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Abstract 

Rationale: The tumor microenvironment (TME) and its multifaceted interactions with cancer cells are 
major targets for cancer treatment. Single-cell technologies have brought major insights into the TME, 
but the resulting complexity often precludes conclusions on function.  
Methods: We combined single-cell RNA sequencing and spatial transcriptomic data to explore the 
relationship between different cancer-associated fibroblast (CAF) populations and immune cell exclusion 
in breast tumors. The significance of the findings was then evaluated in a cohort of tumors (N=75) from 
breast cancer patients using immunohistochemistry analysis.  
Results: Our data show for the first time the degree of spatial organization of different CAF populations 
in breast cancer. We found that IL-iCAFs, Detox-iCAFs, and IFNγ-iCAFs tended to cluster together, 
while Wound-myCAFs, TGFβ-myCAFs, and ECM-myCAFs formed another group that overlapped with 
elevated TGF-β signaling. Differential gene expression analysis of areas with CD8+ T-cell 
infiltration/exclusion within the TGF-β signaling-rich zones identified elastin microfibrillar interface 
protein 1 (EMILIN1) as a top modulated gene. EMILIN1, a TGF-β inhibitor, was upregulated in IFNγ-iCAFs 
directly modulating TGFβ immunosuppressive function. Histological analysis of 75 breast cancer samples 
confirmed that high EMILIN1 expression in the tumor margins was related to high CD8+ T-cell 
infiltration, consistent with our spatial gene expression analysis. High EMILIN1 expression was also 
associated with better prognosis of patients with breast cancer, underscoring its functional significance 
for the recruitment of cytotoxic T cells into the tumor area.  

Conclusion: Our data show that correlating TGF-β signaling to a CAF subpopulation is not enough 
because proteins with TGF-β-modulating activity originating from other CAF subpopulations can alter its 
activity. Therefore, therapeutic targeting should remain focused on biological processes rather than on 
specific CAF subtypes. 
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Introduction 
Breast cancer (BC) is the second most frequent 

cause of cancer death in women worldwide [1]. 
Molecular and histological classifications of BC have 
significantly improved its clinical management [2, 3]. 
Yet, a subtype of BC called triple negative breast 
cancer (TNBC), named after the absence of hormone 
receptors and HER2 receptor protein-tyrosine kinase, 
remains a clinical challenge [3, 4]. Reminiscent of 
other difficult to cure cancers, TNBC is a prime 
example where alternative approaches to those 
aiming to target the cancer cells are urgently needed 
[4]. A complementary approach to cancer cell 
targeting is to target the environment in which they 
reside [5] and that is called tumor microenvironment 
(TME). Major components of the TME are 
non-parenchymal resident cells (e.g. endothelial cells, 
fibroblasts, adipocytes), immune cells and the 
supportive extracellular matrix (ECM) with specific 
physical and chemical properties [6]. TME has for 
decades attracted a considerable attention for novel 
drug development in solid tumors. Indeed today, in 
some cancers, modulating angiogenesis (leading to a 
reduced or normalized blood supply) or activating the 
cytotoxic immune responses is more effective than 
killing cancer cells (e.g. melanoma [7, 8] and 
hepatocellular [9] carcinoma), and as such represents 
the first-line treatment. This demonstrates the 
potential of TME-directed therapies. Despite these 
encouraging results, BC (like many other solid 
tumors) has not really benefited from TME targeting 
yet. Clinical trials with anti-angiogenic therapy or 
immune-checkpoint inhibitors (ICIs) produced rather 
unimpressive results [10-14]. However, a very good 
clinical response is achieved in a small subpopulation 
of patients [15, 16], which raises hope that the concept 
of TME targeting has significant potential that needs 
to be unlocked.  

Of the different TME cells, cancer-associated 
fibroblasts (CAF) have been known as critical for BC 
progression and recognized as important modulators 
of tumoral immune function [17]. Recent data on CAF 
subpopulations in BC raised the question whether 
specific CAF subtypes should be targeted to allow for 
better anti-tumor immune response [18, 19]. 
Answering this question requires a fairly detailed 
understanding of the interaction between the different 
cells in the TME, including CAF and immune cells. A 
step towards this objective has been facilitated by 
advances in spatial OMICS technologies, which have 
been a true game changer for characterizing the TME 
and possible intercellular interactions [20, 21]. They 
have allowed, for the first time, to link the spatial 
occurrence of different TME cell subtypes and of 
cancer cells with enhanced proliferative, immuno-

suppressive or therapy-resistance features [22]. In the 
present study, we investigated the spatial distribution 
of CAF subpopulations in BC and their relationship 
with infiltrating cytotoxic T cells. To do so we 
reconstituted a comprehensive single-cell BC atlas, 
where multiple subpopulations of CAF were 
identified. We then projected single-cell data on 
spatially resolved BC transcriptomes, specifically 
analyzing spatial proximity between infiltrating 
cytotoxic T cells and CAF subpopulations. Our 
findings globally showed that successful TME 
targeting should be process-oriented and not 
cell-oriented. Indeed, immune exclusion is promoted 
and regulated by the concerted action of several 
stromal cell types, and therefore disrupting a specific 
cell population is unlikely to abolish such a process 
entirely. Conversely, it might be more relevant to 
target the potentially trans-cellular molecular network 
at the heart of a crucial tumor process. However, 
knowledge on this area is still limited. Particularly, it 
is crucial to understand how different stromal cells 
molecularly engage to support or oppose 
tumor-promoting programs. Our study offers an 
example of such a program, where CAF-derived 
elastin microfibrillar interface protein 1 (EMILIN1) 
counteracts CAF-mediated immunosuppressive 
function of TGF-β. 

Materials and Methods 
Patients 

Four patients with invasive ductal BC who 
underwent surgical resection at Gunma University 
Hospital (Gunma, Japan) in 2020-2021 were enrolled 
for the Visium Spatial Gene Expression experiments 
(clinical data are in Table S1). For immuno-
histochemical staining (validation study), 75 patients 
with invasive BC who underwent breast-conserving 
surgery or modified total mastectomy at Gunma 
University Hospital (Gunma, Japan) in 2014-2015 
were enrolled (Table S2). Men with BC were not 
included in the study. None of the patients received 
neoadjuvant treatment. Their median age was 60 
years (range, 35-82 years). Pathological tumor size, 
nodal status and lymphovascular invasion were 
determined using the pathological records. The 
present study was approved by the Gunma 
University Hospital Institutional Review Board 
(reference no. HS2021-071) and was conducted 
according to the tenets of the Declaration of Helsinki. 
All patients gave their consent via the opt-out system. 

Tissue optimization 

Tissue optimization was performed following 
the 10x Genomics Visium Spatial Tissue Optimization 
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Reagents Kits User Guide (CG000238, 10x Genomics) 
to optimize the permeabilization time for the 
subsequent gene expression profiling. BC tissue 
cryosections (10 µm-thick) were placed on a Visium 
Spatial Tissue Optimization Slide (10x Genomics). 
Different permeabilization times were tested with 
different tissue sections on the slide with poly(dT) 
primers to capture the mRNA. After the 
permeabilization and the mRNA capture steps, 
reverse transcription followed by addition of 
fluorescently labeled oligonucleotides to the cDNA 
allowed detecting the resulting cDNAs as 
fluorescence signals. Hematoxylin and eosin (H-E) 
staining and the fluorescence signals were imaged 
with a BZ-X800 microscope (Keyence). The optimal 
permeabilization time was the incubation time that 
gave the strongest fluorescence signal. 

Gene expression analysis library preparation 
Spatial gene expression analysis was done with 

the Visium Spatial Gene Expression Reagent Kit (10x 
Genomics) following the manufacturer’s user guide 
(CG000239, 10x Genomics). BC tissue cryosections (10 
µm-thick) were placed on a Visium Spatial Gene 
Expression Slide (10x Genomics). Images of 
H-E-stained sections were taken with a BZ-X800 
microscope (Keyence). After tissue permeabilization 
for the optimal time (see above), mRNA capture with 
the poly(dT) probes in the slide and reverse 
transcription resulted in the construction of the 
full-length cDNA. After second strand synthesis and 
denaturation, cDNAs were amplified in a Veriti 
96-Well Thermal Cycler (Thermo Fisher Scientific) 
and quantified with a LabChip GX Touch HT Nucleic 
Acid Analyzer (PerkinElmer) to ensure that sufficient 
cDNA amounts were generated for the library 
construction. Enzymatic fragmentation and size 
selection with the SPRIselect reagent (Beckman 
Coulter) were used to optimize the cDNA fragment 
size for sequencing. Then, sample index PCR allowed 
preparing sequence-ready libraries. The final library 
quantification was done with LabChip GX. 

Sequencing 
The MGIEasy Universal Library Conversion Kit 

(MGI Tech) was used to convert the libraries to 
DNBSEQ-compatible libraries. Sequencing was done 
by DNBSEQ-G400 (MGI Tech) with a 
DNBSEQ-G400RS High-throughput Sequencing Set 
(App-A FCL PE100) following the manufacturer’s 
instructions. The resulting read lengths were as 
follows: Read 1-28 bp and Read 2–100 bp. Raw data 
were deposited at GEO with the accession code 
GSE243022. 

Bioinformatics 
The raw fastq files were processed with the 

SpaceRanger software 1.0 (10x Genomics) using the 
human genome reference set GRCh38-3.0.0 and 
default parameters. Data obtained from our four BC 
samples were complemented with published data [23] 
retrieved from GEO (reference GSE176078). For our 
four samples, tissue areas were defined using the 
Seurat clustering default algorithm (functions 
FindNeighbors and FindClusters). The cluster 
number was adjusted to the maximum value where 
distinct, cluster-specific gene expression patterns 
were detected with the Seurat differential search tool 
(function FindAllMarkers). These tissue areas were 
named by referring to the original areas defined by a 
pathologist. For the publicly available datasets [22], 
the original area definitions were used. Of note, these 
tumor areas played no role in the analysis, and they 
were defined only for reference and descriptive 
purposes. 

The gene spatial expression analysis mainly 
relied on our library BulkSignalR [24] and 
project-specific R scripts. Count matrices were filtered 
for non-expressed genes by imposing a minimum 
read count of 1 in at least 1% of the Visium spots. 
Subsequently, normalization was achieved by total 
count. Cell population-specific gene signatures were 
retrieved from sequence data for BC general cell 
populations [23] and for CAFs [25]. In all cases, the 
top 20 genes reported for each population were used. 
The spatial abundance of each cell population was 
estimated by applying BisqueRNA [26] to these gene 
signatures due to the bulk nature of Visium spatial 
data. Copy number variation analysis using InferCNV 
[27] was performed to validate the annotation of 
cancerous epithelial cell populations, and distinguish 
those cells from the cells of the TME. A first scoring of 
cycling cancer cells was obtained using BisqueRNA 
scores for the Cycling population [23]. An alternative 
score was provided by scoring a gene signature 
available from Seurat (cc.genes.updated.2019$s.genes 
and cc.genes.updated.2019$g2m.genes). In this case, 
scoring was done using the BulkSignalR function 
scoreSignatures. The various plots reporting the 
localization of cell types or cycling cells were 
generated using BulkSignalR standard functions. 

Several biological processes were scored using 
fast Gene Set Enrichment Analysis (fGSEA) [28] 
spatial transcriptomic features. TGF-β signaling was 
scored with the BulkSignalR scoreSignatures function 
to generate dendrograms to relate this process to CAF 
subpopulations. TGF-β signaling genes were obtained 
from MSSigDB (c5.bp.v7.0.symbols.gmt.txt, 
GO_TRANSFORMING_GROWTH_FACTOR_BETA_
RECEPTOR_SIGNALING_PATHWAY). Spatial 
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co-localization between cell populations or between 
TGF-β and cell populations was determined using a 
Pearson correlation-based distance matrix (distance = 
1 – correlation). Correlations within one sample were 
computed over the whole set of spots. 

 The differential gene expression analysis to 
compare CD8+ T cell-rich versus -poor areas with the 
top TGF-β signaling tumor areas was performed with 
edgeR [29] and the following parameters: maximum 
false discovery rate of 5%, minimum fold-change of 
1.5, and normalized read count >1 in at least 25% of 
spots. For one sample (tumor 114223F), this last 
threshold was decreased to 20%. 

Immunohistochemistry  
 Paraffin-embedded BC specimens (n=75; 10 

luminal A, 10 luminal B, 20 luminal HER2, 15 HER2, 
and 20 TNBC) were cut into 4 µm-thick sections and 
mounted on glass slides. All sections were incubated 
at 60 ºC for 60 min, deparaffinized in xylene, 
rehydrated, and incubated with fresh 0.3% hydrogen 
peroxide in 100% methanol at room temperature for 
30 min to block endogenous peroxidase activity. After 
rehydration through a graded series of ethanol 
solutions, antigen retrieval was performed using an 
Immunosaver (Nishin EM, Tokyo, Japan) at 98 ºC-100 
°C for 30 min. Sections were passively cooled to room 
temperature and then incubated in Protein Block 
Serum-Free Reagent (Agilent (Dako), Santa Clara, CA, 
USA) for 30 min. This was followed by incubation 
with an anti-EMILIN1 rabbit polyclonal antibody 
(x400, HPA002822; Sigma Aldrich, Saint Louis, MO, 
USA) in Dako REAL Antibody Diluent at 4 °C for 24 
h. According to the manufacturer's instructions, 
EMILIN1 staining was visualized as a red color using 
the Histofine Simple Stain AP (Multi) Kit (Nichirei, 
Tokyo, Japan) and the FastRed II reagent (Nichirei, 
Tokyo, Japan). Then, sections were boiled in a 
microwave oven for 10 min to inactivate the 
antibodies and enzyme activity. Next, they were 
incubated with an anti-CD8 rabbit polyclonal 
antibody (x500, ab4055; Abcam, Cambridge, UK) in 
Dako REAL Antibody Diluent at 4 °C for 24 h. CD8 
staining was visualized as a brown color using the 
Histofine Simple Stain MAX-PO (Multi) Kit (Nichirei, 
Tokyo, Japan) and DAB substrate. Sections were 
lightly counterstained with hematoxylin and 
mounted. Negative controls were incubated without 
the primary antibody, and no staining was detected.  

 EMILIN1 expression was evaluated as staining 
intensity and staining ratio in 200x view fields from 
two tumor margin areas and one center area. Staining 
intensity was evaluated as 0 (none), 1 (weak), 2 
(moderate), and 3 (strong). The ratio of EMILIN1- 
stained area to the whole field of view was evaluated 

as 0 (none), 1 (1 %-25 %), 2 (26 %-50 %), 3 (51 %-75 %), 
4 (≥ 76 %). The staining intensity and ratio were 
multiplied to obtain the EMILIN1 score (0-12). The 
total number of CD8+ cells was counted in the 200x 
view fields where the EMILIN1 score was evaluated. 
Breast cancer samples with higher EMILIN1 score in 
the margin than central area (score ratio of margin to 
center > 1) were defined as a high EMILIN1 group, 
and the others (score ratio ≤ 1) as low EMILIN1 group.  

Immunofluorescence analysis 
 Multicolor immunofluorescence staining was 

performed in tissue sections of BC surgically resected 
from five patients to detect EMILIN1, CD8, and 
TGFBI expression and from seven patients to detect 
EMILIN1, CD8, and Ki-67 using the Akoya 
Biosciences Opal Kit following the manufacturer’s 
instructions. All patients were selected from the 
validation group of BC samples. In the first five 
samples, EMILIN1 staining (anti-EMILIN1 rabbit 
polyclonal antibody: x400, HPA002822, Sigma) was 
visualized using the Opal 480 Fluorophore; CD8 
staining (anti-CD8 rabbit polyclonal antibody: x500, 
ab4055, Abcam) with the Opal 570 Fluorophore; and 
TGFBI staining (anti-TGFBI rabbit polyclonal 
antibody: x400, 10188-1-AP; Proteintech, Rosemont, 
IL, USA) with the Opal 520 Fluorophore. In the other 
seven BC samples, EMILIN1 staining was visualized 
using the Opal 480 Fluorophore, CD8 staining with 
the Opal 570 Fluorophore, as above, and Ki-67 
staining (anti-Ki67 rabbit monoclonal antibody: x500, 
#9027; Cell Signaling Technology, Danvers, MA, 
USA) with the Opal 520 Fluorophore. All sections 
were lightly counterstained with hematoxylin and 
examined under an All-in-One BZ-X710 fluorescence 
microscope (KEYENCE Corporation, Osaka, Japan).  

Statistical analysis 
 Immunohistochemical data were subjected were 

appropriate to statistical analysis. Mann-Whitney U 
test and χ2 test were used to identify statistically 
significant differences between the EMILIN1 high and 
low groups. The Kaplan-Meier graphs were generated 
for the overall survival and statistical significance was 
determined by using the log-rank test. Univariate and 
multivariate survival analyses were performed using 
the Cox proportional hazards model. A p-value of < 
0.05 was considered to indicate statistical significance. 
The statistical analyses were performed using JMP 
software (SAS Institute, Cary, NC, USA). 

Results 
 The integration of single-cell RNA-seq and 

spatial transcriptomic data unveils functional 
heterogeneity across BC samples. We generated 
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spatial transcriptomic data from four untreated 
invasive BC samples (A1, B1, C1, and D1; see Table S1 
for the tumor classification). We also included 
published data on six BC samples (1160920F [TNBC], 
1142243F [TNBC], CID4290 [ER+], CID4535 [ER+], 
CID4465 [TNBC], CID44971 [TNBC]) [23]. To gain a 
deeper insight into the cellular composition of each 
BC sample, we decided to assemble a single-cell 
RNA-seq BC atlas. To this end, we merged data from 
two recently published studies. The first one 
characterized all cell populations in 26 BC samples 
[23], and the second one characterized > 18,000 CAFs 
from 8 BC samples [25]. The resulting atlas is featured 
in Figure 1A, and representative cell-specific markers 
are in Figure 1B. Original cell annotations were kept 
from the respective studies, while their accuracy was 
additionally verified by inferring copy number 
variations (Figure S1A). While the original dataset of 
Wu et al. [23] contained a distinct CAF population 
(annotated as myCAF like and iCAF like), these cells 
perfectly superimposed (Figure 1C) the more detailed 
classification of Kieffer et al. [25]. Globally, all CAF 
could be divided in two major groups, the myCAF 
and iCAF, while they all belonged mainly to s1 type 
and none were of s4 type (as defined by Costa et al. 
[18]) (Figure 1D). We were unable to verify if any of 
the CAF were of s2 and s3 subtype as, to the best of 
our knowledge, no gene signatures of these subtypes 
are publicly available. However, these CAF subtypes 
have been reported in non-tumoral breast tissues [18] 
and as such were assumed as absent in the present BC 
atlas. Gene expression analysis of all CAF subtypes in 
the dataset (Figure 1D and Figure S1B) has clearly 
shown that CAF annotation from Wu et al. [23] could 
be replaced with the one from Kieffer et al. [25]. 
Indeed, the myCAF population as defined by Wu et 
al. had intermediate gene expression signature of all 
myCAF subpopulations as proposed by Kieffer et al. 
(Figure 1D). This was also observable for iCAF. 
Finally, the CAF nomenclature of Kieffer et al. could 
be seemingly transposed to Wu et al. dataset (Figure 
S2), where all the 8 CAF subpopulations were readily 
found. Consequently, we choose to further use the 
more nuanced CAF definition by Kieffer et al. in all 
subsequent analyses.  

Following the establishment of the BC cell atlas 
and the clarification of CAF subpopulations, we next 
used it to annotate our spatial transcriptomic data 
(Figures S3-S12). Annotation relevance was checked 
relative to the presence of the typical histological 
structures observed in the H-E-stained histological 
sections (data not shown). Following the annotation 
process, visual inspection highlighted that individual 
cell subtypes (within a cellular population) 
compartmentalized differently in different BC 

samples. Knowing that the cell subtypes are 
characterized by distinct gene expression signatures 
(Table S3) we expected that this spatial heterogeneity 
would also imply a significant functional 
heterogeneity. To assess this, we performed a spatial 
gene ontology (GO) analysis using fGSEA. All BC 
specimens (n=10) showed a significant modulation of 
> 300 biological processes (data not shown) that could 
be grouped in two to three spatial patterns per sample 
(Figures 1E & S13). Among the spatially modulated 
GO processes, those relating to ECM remodeling and 
immunity regulation were particularly relevant for 
studying the CAF-immune cell interactions. Both 
processes showed a clear tissue compartmentali-
zation, suggesting that such interactions may be 
enriched in specific BC tissue regions. TGF-β signaling 
was especially interesting due to its ability to suppress 
tumor immune response [30]. T-cell and macrophage 
activation processes displayed slightly different 
compartmentalization, but a spatial pattern opposite 
to that of TGF-β signaling in the majority of tumors. 
However, some tumor regions were rich in both 
TGF-β signaling and T-cell activation. This finding 
was particularly intriguing and motivated additional 
analyses.  

 BC areas with low proliferation potential are 
characterized by high macrophage and CD8+ T-cell 
infiltration. The spatial transcriptomic data projection 
on histological sections (Figures S3-S12) showed that 
BC samples were composed of distinct and 
heterogeneously distributed cancer cell subtypes. 
However, we observed a high degree of spatial 
consistency among cycling cancer cells and regions 
characterized by high-proliferative potential (Figure 
S14, S+G2M score plots). Spatial deconvolution of the 
immune cell infiltrate indicated that CD8+ T cells and 
macrophages were abundant in regions with low 
proliferative capacity (Figure 2A-B). The correlation 
analysis confirmed this pattern in 9/10 BC spatial 
datasets (the only exception was CID4535). When this 
correlation analysis was extended to include all cancer 
cells found in the BC atlas, the inversed correlation 
trend between CD8+ T cells and macrophages on one 
side and proliferative cancer cells on the other was 
confirmed (Figure S15). Since CD8+ T cells have a 
crucial role in tumor growth inhibition, we next 
determined whether locoregional differences in 
TGF-β signaling were correlated with the differential 
presence of CD8+ T cells. Indeed, TGF-β is a 
well-known master regulator of normal and 
pathologic inflammation. We did not find any 
significant correlation between TGF-β signaling and 
CD8+ T-cell abundance (data not shown), suggesting a 
more complex relationship between immune 
exclusion and TGF-β signaling. CAFs are major TGF-β 
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producers in tumors and also regulate TGF-β activity 
through the secretion of modulatory proteins [31]. 
Therefore, we hypothesized that CAF populations 

and their tissue distribution might explain the link 
between TGF-β activity and CD8+ T-cell exclusion.  

 

 
Figure 1: BC atlas for cellular and functional annotation of spatial single-cell RNA-seq data. (A) UMAP plot showing the BC atlas based on two previously published single-cell 
RNA-seq datasets [23, 25]. (B) Validation of the cellular annotation using several cell-specific genes. (C) Enlarged UMAP plot of CAF subpopulations from the panel (A). (D) (left 
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and center) Scoring of myCAF, iCAF, CAF s1 and CAF s4 signatures in the CAF subpopulations from the panel (C); highest score is denoted in red, lowest score in dark blue. 
(right) Dot plot of marker genes delineating individual CAF subpopulations; same color-code. Genes used for scoring are outlined in Table S3. (E) Spatial distribution of selected 
GO processes in BC samples (two representative samples are shown: C1 and 1160920F; other samples are displayed in Figure S13). The following GO processes are displayed: 
ECM Structural Organization, Wound Healing, TGF-β Receptor Signaling, Regulation of Immune System, Macrophage Activation, and T-Cell Activation. 

 
Figure 2: Spatial analysis of proliferating cancer cells and immune infiltrate in BC samples. (A) Histological annotation of two representative BC samples (other samples are 
shown in Figure S14), and estimation of highly proliferative regions (S+G2M phases) (higher panels); actively cycling cancer cells and two immune populations (macrophages and 
CD8+ T cells) (middle and lower panels). The heat map shows spatial correlation between these four populations. (B) Correlation analysis for the four selected cell populations in 
the other eight BC samples. 
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 ECM-myCAFs, wound-myCAFs and TGFβ- 
myCAFs are in regions with high TGF-β signaling. 
Recent single-cell studies [25] determined that in BC, 
there are several major CAF subpopulations: ECM- 
myCAFs, TGFβ-myCAFs, wound-myCAFs, IFNαβ- 
myCAFs, acto-myCAFs, IFNγ-iCAFs, detox-iCAFs, 
and IL-iCAFs. These CAF subpopulations are 
characterized by distinct gene expression profiles that 
suggest their involvement in specific cancer-relevant 
biological pathways. An overview of the GO 
enrichment analysis in each CAF subpopulations is 
provided in Figure S16. No significant acto-myCAF 
enrichment was observed. This was the smallest CAF 
population, at the periphery of the CAF cluster in 
Figure 1a. Next, we used single-cell RNA-seq data to 
spatially map CAF subpopulations in the BC samples. 
CAF subpopulations showed a rather compart-
mentalized distribution pattern (Figure 3A and 
Figures S3-S12). Overall, their distribution profiles 
could be classified in two main patterns (Figure 3A-B) 
that included ECM-myCAFs, wound-myCAFs and 
TGFβ-myCAFs (first pattern) and detox-iCAFs, 
IL-iCAFs and IFNγ-iCAFs (second pattern). 
Conversely, IFNαβ-myCAFs frequently grouped 
separately. We also found that high TGF-β signaling 
was associated with the first pattern (ECM-myCAFs, 
wound-myCAFs and TGFβ-myCAFs). Having 
established a link between these three CAF 
subpopulations and TGF-β signaling, we wanted to 
understand its potential effect on the spatial 
localization of CD8+ T cells. Specifically, we asked 
why CD8+ T cells could accumulate in some BC areas 
that were rich in TGF-β signaling, although this is in 
contradiction with TGF-β immune suppressor role 
(Figure 4A). We spatially scored TGF-β signaling in 
each BC sample using a gene set (Materials and 
Methods), and defined a tumor-specific high TGF-β 
area that corresponded to the top TGF-β signaling 
scores. Independently, we defined CD8+ T cell-rich 
and -poor areas in each tumor sample (i.e. the 
locations with top and bottom quarter CD8+ T-cell 
abundance scores, respectively). By intersecting these 
areas, we compared gene expression in CD8+ T 
cell-rich versus -poor areas within high TGF-β 
signaling locations (Figure 4A). Differential gene 
analysis in each BC sample identified the top 
modulated genes and their frequency (Figure 4B). 
Two genes emerged as significantly modulated in 
most BC samples: EMILIN1 and COL3A1. Both are 
related to TGF-β signaling, but in a different fashion. 
COL3A1 is produced by fibroblasts in response to 
TGF-β activation [32], whereas EMILIN1 is an 
inhibitor of TGF-β signaling [33]. We were 
particularly interested in EMILIN1 because its 

expression may modulate TGF-β activity and thus 
explain the selective CD8+ T-cell infiltration. A 
detailed comparison of EMILIN1 expression in CD8+ T 
cell-low versus -high areas for each patient is provided 
in the Figure S17. Targeted analysis of the single-cell 
RNA-seq dataset reported by Wu et al. [23] revealed 
that EMILIN1 was a bona fide CAF gene, and was 
expressed only by myCAFs (Figure 4C). A more 
detailed analysis using the dataset reported by Kieffer 
et al. [25] showed that EMILIN1 was expressed by 
most CAF subpopulations, except IL-iCAFs. The 
strongest expression was observed in IFNγ-iCAFs, 
followed by ECM-myCAFs, IFNαβ-myCAFs and 
TGFβ-myCAFs (Figure 4D). Interestingly, 
wound-myCAFs, which showed the strongest 
expression of TGF-β signature genes (Figure 4E), 
displayed low EMILIN1 expression.  

 Spatial modulation of EMILIN1 expression 
coincides with CD8+ T-cell infiltration and is 
predictive of patient survival. To support the 
hypothesis that EMILIN1 expression is locally 
inhibiting TGF-β signaling, we monitored EMILIN1 
and TGFBI spatial expression by immunofluorescence 
analysis in 5 patients with BC. We selected TGFBI 
because this protein is a known TGF-β activity 
reporter in cancer [34] and its expression is inversely 
correlated with CD8+ T-cell tumor infiltration [35]. 
TGFBIhigh and EMILIN1high CAFs constituted two 
distinct cell populations (Figure 5A and Figure S18A). 
CD8+ T cells were predominantly found in the 
EMILIN-rich areas, while they were excluded from 
regions with high TGFBI expression. As EMILIN1 
expression is limited to CAFs and EMILIN1 functions 
as TGF-β activity suppressor [33], we examined its 
expression by immunohistochemistry in 75 patients 
with BC and its relationship with CD8+ T-cell 
infiltration. We found that EMILIN1 was clearly 
overexpressed in BC areas rich in infiltrating CD8+ T 
cells (Figure 5B-C). Moreover, breast cancer cases 
defined as EMILIN1-high had a significantly lower 
proportion of Ki-67-positive cancer cells (Figure 5D 
and Table S4). Indeed, 94 % of EMILIN1-low cases 
had Ki-67-positivity above 20 % threshold. This 
percentage sunk in EMILIN1-high cases to 62 %. 
Additional analysis in restricted number of 
EMILIN1-high cases showed that many CD8+ T cells 
infiltrating in the tumor were Ki-67 positive (Figure 
S18B, right panel, yellow arrowheads). In support of 
this observation, survival analysis showed that high 
EMILIN1 expression in BC was associated with 
increased survival (Figure 5E). Further correlation 
analysis between patient age, T factor, N factor, stage, 
hormonal status, HER2 status or subtype did not 
show any significant modulation between 
EMILIN1-high and -low groups (Table S4).  
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Figure 3: Spatial relationship between TGF-β signaling and CAF subpopulations in BC. (A) Spatial distribution of genes implicated in TGF-β signaling (top) and spatial distribution 
of different CAF subpopulations in two BC samples. The dendrogram (bottom, right) shows the spatial co-occurrence between CAF subpopulations and TGF-β signaling. (B) 
Dendrograms showing the co-occurrence of different CAF populations and TGF-β signaling in the other eight BC samples. (A-B) Labels TGFb, IFNab and IFNg refer to TGFβ, 
IFNαβ and IFNγ respectively.  
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Figure 4: Differential gene expression analysis of areas with high TGF-β signaling and with/without CD8+ T-cell exclusion. (A) Spatial distribution of areas with high versus low 
TGF-β signaling and presence/absence of CD8+ T cells in two BC samples (patient samples C1 and 1160920F are shown as examples; remaining patients, data not shown). (B) 
Differential gene expression analysis performed in all 8 BC samples; displayed are the number of patients in which each of the top-modulated genes was found as significantly 
overexpressed (in the areas where CD8+ T cells are present despite high TGF-β signaling). Highlighted in red are EMILIN1 and COL3A1. (C) EMILIN1 expression in the indicated 
cell subpopulation (from the BC atlas in Figure 1A). (D) EMILIN1 expression in the indicated CAF subpopulations. (E) Upregulation of TGF-β signature genes in the indicated 
CAF subpopulations. The patient-wise statistical analysis of EMILIN1 overexpression in CD8+ cells with high TGF-β signaling regions is provided in Figure S17. (A, D) Labels 
TGFb, IFNab and IFNg refer to TGFβ, IFNαβ and IFNγ respectively.  
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Figure 5: EMILIN1 is a good prognostic marker in BC. (A) Multiplexed immunofluorescence analysis displaying the localization of CD8+ T cells (red) and EMILIN1 expression 
(blue) in CAFs in a representative BC sample (N=5). Expression of TGFBI, a TGF-β signaling activity marker, was in green. Cell nuclei were examined by phase-contrast 
microscopy (data shown in Figure S18). (B) Multiplexed immunohistochemistry analysis showing examples of EMILIN1 (red) and CD8 (brown) co-staining in breast cancer 
samples (N=75, all subtypes; see also Table S2). (C) Violin plots of CD8+ cell counts in areas of high versus low EMILIN1 expression in BC samples (N=75). (D) Ki-67 positivity 
(as evaluated by retrospective analysis; see Table S4) in EMILIN1-high versus EMILIN1-low cases (N=70); (C-D) p-values were calculated using Mann-Whitney U test. (E) 
Survival analysis of patients with BC (N=75) in function of EMILIN1 marginal expression level (high versus low). (D-E) The cut-off value of 1 was used to assign patients to EMILIN1 
high or EMILIN1 low group. The cut-off value was calculated as ratio of EMILIN1 score in the margin and the score in the central area. Clinical and pathological information 
regarding the patient cohort are displayed in the Table S2 and S4. Details on scoring methodology are provided in the Materials and Methods section. 

 

Discussion 
 ICIs represent a major breakthrough for the 

systemic treatment of some tumor types and patient 
subpopulations. The success of immunotherapy is 
influenced by the tumor immunological status and 
the infiltration of cytotoxic CD8+ T cells. Although the 
underlying mechanisms of their infiltration are poorly 
understood, CD8+ T cells are one of the most relevant 
effector cell types recruited by ICIs [36, 37]. To shed 
additional light on CD8+ T-cell infiltration, the present 

study used comprehensive single-cell RNA-seq BC 
datasets to project the different cell populations 
spatially in BC tissue sections. In accordance with the 
literature, we found a clear, opposed, spatial 
localisation between proliferating cancer cells and 
CD8+ T cells in BC. It has also been shown that the 
tissue localization of CD8+ T cells is important for the 
patient outcome, and CD8+ T cell presence in the 
tumor margin correlates with better clinical outcome 
[38, 39]. However, we do not know which stromal 
parameters influence CD8+ T-cell composition, 
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infiltration extent, localization, activation, or 
exhaustion in BC. This limits our ability to turn 
immunologically cold tumors into hot tumors and 
subject them to effective ICI treatment. TGF-β 
signaling in the tumor stroma mediates this 
immunomodulatory process. TGF-β is a potent 
immune suppressor with direct effects on the 
proliferation, differentiation and survival of various 
immune cell sub-populations [40, 41]. Experiments in 
mice suggest that TGF-β restricts CD8+ T-cell 
trafficking into tumors by suppressing CXCR3 
expression [42]. These and other findings motivated 
the design of clinical trials to assess TGF-β blockade in 
combination with ICIs. However, the results were 
rather contrasted and surprisingly modest, in sharp 
contrast to the clear importance of TGF-β in tumor 
immunity [43]. The reason for this failure remains 
unclear, and might be related to the actual TGF-β 
activity, which is difficult to measure in situ. Indeed, 
TGF-β activity is modulated by factors secreted from 
the TME [31]. Therefore, TGF-β expression level may 
not reflect its actual activity.  

 To try to better understand TGF-β activity, we 
spatially correlated the relationship between CD8+ 
T-cell tumor infiltration, individual cancer cell 
populations, and TGF-β activity in BC. CAFs are a 
TME cell type with specific features: they are major 
TGF-β producers in the tumor and among the largest 
modulators of its activity by expressing soluble matrix 
proteins that can efficiently inhibit this cytokine [44, 
45]. Therefore, it is not surprising that recent studies 
highlighted CAFs and some CAF subpopulations as 
key modulators of T-cell exclusion [46]. In the present 
study, spatial differences were mainly observed 
between the broad myCAF and iCAF subtypes, and 
myCAF were frequently spatially associated with 
higher TGF-β signaling. This is in agreement with 
previous studies in pancreatic cancer where such 
spatial heterogeneity was first reported [46, 47]. 
Previous spatial transcriptomic analysis of breast 
cancer [23] showed that CD8+/CD4+ T-cell tumor 
infiltration was more frequently associated with iCAF 
populations than myCAF. Despite the effort to further 
spatially deconvolute these major CAF populations, a 
finer spatial distinction between all CAF 
subpopulations was not accessible, possibly due to 
limitations of the current spatial and single-cell 
transcriptomic data depth. Therefore, we performed 
differential analysis not based on individual CAF 
subpopulations but on regions with high TGF-β 
signaling and different degrees of CD8+ T-cell 
infiltration. This allowed us to propose a molecular 
explanation of the overlaps between TGF-β-driven 
myCAFs and areas of CD8+ T-cell infiltration, despite 

the known immunosuppressing effect of TGF-β. This 
analysis also highlighted a novel immune modulator 
protein, EMILIN1, that was previously reported as a 
TGF-β inhibitor. We found that EMILIN1 promotes 
CD8+ T-cell infiltration and is associated with better 
outcome in patients with BC.  

 The results highlight the fact that different CAF 
populations cannot be simply categorized as 
immune-promoting or -suppressing cells and that 
their status is finely tuned by the expression of 
modulator genes. Such modulators can mitigate the 
activity of key cytokines, such as TGF-β. Moreover, 
this finding suggests that CAF subpopulations can be 
largely regarded as cell programing states, probably 
with few exceptions. Such exceptions may occur in 
organs/tissues where different CAF sources are 
possible because of the intrinsic presence of different 
fibroblast-like cells (e.g. stellate cells in liver). Viewing 
CAF heterogeneity as cell states rather than actual 
subpopulations implies that harnessing CAFs for 
therapy would require their re-programing rather 
than the elimination of a specific CAF subpopulation. 
In this regard the current study highlights EMILIN1 
as an important determinant of CAF anti-tumor 
program. Future studies should elucidate how 
EMILIN1 expression is modulated and how it could 
be upregulated in CAFs.  
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