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Abstract 

Neuroendocrine prostate cancer (NEPC) typically implies severe lethality and limited treatment options. 
The precise identification of NEPC cells holds paramount significance for both research and clinical 
applications, yet valid NEPC biomarker remains to be defined. 
Methods: Leveraging 11 published NE-related gene sets, 11 single-cell RNA-sequencing (scRNA-seq) 
cohorts, 15 bulk transcriptomic cohorts, and 13 experimental models of prostate cancer (PCa), we 
employed multiple advanced algorithms to construct and validate a robust NEPC risk prediction model. 
Results: Through the compilation of a comprehensive scRNA-seq reference atlas (comprising a total of 
210,879 single cells, including 66 tumor samples) from 9 multicenter datasets of PCa, we observed 
inconsistent and inefficient performance among the 11 published NE gene sets. Therefore, we developed 
an integrative analysis pipeline, identifying 762 high-quality NE markers. Subsequently, we derived the NE 
cell-intrinsic gene signature, and developed an R package named NEPAL, to predict NEPC risk scores. By 
applying to multiple independent validation datasets, NEPAL consistently and accurately assigned NE 
feature and delineated PCa progression. Intriguingly, NEPAL demonstrated predictive capabilities for 
prognosis and therapy responsiveness, as well as the identification of potential epigenetic drivers of 
NEPC. 
Conclusion: The present study furnishes a valuable tool for the identification of NEPC and the 
monitoring of PCa progression through transcriptomic profiles obtained from both bulk and single-cell 
sources. 
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Introduction 
Prostate cancer (PCa) is the second most 

common cancer in male affecting millions of men 
worldwide [1, 2]. Androgen receptor (AR) signaling 

plays a central role in PCa progression, while 
targeting the AR pathway can lead to profound 
response in hormone sensitive PCa (HSPC). 
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Unfortunately, the disease often recurs into a more 
aggressive phenotype known as the castration- 
resistant PCa (CRPC), most of which is still histologi-
cally classified as adenocarcinoma (CRPC-Adeno) 
with reactivated AR pathway [1, 3]. Of note, 
approximately 17% of CRPC displays neuroendocrine 
(NE) phenotype (CRPC-NE) to different extent, and 
may further develop to the poorly differentiated NE 
PCa (NEPC), a subtype generally implies severe 
lethality and lack of therapeutic option [1, 4-6]. 

The prevalence of NEPC is anticipated to 
increase as patients undergo multiple lines of 
treatments [1]. NE tumor cells can be histologically 
distinguished from other cells residing in the complex 
PCa microenvironment (TME); but their scarcity, in 
particular in early stage of the disease [7], leads to 
frequent missed diagnosis of early NEPC. Currently, 
NEPC diagnosis mainly depends on the immuno-
histochemistry of several biomarkers - negative AR, 
high MKI67, and positive NE markers, such as 
CHGA, SYP, ENO2 and NCAM1 [8, 9]. However, 
these proteins are heterogeneously expressed in NE 
tumor cells, which greatly impairs their diagnostic 
sensitivity [10]. 

The advent of next-generation sequencing 
endows comprehensive depiction of the molecular 
landscape of NEPC. Critical drivers of NEPC have 
been established, such as mutations in FOXA1 and 
SPOP in primary PCa, lineage plasticity induced by 
RB1 loss and TP53 dysfunction, as well as activation 
of the polycomb-repressive complex-2 (PRC2) such as 
EZH2 in advanced PCa [4, 5, 9, 11, 12]. Meanwhile, 
these studies have proposed more than 10 NEPC 
related gene sets, encompassing thousands of 
differentially expressed genes (DEGs) collectively. 
However, these gene sets are of considerable 
heterogeneity, to which possible reasons include: a. 
most of these studies were based on limited number 
of NEPC cases [13]; b. the gene expression profiles 
between CRPC-Adeno and NEPC are surprisingly 
similar [14]; c. these gene sets relied heavily on 
transcriptomic data derived from bulk tumors instead 
of NE tumor cells exclusively [15]. Therefore, there 
remains an urgent need to develop sensitive and 
specific NEPC markers for the purposes of both basic 
research and clinical translation. 

In this study, we first assembled a large 
scRNA-seq meta-atlas of human PCa, and revealed 
the poor consistency and weak power of the 11 
published NE gene sets. To generate a better NEPC 
predictor, we then developed an integrative pipeline 
combining bulk transcriptomic data, scRNA-seq data 
and multiple algorithms, identified 771 high-quality 
NEPC feature markers and a NE cell-intrinsic gene 
signature, and constructed a robust NEPC risk 

prediction model. Using numerous datasets derived 
from both human PCa cohorts and experimental 
models of PCa, we showed that our NEPC classifier 
displayed remarkable power in predicting disease 
progression to NEPC, prognosis, and therapy 
responsiveness, which outperformed all published 
PCa prognostic models. Thus, our model offers a 
useful reference for precise identification and 
characterization of NE tumor cells. 

Materials and Methods 
Single-cell RNA-seq data processing 

In this study, we collected and analyzed a total 
of 11 scRNA-seq datasets (9 as discovery datasets and 
the other 2 as validation datasets) covering primary 
HSPC (Pri), CRPC, mCRPC and NEPC [10, 15-21] 
(Table S1). Each of these datasets has undergone 
individual quality control and pre-annotation analysis 
by us. Potential doublets predicted by Scrublet in 
Python (v.3.8.5), low quality cells (cells with <250 
detected genes, <500 transcripts, or >20% 
mitochondrial content) and high dropout genes were 
removed to avoid interference with the analysis. 
Besides, to avoid unexpected noise and expression 
artefacts by dissociation, genes associated with 
mitochondria (50 genes) and ribosome (1,253 genes) 
were excluded. After pre-annotation and merging, 
210,879 high-quality cells with 20,870 genes from 66 
tumor samples (scRNA-seq meta-atlas) were 
preserved for subsequent analyses. Seurat (v4.1.0) or 
Scanpy (v.1.9.1) was then applied to perform 
normalization, identification of variably expressed 
genes, and principal component analysis. To mitigate 
the batch effects from utilization of diverse platforms 
and protocols, we employed 11 classical integration 
algorithms alongside an unintegrated method as a 
reference, including BBKNN, CCA, RPCA, LIGER, 
Harmony, fastMNN, scVI, scANVI, Scanorama, 
Connos and Combat. Then clustering and distribution 
of single cells is mapped using Uniform Manifold 
Approximation and Projection (UMAP) with the 
Leiden algorithm. Based on pre-annotation labels and 
scib evaluation [22], we determined that the BBKNN 
method was more suitable for our scRNA-seq 
meta-atlas, thereby being chosen for further analysis. 
Finally, a total of 15 cell types was identified by 
manual annotation (corresponding biomarkers, see 
Table S1) and combined automatic annotation method 
Celltypist [23]. For NE tumor cells subclustering 
analysis, a similar procedure was applied. 

Seurat (v.4.1.0) was applied for subsequent 
analyses and visualization. To investigate intercon-
version and evolutionary trajectories of different NE 
cell types, we applied the Monocle 3 (https://cole- 
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trapnell-lab.github.io/monocle3/) and CytoTRACE 
[24] algorithms according to demonstration notebook. 

Bulk dataset selection and preparation 
In this study, we assembled over 3000 samples 

from 15 publicly available human bulk PCa datasets. 
As previously described [25], The Cancer Genome 
Atlas Prostate Adenocarcinoma (TCGA-PRAD) [11] 
RNA-seq data (Raw read count) was downloaded 
from the UCSC XENA. International Cancer Genome 
Consortium (ICGC) PRAD RNA-seq data was 
downloaded from the ICGC portal (https:// 
dcc.icgc.org/). RNA-seq data for SU2C [5], WCM [4], 
and MCTP [26] datasets were downloaded from the 
cBio Cancer Genomics Portal (https://www 
.cbioportal.org/). RNA-seq data for WCDT [27] was 
downloaded from http://davidquigley.com/ 
prostate.html. RNA-seq data for CPGEA [28] was 
downloaded from www.cpgea.com. RNA-seq data for 
PCaProfiler [29] was downloaded from 
www.PCaProfiler.com. The microarray data 
including MSKCC [30], CamCap [31], UM/SPORE 
[26], GSE54460 [32], GSE116918 [33] and GSE84042 
[34], and RNA-seq data for UW/RA [35] were 
acquired from the Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov).  

Besides, we collected transcriptomic data for 13 
experimental models of PCa, including 8 human PCa 
cell lines (from The Cancer Cell Line Encyclopedia, 
CCLE), two patient-derived xenografts (PDX) models 
(UW/RA and GSE199596 [36]) and three genetically 
engineered mouse models (GSE69903 [37], GSE90891 
[12], and OncoLoop [38]). For all RNA-seq data, 
Transcript Per Million (TPM) value was calculated. To 
note, due to the distinct dynamic ranges and batch 
characteristics between bulk RNA-seq and microarray 
data, and in order to ensure a fair evaluation of our 
model, we analyzed the aforementioned bulk datasets 
separately, instead of conducting an integrative 
analysis. 

Spatial transcriptomic data processing 
Spatial transcriptome sequencing data 

(GSE230282 [39]) was downloaded from GEO (Table 
S1). Pathologists have annotated this tissue as NEPC 
coexisting with HSPC. Spatial transcriptome 
sequencing data was standardized and corrected 
using the Sctransform method according to 
corresponding tutorial manual of Seurat (https:// 
satijalab.org/seurat/articles/spatial_vignette.html). 

Meta-analysis of published NEPC gene lists 
We searched the literature for published NE 

gene sets from differentially expressed analyses 
between NEPC and prostatic adenocarcinoma based 
on transcription profiling of patient tumor samples 

(Table S2). Besides, HP_NE_neoplasm gene set 
representative pan-NE neoplasm was obtained from 
MSigDB database (http://www.gsea-msigdb.org/). 
To compare different gene sets and identify common 
genes, gene names and probe assignments were 
updated to hg38 HGNC symbols. 

Enrichment analysis 
As previously described [40], the GO and 

rank-based gene set enrichment (GSEA) analyses 
were performed by the R package clusterProfiler. For 
bulk transcriptomic data, single-sample GSEA 
(ssGSEA) method was conducted using R package 
GSVA. To overcome dropouts and technical variation 
of scRNA-seq, we chose AUCell algorithm for 
scRNA-seq data to optimize the discovery and 
characterization of cell states [41]. R package 
“estimate” was used to evaluate the stromal score, 
immune score and tumor purity of each samples 
using bulk transcription profile data [42]. 

Analysis of the tumor mutation status in the 
low- and high- NEPC risk groups 

The somatic mutation data was downloaded 
from the Genomic Data Commons Data Portal 
(https://portal.gdc.cancer.gov/) for TCGA Primary 
PCa samples, and cBioPortal (https://www. 
cbioportal.org/) for SU2C mCRPC database. 
Concerning different mutation types, including frame 
shift del, frame shift ins, in frame del, in frame ins, 
missense, nonsense, nonstop, splice site and transla-
tion start site were regarded as nonsynonymous 
mutation variants [40]. Silent and other mutation 
types, including 3’ flank, 5’ flank, 3’ UTR, 5’UTR, 
RNA, IGR, intron, and splice region, were treated as 
synonymous mutations, which was regarded as a 
wild type [40]. The mutation landscape for different 
groups was exhibited using maftools R package. 

Development and validation of NEPC 
prediction model 

We designed a pipeline (illustrated in Figure 2A) 
to construct a NEPC prediction model. First, we 
acquired 588 validated NE markers by scRNA-seq 
meta-atlas from 1482 meta-NE markers. Meanwhile, 
using WGCNA method based on PCaProfiler bulk 
RNA-seq data, we identified two potential NE related 
gene modules. Moreover, pseudobulk differential 
expression analysis was applied for scRNA-seq 
meta-data, which led to the identification of 1896 
NEPC differentially expressed genes (DEGs). Next, 
combined with the results, we identified 587 
up-regulated and 184 down-regulated high-quality 
NEPC feature genes, termed NE_FG (Table S3). Last, 
seven classical machine learning algorithms were 
performed to construct a NEPC prediction model 



Theranostics 2024, Vol. 14, Issue 3 
 

 
https://www.thno.org 

1068 

based on the NE_FG expression profiles, including 
elastic network (Enet), least absolute shrinkage and 
selection operator (LASSO), ridge regression, gradient 
boosting machine (GBM), random forest (RSF), 
supervised principal components (SuperPC), and 
support vector machine (SVM). In addition, we also 
identified two thinned NE cell-intrinsic gene 
signatures by overlapping the NE_FG and DEGs for 
NE tumor cells by FindMarkers function using 
wilcoxon rank sum test with Bonferroni correction 
(|avg_log2FC|>= 0.5, p_val_adj < 0.01) in scRNA-seq 
meta-atlas, termed NE_UP (n = 90) and NE_DN (n = 
40) signature. ssGSEA algorithm was then applied 
and NE_UP_DN risk score for each sample in each 
cohort was defined as follows: 

NE_UP_DN score =  NES_UP− NES_DN 
Where NES_UP was the ssGSEA score for 

NE_UP gene signature, and NES_DN was the ssGSEA 
score for NE_DN gene signature. Finally, in 6 
validation cohorts containing NEPC tumors (SU2C, 
WCDT, PCaProfiler, UM/SPORE, WCM and 
scRNA-seq Psedobulk cohorts), we calculated NEPC 
risk scores for each model (see Table S4). Models were 
evaluated by three scRNA-seq cohorts and indexes 
including C-index, receiver-operator characteristic 
(ROC) curve, correlation analysis and area under the 
curve (AUC). 

All algorithms, models, published NE gene sets, 
and NEPC signature identified in this study were 
packaged as Neuroendocrine Prostate Cancer 
Algorithms (NEPAL) R package (https://github. 
com/Famingzhao/NEPAL) for NEPC risk 
calculation, which was validated for both human and 
mouse transcriptomic expression profiles. Note that 
we have removed GBM, SuperPC, and RSF models 
considering the overfitting. 

TF activity inference 
For bulk transcriptomic data, transcription factor 

activity for each sample was inferred using the VIPER 
package [43]. The TF targets were collected from 
DoRothEA and the medium confidence targets were 
used for analysis. 

Statistical analysis 
All data analyses were performed in the R 

(v.4.1.0) or Python (v.3.8.5) platform. The Student’s 
t-test or Wilcoxon rank-sum test was applied to 
compare continuous variables between two groups, 
while one-way ANOVA or Kruskal-Wallis tests were 
used to conduct difference comparisons of three 
groups. Correlations between normally distributed 
variables were performed with Pearson’s correlation, 
and correlations between non-normally distributed 
variables were assessed with Spearman’s correlation. 

The Benjamini-Hochberg (BH) method was 
introduced to estimate false discovery rate for 
multiple testing. Kaplan Meier analysis with log-rank 
tests was performed to assess survival difference 
between groups via “survminer” R package. P-value 
< 0.05 was considered statistically significant with two 
sides. Odds ratios (ORs), hazard ratios (HRs) and 95% 
confidence intervals (CIs) were reported if necessary. 

Results 
Previous NEPC gene sets display low 
consistency and poor power 

First, we collected and analyzed all 11 published 
NE marker gene sets, including 9 NEPC gene-lists 
from bulk transcriptomic data, 1 from scRNA-seq of 
normal prostate, and 1 representative pan-NE 
neoplasm from the MSigDB database (Table S2). 
Collectively, these 11 gene sets consisted of 1482 
up-regulated expression NE markers (NEPC_Meta). 
However, a low overlap rate was observed among 
these gene sets, with only 61 genes overlapping more 
than four times (Figure S1A). 

To evaluate the sensitivity and efficiency of these 
NE markers, we generated a comprehensive 
scRNA-seq reference atlas with a total of 210,879 
single cells from 66 PCa tumors covering primary 
HSPC (Pri), CRPC, mCRPC and NEPC, based on 9 
published human PCa scRNA-seq datasets (Figure 1A 
and Table S1; see method). A total of 15 cell types 
were identified by corresponding biomarkers (Table 
S1), and frequency of NE tumor cells for each sample 
was then calculated (Figure 1B). Surprisingly, we 
found that more than half of these NE markers 
(894/1482) were not exclusively expressed in NE 
tumor cells or in patients with NE features (Figure 1C 
and Figure S1B). As for the above-mentioned 61 genes 
with high overlap rate, despite that they could well 
discern NEPC tumors, more than half (41/61) 
exhibited low percentage expressive abundance 
(percentage expression for all NE tumor cells < 20%) 
(Figure 1D), implicative of their weak efficiency. 
Lastly, by calculating the NE score for each gene sets 
using AUCell enrichment analysis [41], we confirmed 
the low specificity of most gene sets to recognize NE 
tumor cells in scRNA-seq data (Figure 1E and Figure 
S1C). These results revealed low consistency and poor 
power of the published NE gene sets. 

Construction of NEPC classifier based on large 
scRNA-seq and bulk RNA-seq meta-databases 

To identify high-quality NEPC feature markers, 
we designed a pipeline comprising published 
NEPC_Meta markers as mentioned above, WGCNA 
gene modules based on the bulk RNA-seq dataset 
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PCaProfiler (n = 1223, Figure S2A), and the PCa 
scRNA-seq meta-atlas we assembled (Figure 2A, see 
methods). Finally, 587 up-regulated and 184 
down-regulated NEPC feature genes were identified, 
which were collectively termed as NE_FG (Figure 2B 
and Table S3). Since signatures focused on cancer-cell 
intrinsic gene expression were found to more 
clinically useful [44, 45], we also obtained two thinned 
NE cell-intrinsic gene signatures, termed NE_UP (n = 
90) and NE_DN (n = 40), by overlapping the NE_FG 
with DEGs of NE tumor cells (Figure 2C and Table S3; 
see methods). Dot plot confirmed that all NE_UP 
signature genes had high percentage expressive 
abundance (percentage expression for all NE tumor 
cells > 20%; Figure S2B). 

To further construct a NEPC prediction model, 
we applied 7 classic machine learning algorithms 
based on NE_FG to SU2C training set. Besides, 
NE_UP_DN model combining NE_UP and NE_DN 
was constructed based on ssGSEA algorithm (see 
methods). Subsequently, using these NEPC 
predictors, we calculated NEPC risk score for each 

sample in 6 cohorts containing NEPC tumors. For the 
evaluation index, we calculated the average C-index 
(Figure 3A) and R2 (Figure S2C) for each algorithm. 
Interestingly, most of these predictors had a high 
average C-index, which may be attributed, at least in 
part, to our high-quality NE markers. Of these 
models, NE_UP_DN_ssGSEA, Enet [α= 0.01], and 
NE_UP_ssGSEA ranked as top 3, which also had high 
area under the ROC curves (AUCs > 0.90, Figure 3B). 
In addition, most predictors, except RSF and GBM 
models, showed high Pearson correlation coefficients 
for NEPC prediction scores (Figure 3C). Taking 
advantage of the scRNA-seq meta-atlas, we found 
that most algorithms again showed high Pearson 
correlation coefficient between predicted NEPC risk 
scores and cellular fraction of NE tumor cells (Figure 
3D). Meanwhile, we compared our models with the 11 
published NEPC_Meta gene sets by calculating AUCs 
index using the six validation datasets, where our top 
3 models unanimously outperformed the previous NE 
gene-lists (Figure 3E). 

 

 
Figure 1. scRNA-seq analysis revealed the poor sensitivity and low efficiency of the published NEPC gene sets. A. The UMAP plot of 210,879 single cells from 66 
PCa samples in scRNA-seq meta-atlas. Left, 16 major cell types; middle, 9 published data sources; right, different tumor subtypes. B. The distribution of estimated NE tumor cells 
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among different groups. C. Heatmap showing the expression (Z-score) of 1482 published NE markers in different cell types (left panel) and tumor types (right panel). D. Dot plot 
of high overlap NE marker genes (n = 61) from meta-gene sets for each cell cluster and tumor group. E. AUCell enrichment analysis comparing different NE gene sets in each 
cell type. 

 

 
Figure 2. Combining multiple strategies to identify NEPC markers based on scRNA-seq and bulk RNA-seq meta-databases. A. Strategic schema about 
identification of high-quality NEPC markers and construction of predictors via multiple machine learning algorithms. Elastic network, Enet. Ridge regression, Ridge. Gradient 
boosting machine, GBM. Random forest, RSF. Supervised principal components, SuperPC. Support vector machine, SVM. B. Heatmap showing the expression (Z-score) of 587 
up-regulated and 184 down-regulated NEPC feature genes (NE_FG) identified by this study. C. Violin plot showing the thinned up- (upper panel) and down-regulated (lower 
panel) NEPC signature by AUCell analysis. 
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Figure 3. Construction and validation of the artificial intelligence-derived NEPC risk prediction models. A. The C-indexes of 18 algorithms in the 6 validation 
cohorts. Error bar denote SD. B. Time-dependent receiver-operator characteristic (ROC) analysis for predicting NEPC in PCaProfiler bulk RNA-seq cohort (n = 1223). C. 
Heatmap showing the correlation analysis of NEPC risk scores estimated by different models in PCaProfiler. D. Correlation analysis between cellular fraction of NE tumor cells 
from scRNA-seq meta-atlas and different NEPC risk algorithms. PCC, Pearson correlation coefficient. E. Comparing AUC index of the top 3 predictors from this study and 11 
published NE gene sets in 6 cohorts. Error bar denote SD. F. Violin plot showing NEPC risk scores estimated by NE_UP_DN model with AUCell algorithm for each cell type 
in scRNA-seq meta-atlas and two independent scRNA-seq datasets. Error bar denote SD. G. H&E staining and heatmaps of the spatial distribution of NE_UP, NE_DN or 
NE_UP_DN signature in multiple regions. 
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For validation, we selected the best classifier, 
NE_UP_DN signature, and evaluated its predictive 
performance in the scRNA-seq meta-atlas and three 
additional validation scRNA-seq and spatial 
transcriptomic datasets: a. Smart-seq2 based 
scRNA-seq dataset [16], b. single-cell dataset based on 
fluorescence-activated cell sorting (FACS) [20], c. 
spatial gene expression atlas of de novo NEPC 
coexisting HSPC [39]. The results showed that 
NE_UP_DN with AUCell algorithm precisely 
predicted NEPC cell status in all validation sets 
(Figure 3F-G). Taken together, these results 
demonstrate that our models could robustly 
distinguish tumors with NE features based on 
transcriptomic data of both bulk and single-cell 
sources. Of note, we performed subsequent analyses 
using the NE_UP_DN signature, which we hereafter 
referred to as NEPC algorithm (NEPAL). 

NEPAL to portrait the path of PCa 
progression 

In addition to distinguishing NEPC, we 
hypothesized that NEPAL could quantify NEPC 
progression, as it incorporates both upregulated and 
downregulated NE cell-intrinsic signature genes into 
the model. To assess this hypothesis, we first 
re-clustered 21,526 NE tumor cells from the 
scRNA-seq meta-atlas, which led to the identification 
of 8 general NEPC subclusters (Figure 4A-B). 
Concordant with a recent report [8], classic NE 
markers such as CHGA, SYP, ENO2 and NCAM1 were 
heterogeneously expressed amongst these subclusters 
(Figure 4C). Importantly and by contrast, NEPAL 
with AUCell algorithm was almost ubiquitously 
expressed in all NEPC subclusters (Figure 4D). Next, 
pseudo-time and CytoTRACE analyses were 
performed on the 8 NEPC subclusters (Figure 4E-F), 
and the evolutionary trajectory was highly correlated 
with the NEPAL risk scores (Figure 4G), suggesting 
its utility in predicting NEPC progression.  

Intriguingly, we found marked correlation 
between NEPAL risk indices and pseudotime scores 
in PCaProfiler (Figure 4H). Also, we examined the 
relationship between NEPAL risk indices and Gleason 
scores in four independent datasets, TCGA PRAD, 
CamCap, ICGC PRAD, and CPGEA, where 
concordant and significant correlation was observed 
in primary tumors without castration or NE features 
(Figure S3A). Collectively, these results implicate that 
NEPAL can be applied to predict disease progression 
for PCa of both hormone-sensitive and -refractory 
stages. 

Application of NEPAL to experimental models 
of PCa 

To validate its utility, we further applied NEPAL 
to the transcriptomic profiles derived from 
experimental models of PCa. For the 8 human PCa cell 
lines from CCLE, NEPAL accurately assigned the 
NEPC cell line NCHI-H660 with the highest NEPC 
risk score. CRPC cell lines, such as DU145, 22RV1, and 
PC3 cells, followed closely behind (Figure S3B), while 
the hormone-dependent cell lines, such as 
MDA-PCa-2B and LNCaP, had the lowest NEPC risk 
scores. Besides, we observed a high Pearson 
correlation coefficient between NEPAL scores and NE 
classic markers, such as CHGA and SYP (Figure S3B). 

In the meantime, we applied NEPAL to bulk 
transcriptomic datasets generated from 2 human PCa 
PDX tumors and 3 transgenic mouse models of PCa. 
The PDX database (UW/RA) contains transcriptomic 
data of 128 human PCa tumors, including 87 CRPC 
and 41 PDX tumors [35]. Strikingly, in both patients 
and PDX tumors, the NEPAL scores were tightly 
correlated with the evolution of AR/NE status (Figure 
5A). Concordantly, high Pearson correlation 
coefficients between predicted NEPC risk scores and 
NE markers were observed (Figure 5B). Similar 
association was repeatedly detected in an 
independent PDX cohort [36] (Figure 5C-D). 
Furthermore, this phenomenon was not restricted to 
human PCa, as NEPAL showed coherent performance 
in two mouse PCa datasets GSE69903 [37] (Figure 5E) 
and GSE90891 [12] (Figure S3C). Lastly, using a recent 
RNA-seq dataset of mouse PCa models [38], NEPAL 
again exhibited superior accuracy in predicting NEPC 
status, which led to significant stratification in 
survival (Figure 5F). These results strengthened the 
power of NEPAL as an attractive tool to discern 
NEPC. 

Prognostic value and biological relevance of 
NEPAL 

To assess the prognostic value of our NEPAL 
model, we gathered 12 independent bulk 
transcriptomic datasets (8 primary HSPC cohorts and 
4 CRPC/Met cohorts) with more than 2000 human 
PCa samples, of which 10 were with available 
prognostic information. Notably, we observed that 
NEPAL effectively categorized biochemical 
recurrence (BCR) for HSPC and overall survival (OS) 
for advanced PCa patients (Figure 6A-C). In addition, 
according to the available treatment information, 
including hormonal therapy, chemotherapy, and 
second-generation AR signaling inhibition (ARSI) [5, 
26], NEPAL also reliably predicted resistance to 
chemotherapy and ARSI (Figure S4A). Moreover, no 
significant difference in NEPAL scores was observed 
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between treatment-naïve and -exposed groups in 
SU2C, UM/SPORE, MCTP, or CPGEA cohorts (Figure 
S4B-D), suggesting that prior treatment history of 
patients had little impact on the prognostic accuracy 
of the NEPAL model. To further compare the 
prognostic power of our NEPAL model, we collected 
20 published prognosis models which are all 
generated by different machine learning algorithms 

(Table S2), while also included traditional clinical 
parameters such as PSA score, Gleason score, and 
tumor stage. The C-index showed that NEPAL was 
the most powerful signature than other models and 
traditional clinical parameters in 10 multicenter PCa 
cohorts (Figure 6D and Figure S4E), revealing the 
robustness of NEPAL model in prognostic prediction. 

 

 
Figure 4. NEPAL to portrait the path of PCa progression. A. The UMAP plot showing 8 NEPC subclusters from 21,526 single cells based on scRNA-seq meta-atlas. B. 
Dot plot of representative marker genes for each NEPC subcluster. C. Violin plot showing the expression of classic NE markers for each cell type. Error bar denote SD. D. 
AUCell analysis of NEPAL signature among 8 NEPC subclusters. E. The distribution of NEPAL risk scores (left panel) and Pseudotime analysis of NEPC subclusters inferred by 
Monocle3 (right panel). F. CytoTRACE analysis for differentiation status of each cell type. G. Pearson correlation analysis between NEPAL risk scores and pseudotime index (left 
panel) or CytoTRACE scores (right panel) in NEPC single cells. H. Scatter diagram showing relationship between NEPAL risk scores and pseudotime in PCaProfiler large bulk 
RNA-seq cohort. 
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Figure 5. Application of NEPAL by human PDX datasets and mouse models. A. The distribution of NEPAL risk scores among different NE features in CRPC (left 
panel, n = 87) and PDX tumors (right panel, n = 41) in UW/RA dataset. Error bar denote SD. B. Pearson correlation between NEPAL risk scores and expression of CHGA (left 
panel) or SYP (right panel) in UW/RA dataset (total tumors = 128). C-D. Similar analysis to GSE199596 PDX tumors (n = 112). E. The distribution of NEPAL risk scores among 
different NE features in GSE69903 mouse microarray data (left panel, n = 29). And the Pearson correlation between NEPAL risk scores and expression of Chga or Syp (right 
panel). F. Predicting NEPAL risk scores in genetically engineered mice from different background in OncoLoop cohort (left panel, n = 91). Pearson correlation between NEPAL 
risk indices and expression of Syp and Kaplan–Meier OS curves of mice grouped by NEPAL risk scores (right panel). 
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Figure 6. Prognosis and molecular features associated with NEPAL in human PCa databases. A. Forest plot for biochemical recurrence (BCR) in primary PCa 
cohorts or overall survival (OS) in CRPC/Met cohorts. B-C. Kaplan-Meier survival curves for BCR (B) or OS (C) in TCGA, ICGC, SU2C or WCDT cohorts. D. C-indexes of 
NEPAL signature and 20 published machine learning prognostic models in 7 primary HSPC datasets (including ICGC, MSKCC, CPGEA, GSE116918, CamCap, TCGA and 
GSE54460, left panel) and 3 CRPC/Met datasets (including WCDT, MCTP and SU2C, right panel). Error bar denote SD. E. Correlation analysis of NEPAL risk scores with 
activities of multiple signaling pathways in 12 bulk transcriptomic cohorts. 

 
In the meantime, we observed marked 

correlation of NEPAL risk scores with the activity of 
lineage plasticity related pathways [2, 12, 46], such as 
EZH2, SOX2, NE differentiation, as well as loss of 
RB1, PTEN, and TP53 signaling in all datasets (Figure 
6E). Furthermore, NEPAL risk scores were also 
significantly associated with several hallmarks of 
advanced PCa [46-48], namely AR-V, cell cycle 
progression, MYC targets, proliferation and stemness, 
whereas conversely linked to androgen response and 
luminal features (Figure 6E). Together, these results 

potentiated NEPAL to predicting prognosis, thera-
peutic responsiveness, and molecular characteristics 
of PCa patients. 

The impact of TME components, patient 
demographics and tumor stage on the 
prediction accuracy of NEPAL 

To evaluate potential biases introduced by TME 
components, patient age and race, as well as tumor 
stage on the prediction accuracy of the NEPAL model, 
we conducted stratification analyses for these factors. 
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Using three TME component indices including 
stromal score, immune score and tumor purity [42], 
our results showed that the NEPAL model 
maintained its robust predictive capability for patient 
outcomes (Figure S4F) and NEPC risk (Figure S4G) 
across diverse TME groups. Meanwhile, the NEPAL 
model effectively distinguished tumors with NE 
features in various subtypes of PCa (Figure S4H). 
Moreover, stratification analysis based on patient age, 
race, and cancer stage showed that the predictive 
power of NEPAL model for patient prognosis was not 
affected by these demographic and pathological 
factors (Figure S5A-H). Taken together, these results 
enhance the generalizability and effectiveness of the 
NEPAL model in predicting NEPC risk and 
progression. 

NEPAL reveals nongenetic drivers of NEPC 
NEPC emergence and progression has been 

attributed to both genetic and nongenetic factors [4, 
14]. Along this line, we first stratified the tumors of 
TCGA PRAD and SU2C CRPC/Met cohorts 
according to NEPAL score, and analyzed their 
expression profiles and somatic mutation (Figure 
S6A-B). Interestingly, of the most frequently mutated 
genes in PCa, only TP53 showed higher mutation rate 
in the NEPC high-risk group compared to the 
low-risk group in both PRAD and CRPC/Met 
cohorts, while higher mutation rates of AR and RB1 
were observed only in the NEPC high-risk group in 
SU2C CRPC/Met dataset (Figure S6C-D). Further-
more, both tumor mutational burden (TMB) and 
mutant counts of all genes were significantly 
associated with NEPC risk scores in TCGA PRAD 
dataset, with no significance in SU2C CRPC/Met 
dataset (Figure S6C-F). 

Next, we assessed gene expression correlation 
with the NEPC risk scores in PCaProfiler with 1223 
tissues ranging from normal prostate, primary PCa, 
CRPC/Met, to NEPC (Figure 7A). In keeping with the 
lost luminal and acquired NE features during PCa 
progression [49], canonical NE markers and cell cycle 
genes were activated, while AR-regulated differen-
tiation genes were suppressed. Importantly, key 
genes encoding for chromatin remodelers, including 
DNA methyltransferases (DNMTs), such as 
DNMT3A, DNMT3B, DNMT1, and members of the 
polycomb-repressive complex-2 (PRC2), such as 
EZH2, RBBP4, SUZ12, EED and RBBP7 [12, 29], 
emerged to the top. This observation was mirrored by 
identical analyses of the TCGA PRAD and SU2C 
CRPC/Met datasets (Figure S7A-B), supporting the 
critical role of epigenetic regulators in NEPC.  

Moreover, correlation rank-based GSEA analysis 
showed that lineage plasticity-related pathways [46, 

49-51], such as NE differentiation, glioblastoma (GB) 
plasticity, loss of PTEN, EZH2 signaling, and dual 
knockout of RB1 and TP53 up-regulated signaling 
(LNCaP_DKO_UP), as well as pathways implicated in 
proliferation and stemness, such as E2F targets, G2M 
checkpoint, and MYC signaling, were the most 
significantly activated pathways. On the other hand, 
pathways related to HSPC, such as androgen 
response, IRE1α-XBP1s signaling [47], loss of SPOP 
and AR signaling were suppressed (Figure 7B).  

Lastly, combining TF activity inference by VIPER 
method, we respectively depicted the signaling 
network of four pathways implicated in NE 
trans-differentiation, including AR signaling, P53 and 
RB1 pathways, and epigenetic regulation (Figure 7C). 
In addition, NEAPL combined VIPER algorithm 
identified NEPC-related pioneer TFs, including 
previously established TFs, such as FOXA2, ASCL1 
and MYCN [3, 9, 10], as well as novel TFs, such as 
XBP1s, PHTF, LHX2, and NANOS1 (Table S5). 
Whether and how these TFs, alone or in cooperation, 
drive NEPC progression would be of interest for 
future investigation. 

NEPAL: a computing framework to predict 
NEPC risk score using transcriptomic data 

To facilitate the application of users, we present 
an R package, NEPAL, which integrates published NE 
gene sets tested in this study, ssGSEA algorithm for 
bulk transcriptomic data, AUCell algorithm for 
scRNA-seq data, multiple machine learning models, 
and data visualization. In addition, NEPAL supports 
both mouse and human transcriptomic data as input. 
We also demonstrate that this workflow shows good 
compatibility with Seurat scRNA-seq toolkit and is 
broadly applicable to scRNA-seq datasets based on 
different platforms. The R package of NEPAL is now 
available at Github (https://github.com/ 
Famingzhao/NEPAL). 

Discussion 
Precise and early identification of NE tumor cells 

is of great importance for both basic research and 
clinical practice. Unfortunately, our means in this 
regard has been constrained by the lack of sensitive 
and specific biomarkers. To fill in this gap, we 
designed an integrative analysis pipeline combining 
bulk and single cell transcriptomic datasets, based on 
which we identified a high-quality NE gene set and 
constructed a powerful NEPC risk prediction model 
with remarkable prognostic power. 

Recently, several large-scale comprehensive 
studies have greatly advanced our understanding of 
the molecular complexity of PCa microenvironment 
[4, 5, 9-12, 15-20]. Based on these findings, a total of 11 
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NE gene sets have been proposed to identify NEPC or 
delineate NE feature thus far. Although several 
canonical NE markers [8, 9], such as CHGA, CHGB 
and SYP, are uniformly included, these gene sets 
displayed considerable inconsistency in genes 
enrolled, and more importantly, low efficiency in 
NEPC recognition. One major reason may be that 
these gene sets heavily depend on bulk transcriptomic 
data, which is unable to pinpoint NE tumor cells out 
of the highly heterogeneous TME [15]. Fortunately, 
the challenge can be effectively addressed using 
emerging techniques, like scRNA-seq. Therefore, we 
assembled a large scRNA-seq atlas of PCa and 
performed comprehensive gene expression analysis of 
these datasets to derive high-quality NEPC-specific 
gene markers. Such integrative procedures could well 

balance the strengths and weaknesses of the bulk and 
scRNA-seq technologies, and allows to identify stable 
intrinsic gene signature for NE tumor cells. 
Considering that overfitting during model training 
has hindered the application and clinical translation, 
we constructed NEPC risk prediction models using 
multiple machine learning algorithms, and validated 
them in 6 independent cohorts by evaluating multiple 
indexes. Finally, the NE_UP_DN model, NEPAL, was 
selected with significantly improved performance 
compared to all previous NEPC gene sets. 

Next, we showed that when applied to multiple 
scRNA-seq datasets, NEPAL could depict the path of 
NEPC cell evolution in 8 NEPC-representative 
subclusters. Exploration across various human HSPC 
datasets provided further evidence that NEPAL might 

 

 
Figure 7. Predicting NEPC driver genes of nongenetic evolution by NEPAL. A. Scatter diagram representing the correlation between mRNAs and NEPAL risk scores 
in PCaProfiler bulk RNA-seq cohort. Positively correlated genes are depicted in red while negatively correlated genes are depicted in blue. NE related markers highlighted in 
purple, AR signaling related genes in lightcyan, cell cycle related genes in pink, DNA methyltransferases (DNMTs) related genes in orange, and polycomb-repressive complex 
related genes in green. B. GSEA analysis performed on genes ranked for their Pearson’s coefficient as determined by the correlation between mRNA expression and NEPAL risk 
scores. C. Comprehensive comparison of gene expression or TFs activity in different NEPC related pathways. * indicates TFs, whose activity is inferred by VIPER method. PCC, 
Pearson correlation coefficient. 
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serve as a powerful tool to describe the roadmap of 
PCa progression. In addition, NEPAL had potential 
application value in a variety of experimental models 
of PCa, including human PCa cell lines and PDX, as 
well as transgenic mouse models of PCa. For example, 
in two PDX models, we noted that NEPAL scores 
were strongly associated with distinct stages of PCa, 
from hormone-naïve, AR-negative, to NE-positive 
late-stage disease. These results demonstrate that 
NEPAL may be applied to portrait PCa progression of 
both human and mouse origins, based on gene 
expression profiles of both bulk and single-cell 
sources. 

Previous work has assessed at least 10 prognosis 
models derived by different gene signatures and 
machine learning algorithms, which generally 
performed poorly in survival prediction (AUC < 0.6) 
[25]. On the contrary, and to our surprise, the NEPAL 
signature exhibited exciting power in predicting not 
only prognosis, such as BCR and OS, but also 
resistance to hormonal therapy and chemotherapy in 
more than 10 human PCa datasets. Furthermore, 
compared to 20 published prognostic models of PCa 
as well as existing clinical parameters, our NEPAL 
demonstrated robust and superior predictive capa-
city. Of note, factors including patient demographic, 
cancer stage, PCa subtype, and treatment history 
showed little to no impact on the predictive power of 
the NEPAL model, which increased its generali-
zability and effectiveness. Regarding the molecular 
characteristics, NEPAL risk scores were closely 
associated with several pathways related to 
aggressive PCa progression, such as AR-V, 
proliferation and stemness [46-48]. In addition, 
patients with loss of TP53 or RB1, a critical driver of 
lineage plasticity and therapeutic resistance [12, 46, 
51], had a higher NEPC risk scores than their 
wild-type counterparts. Taken together, these results 
implicate that NEPAL can be applied as a prognostic 
evaluation tool for PCa. 

Taking advantage of NEPAL, we were also able 
to identify critical drivers of NEPC, especially the 
nongenetic ones, for instance, PRC2 and DNMTs. 
These observations are in line with the notion that on 
top of the oncogenic drivers, marked epigenetic 
changes, made by the PRC2 and DNMTs for instance, 
further facilitate NE lineage progression [3]. 
Furthermore, we compared these drivers in the 
canonical pathways, such as AR, TP53 and RB1 
pathways. Moreover, we identified a series of TFs 
related to NEPC, including both well-established 
NEPC pioneer TFs, and novel TFs, such as XBP1s. Our 
previous studies have unveiled the signaling network 
between the AR pathway, the IRE1α-XBP1s branch of 
the unfolded protein response, and the c-Myc 

oncogenic program in promoting PCa [47, 48]. But 
whether and how the IRE1α-XBP1s pathway 
facilitates the transition to NEPC requires functional 
and mechanistic investigation. Nevertheless, these 
results manifest that NEPAL captures key molecular 
events during NEPC progression and may offer new 
insights for future characterization of NEPC. 

Conclusion 
We constructed and extensively validated a 

robust NEPC risk prediction model NEPAL, which is 
a competent tool for precision identification of NEPC 
for basic research purposes, and lays a solid 
foundation for future clinical translation. 
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