primary vessels of the lungs, mediastinum, and 
other portions of the thorax were not included within 
the heart contour. The aortic arch was included within 
the contour of the heart, but not the portions of the 
vessels ascending cranially beyond this point. 

Liver — The liver was contoured along the axial 
plane. The top section of the liver was contoured 
moving caudally from the dome of the liver as it abuts 
the diaphragm. As the different lobes of the liver 
descend different distances caudally in the abdomen 
and break up the projection of the liver in the axial 
plane, these were contoured separately and joined 
into one final volume. Special consideration was taken 
to avoid overlap with other abdominal structures 
such as the stomach, spleen, and intestines, as well as 
retroperitoneal structures including the kidneys, 
aorta, inferior vena cava, pancreas, and duodenum. 
This task aided by a combination of guidance from CT 
and PET data, the latter of which was notably brighter 
in the liver than those other structures, with the 
exception of the spleen. 

Spleen — The spleen was contoured along the 
axial plane, starting at the apex of the diaphragmatic 
surface and proceeding caudally. The tasks was aided 
by a combination of guidance from CT and PET data; 
particularly, the contrast between the exceptionally 
low signal in abutting structures (diaphragm, 
stomach) and the high signal of the spleen helped to 
clearly define its boundaries. Reference to the CT data 
helped to prevent miscountouring as a result of 
spillover of signal from the PET imaging. The splenic 
veins and arteries, when discernibly separate from 
splenic hilum, were not contoured as part of the 
spleen. 

Kidneys — The kidneys were contoured indivi-
dually along the coronal plane. Their retroperitoneal 
location helped to distinguish and separate them from 
nearby abdominal structures. Contouring was mainly 
guided by CT data given the variability in PET signal 
over time, which could lead to inconsistent volumes. 
Starting dorsally, the region was contoured from the 
posterior to the anterior surface, taking care to avoid 
overlap between both the apical portion of the right 
kidney and the liver and the apical/medial portion of 
the left kidney and the spleen. The renal veins and 
arteries, when discernably separate from the body of 
the renal hilum, were not contoured as part of the 
kidneys. Even though they were contoured 
separately, they were considered together when 
expressing aggregate measures of the PET data. 

Tumor — Tumor contours were created across 
either the sagittal or coronal plane and then 
subsequently refined across axial, sagittal and coronal 
planes. Tumors were located in the right 5th 
(inguinal) mammary fat pad. The tumor boundaries 
were delineated from surrounding healthy tissue 
dorsally using a combination of PET and CT data 
cues. Surrounding fascia and fat pad appeared more 
consistently hypodense on CT relative to the less 
consistent, “patchy“ hyperdense areas of the tumor. 
At times, clear capsule-like boundaries could be seen 
that separated tumor from surrounding hyperdense 
abdominal tissue. However, for the majority of 
tumors, evaluation of patterns of regional hyperdense 
tissue growth over the 1 to 48 hour timeframe during 
which tumor growth was expected was needed to 
clearly delineate tumor boundaries from surrounding 
hyperdense abdominal tissue. The bright PET signal 
that emanated from arteries lateral (i.e., femoral and 
proximal caudal femoral arteries) or medial (i.e., 
external pudendal artery) at earlier timepoints was 
also used to better delineate tumor boundaries 
(especially the lateral boundary) by monitoring areas 
of bright linear signal that decreased over time. 
Additionally, hypervascular tumor tissue often 
displays a brighter PET signal than the surrounding 
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tissue at later time points (24 and 48 hours), although 
authors were careful not to rely on this as a means of 
delineating tumor boundaries due to potential bias it 
may pose between different formulations exhibiting 
different degrees of tumor uptake. 
 
 


