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Abstract 

Exosomes, carrying distinctive biomolecules reflective of their parent cell's status and origin, show 
promise as liquid biopsy biomarkers for cancer diagnosis. However, their clinical translation remains 
challenging due to their relatively low concentration in body fluids. Surface-Enhanced Raman 
spectroscopy (SERS) has recently gained significant attention as a label-free and sensitive technique for 
exosome analysis. This review explores label-free SERS for exosome detection, covering exosome 
isolation and characterization methods, advancements in SERS substrates, and fingerprint analysis 
techniques using machine learning. Furthermore, we emphasize the challenges and offer insights into the 
future prospects of SERS-based exosome analysis to enhance cancer diagnosis. 
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1. Introduction 
Extracellular vesicles (EVs), surrounded by a 

lipid bilayer, are released by both prokaryotes and 
eukaryotes and can be broadly classified into two 
main types: microvesicles and exosomes, 
distinguished by their distinct cellular origins [1]. 
Exosomes originate from endosomes and typically 
range in diameter from 40 to 160 nm [2]. The secretion 
of exosomes initiates with the formation of 
multivesicular bodies through plasma membrane 
invagination [3, 4]. Exosome secretion plays a pivotal 
role in both physiological and pathological processes, 
influencing the composition of exosomes, including 
their surface molecules and contents [5]. Depending 
on the specific cell of origin, exosomes carry a wide 
range of cellular components, such as nucleus acid, 
lipids, and proteins [5-7].  

Exosomes possess a diverse cargo, conveniently 
accessible in various locations, and packaging 
essential molecular components, making them 
exceptionally valuable biomarkers [8]. As a superior 
choice for noninvasive liquid-biopsy in disease 

diagnosis, prognosis, and monitoring therapy 
response, exosomes offer promising potential [5, 
9-11]. Consequently, there is an urgent need for highly 
sensitive technologies to enhance exosome analysis 
due to the low concentration of exosomes in biofluid 
is and to the low recovery efficiency of current 
isolation techniques, which constitutes a crucial step 
in exosome analysis [12]. In response to this demand, 
a diverse array of biosensing platforms has emerged, 
offering promising opportunities to achieve lower 
limits of detection and significantly enhance the 
accuracy in exosome characterization [13].  

Among the various techniques, surface- 
enhanced Raman spectroscopy (SERS) stands out as a 
promising method that significantly amplifies the 
Raman signal of molecules. This is achieved by 
attaching the analytes to a plasmonic SERS substrate, 
resulting in an enhancement factor (EF) of up to 1011 

[14]. The enhancement arises from the interaction of 
light with nanostructured materials such as gold (Au) 
and silver (Ag) nanoparticles, which produce a strong 
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surface plasmon resonance effect [14]. The unique 
advantages of SERS, including non-invasiveness, high 
sensitivity, rapid analysis, resistance to photo-
bleaching and photodegradation, multiplex detection 
capabilities, and low interference from water, have 
made it a popular technology in exosome analysis 
[15].  

SERS detection can be broadly classified into two 
distinct approaches: label-free exosome detection [16] 
and exosome detection employing SERS-tags [17-20]. 
In SERS-tag analysis, Raman tags, reporters, or dyes 
are typically affixed to the surface of nanoparticles, 
which are subsequently bound to exosomes through 
specific antibodies targeting exosomal biomarkers [21, 
22]. The sharp and distinct signal emitted by the 
Raman tag enables precise quantification of exosome 
concentration, offering exceptional selectivity in 
detecting exosomes bearing particular biomarkers 
[13]. Labeled-SERS generally exhibits high sensitivity 
owing to the substantial signal enhancement confer-
red by labels. This approach provides remarkable 
specificity, as labeled molecules can precisely target 
specific exosomal markers. Labeled-SERS finds 
particular utility in research applications demanding 
both heightened sensitivity and the precise targeting 
of specific exosomal components. However, the 
progress of SERS-tag-based exosome analysis is 
constrained by the availability of exosome biomarkers 
and suitable Raman tags [13]. Furthermore, labeled- 
SERS necessitates additional steps for exosome 
labeling, potentially affecting their biological 
characteristics. It may also have limitations when 
applied to high-throughput analysis due to the 
additional labeling procedures and the associated 
processing time. Additionally, labeled-SERS can incur 
extra costs related to the procurement and utilization 
of labeling agents. The introduction of labels carries 
the potential risk of altering the biological properties 
of exosomes, which could be a concern in specific 
research scenarios. 

Conversely, label-free SERS relies on the 
inherent properties of exosomes, particularly their 
natural Raman scattering signals [23-26]. Label-free 
SERS provides a unique spectral fingerprint of 
exosomes without the need for identifying specific 
exosome biomarkers or employing Raman tags [16]. 
Label-free-SERS simplifies the sample preparation 
process since it omits the labeling steps typically 
required [23]. This characteristic makes label-free 
SERS potentially more suitable for high-throughput 
applications. Moreover, label-free SERS tends to be 
more cost-effective, as it eliminates the need for 
external labels. It proves particularly valuable in 
broader screening contexts or when minimal sample 
manipulation is desired. Importantly, label-free SERS 

is less likely to adversely affect the biological integrity 
of exosomes, rendering it the preferred choice for 
bioanalytical investigations. 

The biochemical characteristics of substances on 
the surface of exosomes are closely associated with 
cancer diagnosis [27-29]. For instance, the 
phosphorylation status of proteins may play a crucial 
role in the early development of cancer cells [28]. 
Numerous research groups have employed different 
analytical techniques to demonstrate that the degree 
of protein phosphorylation on the surface of 
extracellular vesicles isolated from the blood of 
various cancer patients, including breast cancer, lung 
cancer, and pancreatic cancer, is significantly higher 
than that in healthy individuals [27, 28]. Furthermore, 
changes in surface polysaccharides [29] and lipid 
molecules (such as phospholipids, cholesterol, 
sphingolipids, and ceramides) [30] can also be used to 
detect pancreatic, lung, liver, and colon-related 
cancers. These studies indicate that cancer occurrence 
is closely linked to the biochemical changes of many 
substances on the surface of exosomes, rather than 
relying solely on a single protein marker. Label-free 
SERS enables the characterization of exosomes by 
capturing their unique fingerprint, which corresponds 
to the specific biochemical compounds present on 
their surface. Based on this advantage, label-free SERS 
has demonstrated promising applications in 
diagnosing various types of cancers, including lung 
cancer [31-33] breast cancer [34-37], melanoma [38], 
oral and oropharyngeal squamous cell carcinoma [39], 
head and neck cancer [40], urogenital cancer [41], 
hepatocellular carcinoma [42], nasopharyngeal cancer 
[43] and gastric cancer [44]. Moreover, this technique 
allows for simultaneous diagnosis of multiple cancers 
[28, 45] and can accurately identify cancer in patients 
at different stages [46]. 

This review primarily explores exosome 
detection using label-free SERS. We began by 
discussing exosome isolation and characterization 
methods from label-free SERS-based exosome 
research, as the concentration and size of exosomes 
are crucial factors in SERS analysis. Next, we focused 
on the advancements in SERS substrates, as their 
selection and improvement play a pivotal role in SERS 
analysis. While label-free SERS technology offers the 
potential for simultaneous analysis of various 
diseases, there is a risk of signal overlap among 
different biomolecules, leading to the loss of some 
diagnostic signals. Consequently, we also 
summarized data analysis methods, particularly 
fingerprint analysis techniques, which include 
linear/non-linear machine learning methods 
commonly utilized in label-free SERS analysis. We 
concentrate on research from the past 5 years, 



Theranostics 2024, Vol. 14, Issue 5 
 

 
https://www.thno.org 

1968 

highlighting challenges and providing insights into 
the future potential of SERS-based exosome analysis 
for improving cancer diagnosis. 

2. Exosome isolation and characterization 
For effective SERS analysis of exosomes, it's 

essential to isolate exosomes specifically from an 
extensive range of body fluids, including 
blood/plasma/serum [28, 33, 36, 40-42, 44-52], urine 
[53] and saliva [39]. Depending on the research 
purpose and experimental conditions, exosomes may 
also be isolated from other sources such as fetal 
bovine serum [54] and bronchoalveolar lavage fluid 
[31]. It should be noted that cells [23, 32-35, 37, 38, 43, 
46, 49, 55-60] are also commonly used for discrimi-
native analysis of cancerous and non-cancerous 
exosomes based on SERS (Figure 1). Significant 
advancements have been achieved in the field of 
exosome isolation techniques, yielding promising 
insights into the understanding of exosomes [61, 62]. 
However, it has become evident that the rapid and 
efficient isolation of exosomes remains a challenge, 
primarily due to the intricate nature of biological 
samples, the potential interference from other 
extracellular vesicles sharing similar physicochemical 
and biochemical properties, and the inherent 
heterogeneity of exosomes themselves. A variety of 
methods (Table 1) have been employed to successfully 
extract exosomes from a wide range of sample 
matrices, showcasing their effectiveness. 

Ultracentrifugation is widely regarded as the 
gold standard for isolating exosomes due to its ability 
to generate exceptionally high centrifugal forces [61]. 
The centrifugal force employed typically falls within 
the range of approximately 100,000 to 120,000 times. It 
is a user-friendly approach, as it does not demand 
extensive technical knowledge. It offers long-term 
affordability, as only one ultracentrifuge machine is 
needed for extended use. Additionally, it is a 
moderately time-consuming method that typically 
does not require complex sample pretreatments. 
Consequently, ultracentrifugation (UC)-based 
techniques have gained significant popularity in SERS 
analysis exploring exosomes [28, 32-34, 38-40, 42, 48, 
51, 56, 57, 59, 60, 63]. Size exclusion chromatography 
(SEC) [31-33, 36, 40, 45-47, 55] and ultrafiltration [37, 

38, 41, 58] are popular size-based exosome isolation 
techniques. Some commercial assay kits which are 
based immunity capture are also commonly used in 
exosome isolation techniques [33, 35, 49, 54]. It is 
worth mentioning that a magnetic SERS platform has 
been developed to facilitate the combined process of 
exosome isolation and Raman signal enhancement. It 
is noteworthy that a magnetic SERS platform has been 
developed to streamline the concurrent processes of 
exosome isolation and Raman signal enhancement 
[23, 50]. This innovative system integrates a 
microfluidic Raman biochip for the isolation and 
detection of serum exosomes on a single chip, with 
Raman beads being employed to differentiate 
between individuals with good health and those 
diagnosed with cancer, all within the span of 1 h. This 
device is capable of efficiently handling and detecting 
low-volume samples within a short timeframe, with a 
median isolation efficiency. 

To assess the quality of isolated exosomes, 
numerous techniques have been developed for 
characterizing their protein content, size distribution, 
morphology, concentration, and biochemical 
composition. Nanoparticle tracking analysis (NTA) 
are commonly used to count and size exosome, which 
are viewed by the incident illumination coming from 
laser light [32, 36-40, 45-48, 50-52, 55, 57-59, 63]. 
Transmission electron microscopy (TEM) is used as a 
compensation to confirm the detection of NTA as it is 
relatively time-consuming and not fitted for a large 
amount of exosomes although it can be used to check 
the quality of preparations in a visualized way [28, 31, 
33, 36-38, 40-43, 45-47, 50, 51, 53, 54, 56-60]. Western 
blotting is an important procedure for exosome 
characterization to confirm some specific proteins in 
exosomes [28, 32, 33, 36, 41, 43, 45, 46, 48, 50, 53, 54, 
56-60]. As well as those commonly used techniques, 
there are some more techniques used for exosome 
characterization depending on the research purpose 
before SERS analysis, such as dynamic light scattering 
[32, 34-36, 38, 47, 60], zeta potential analyzer [32, 38], 
fluorescence [23], flow cytometry [43, 52, 58], atomic 
force microscope [48], single particle interferometric 
reflectance imaging sensing [40], tunable resistive 
pulse sensing [54] and protein assay kit [60].  

 

Table 1. Comparison between the common exosome isolation methods  

Technique Purity Equipment Time Yield Specimen 
volume 

Exosome Integrity Ref 

UC Low (5-25%) Heavy, not portable >4 h Low High (~1 mL) Exosome damage [39] 
SEC High Special column 0.3 h Median Median (500 μL) Loss of small vesicle [55] 
Ultrafiltration High Cheap <4 h Median Median (400 μL) Loss of small vesicle [64] 
Immunoprecipitation High (99%) Expensive 4-20 h Low Median (up to 1 mL) Exosome damage [65] 
Microfluidic SERS High Easy integration 1 h Median Low (20 μL) Exosome damage [50, 66] 

UC: Ultracentrifugation; SEC: Size Exclusion Chromatography; Microfluidic SERS: Microfluidic Surface-Enhanced Raman Spectroscopy. 
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Figure 1. Illustration of exosome analysis for cancer diagnosis using label-free SERS. (A) Sample collection, exosome isolation. (B) Fabrication and characterization of SERS 
substrate. (C) Spectroscopic data collection of exosomes via SERS. (D) Exosome classification and cancer diagnosis through SERS patterns. The Figure 1D fingerprint image was 
adapted with permission from reference [79], copyright 2012 Wiley. 

 

3. SERS Substrate 
3.1 Evaluate the SERS effect 

Regarding the SERS effect, it is of utmost 
importance to characterize the NPs, which involves 
assessing their size, shape, and distribution. Various 
microscopy techniques, including scanning electron 
microscopy [23, 28, 31, 32, 34-36, 40, 45, 46, 49, 53-57, 
63], transmission electron microscope [23, 33, 38, 41, 
49, 50], atomic force microscopy [34, 55, 63]. have been 
employed for this purpose. These microscopies not 
only aid in estimating the uniformity and average 
number of NPs, but also provide valuable insights 
into their overall structure. [45]. Furthermore, 
multiple spectroscopic methods have been widely 
used to characterize and confirm the formation of 
NPs. Notable among these are UV-visible spectro-
photometry [28, 34, 38, 43, 53, 60], X-ray spectroscopy 
[23, 35, 53, 56], dynamic light scattering [38], 
electrochemical impedance spectroscopy [35], Fourier 
transform infrared spectroscopy [56]. For instance, 
UV-Vis spectrophotometry allows monitoring the 
characteristic surface plasmon resonance (SPR) band 
of NPs, confirming their formation [34]. In some cases, 

researchers have employed multiple techniques to 
ensure thorough verification [35]. Combining 
different characterization methods enhances the 
reliability and accuracy of the results, providing a 
comprehensive understanding of the NPs under 
investigation. 

In the realm of SERS substrate design, 
researchers have harnessed the power of the FDTD 
method, a robust numerical tool for computational 
electrodynamics modeling [23, 28, 38, 49, 53-55, 57]. 
By employing FDTD, they have gain profound 
insights into the intricate interplay between 
electromagnetic (EM) fields and the localized surface 
plasmon resonances (LSPRs) of the substrate [67]. This 
advanced simulation technique has enabled both 
qualitative and quantitative analyses of SERS 
phenomena, fostering a more comprehensive 
understanding of the underlying physics [68]. 
Moreover, FDTD has emerged as a highly valuable 
tool for optimizing the design and fabrication of SERS 
substrates, facilitating precise molecular analysis for 
diverse applications. 

To assess the SERS effect, EF is one of the most 
important metric to gauge the "magnitude" of the 
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enhancement in SERS [45, 55]. Indeed, the substantial 
variation in the reported EFs can be attributed to a 
combination of factors, notably the wide variability in 
the EF's definition and the diverse methods utilized 
for its estimation in practice [28, 34, 35, 43, 49, 57, 67]. 
Such discrepancies in the definitions and equations of 
EFs emerge from varying perspectives, including the 
single molecule viewpoint, SERS substrate viewpoint, 
and analytical chemistry viewpoint [69]. Besides, EF 

calculation from different research are based on 
different materials such as methylene blue (MB) [28], 
rhodamine 6G (R6G) [34, 45], 4-mercaptobenzoic acid 
(4-MBA) [49], crystal violet [35], exosome [38, 42, 50, 
55]. It should be noted that a vague EF emerges, 
wherein essential normalization concerning non-SERS 
conditions is occasionally disregarded, a factor of 
significant importance. 

 
 

Table 2. Label-free SERS-based exosome analysis for cancer diagnosis  

Cancer type  Exosome 
resource 

Purification NP size 
(nm) 

EF EF 
material 

Data analysis Successful 
rate 

SERS substrate SERS characteristics Ref 

Breast Cell UC N/A N/A N/A CNN >95% AuNPs on silicon 
wafer 

Simple substrate: easy to 
make, relatively low level of 
sensitive, uniformity and 
reproductivity  

[37] 

Oral and 
Oropharyngeal 

Salivary UC N/A N/A N/A PCA-LDA 74.2% AuNPs on CaF2 glass [39] 

Multiple Cell Commercial 
kits 

N/A N/A N/A Random forest 
analysis 

>96.8% AuNPs  [58] 

Urogenital Serum UC N/A N/A N/A CNN >74% AgNPs on silicon 
wafer  

[41] 

Breast  Cell, serum SEC/ UC 71.0±9.6 N/A N/A N/A 100%/ 
79.4%  

Au nanostar on a 
quartz/silicon slide  

NPs with different shape: may 
improve the sensitivity. 

[36] 

lung Bronchoalveolar 
fluid 

SEC 200 N/A N/A SVM N/A Au nanopyramid  [31] 

Melanoma Cell UC N/A 4.1x105 EV PLS-DA N/A Au@Ag solution NPs with core-shell structure: 
may improve the sensitivity. 
The magnetic SERS platform 
integrates exosome isolation 
and Raman signal 
enhancement 

[38] 
Nasopharyngeal Cell UC 48± 5  4.57 

*107 
R6G Neural network 92.4% Au@Ag-Si substrate [43] 

Breast Cell Magnetic 
SERS  

50  225 Exosome PCA N/A Magnetic MNP@Au 
with antibody 

[50] 

Breast Serum from 
mice 

Magnetic 
SERS 

20 N/A N/A PCA N/A Magnetic 
Fe3O4/AuNPs  

[23] 

Lung Fetal bovine 
serum 

UC 
/commercial 
kits 

N/A N/A N/A PCA N/A A hybrid SERS 
substrate (a graphene 
covered by Au 
pyramids) 

Tailored substrate materials: 
relatively complex fabrication, 
may enhance both the 
uniformity and sensitivity of 
SERS substrates. 

[54] 

Multiple Cell, blood UC 60  3*104 MB Univariate 
analysis 

93% Macroporous 3D 
Au-coated TiO2 MIO 
structures 

[28] 

Breast Cell UC 22-63 104 to 
105 

R6G  PCA N/A AgNPs grown in 
bacterial nanocellulose 

[34] 

Breast Cell UC 100  7.1 Crystal 
violet 
 

Random forest 
analysis  

89.5% Pt-black SERS template [35] 

Lung Cell UC N/A 8.68 
*106 

R6G PCA N/A 3DOM Ag7O8NO3 
micropyramids  

[57] 

Myeloma Blood Commercial 
kits 

< 30  N/A N/A PCA N/A Microstructured arrays 
(Si) containing AuNPs 

[52] 

Multiple Plasma SEC N/A 4.28 * 
105 

R6G  TOO 75.9% AuNPs on APTES glass Substrates with linking 
molecules: may enhance the 
uniformity of the SERS signal. 

[45] 

Lung Cell SEC N/A N/A N/A PCA >90% AuNPs on APTES glass [32] 
Lung Plasma, cell SEC/ UC N/A N/A N/A CNN >90% 

(cellular) 
>60% 
(plasma) 

AuNPs on APTES glass [46] 

Head and neck Blood, cell UC/SEC 40-60 N/A N/A PCA-LDA/QCA >97.8% AuNPs with 
cysteamine on the 
quartz microfiber 
matrix 

[40] 

Hepatocellular 
carcinoma 

Blood UC N/A 106 Exosome SVM >97.56 %  AgNPs with 
biorecepter 

[42] 

Lung Blood, cell SEC kit N/A N/A N/A CNN 93% AuNPs with antibody [33] 
Glioma Cell UC/filter N/A 3.4 * 

105 
(Ag) 

EV Univariate 
analysis 

N/A Nanobowtiefluidic 
device (Ag, Au, and 
Al) 

Microfluidic device: may 
achieve high-throughput 
separation and enrichment of 
exosomes. 

[55] 

NP: Nanoparticle; EF: Enhancement Factor; CNN: Convolutional Neural Network; PCA: Principal Component Analysis; LDA: Linear Discriminant Analysis; SVM: Support 
Vector Machine; SEC: Size Exclusion Chromatography; UC: Ultracentrifugation; SERS: Surface-Enhanced Raman Spectroscopy; AuNPs: Gold Nanoparticles; AgNPs: Silver 
Nanoparticles; EV: Extracellular Vesicles; PLS-DA: Partial Least Squares Discriminant Analysis; R6G: Rhodamine 6G; 
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3.2 Basic SERS substrate 
SERS substrate based on various materials which 

significantly enhances the Raman signal is one of the 
keys to guarantee the sensitivity of the label-free 
exosome analysis (Figure 1). Several criteria are 
important when selecting a SERS substrate for 
exosome analysis. Firstly, it should exhibit high 
sensitivity, given the typically low concentration of 
exosomes. Secondly, it should minimize any adverse 
effects on the biological activity of exosomes. Gold 
(Au) is the preferred material for exosome analysis 
due to its strong enhancement effect and minimal 
impact on the biological activity of exosomes [37, 40, 
58, 60, 70]. Silver (Ag) is occasionally used as an 
alternative because it can provide even stronger 
absorption effects [39, 44, 59]. However, the use of Ag 
may potentially diminish the biological activity of 
exosomes. Based on those materials, the simple way 
to construct SERS substrate is to drop exosome and 
NPs evenly on the silicon [37]/CaF2 [39] substrate. 
The NPs can be either self-made [37] or commercially 
available [40]. The ratio between NPs and exosomes 
are based on their concentrations. The NPs cannot 
always be guaranteed to successfully assembled 
which results in low and subsequent uniformity of 
SERS substrate and low experimental repeatability. 
The SERS signal has been improved in various ways.  

3.3 Size and shape of NPs 

Multiple studies have demonstrated a 
correlation between the SERS signal and the size and 
shape of NPs [71-73]. Consequently, one viable 
approach to enhancing the SERS signal is by exerting 
control over the size and shape of NPs. In the context 
of exosome analysis, spherical NPs are commonly 
employed (either self-prepared or purchased from 
different suppliers). The size of these NPs varies 
across different studies, typically ranging from 
20-200nm (refer to Table 2). It is worth noting that the 

SERS signal could potentially be influenced by both 
the size of exosomes and the NPs themselves, 
although our understanding of this relationship 
remains incomplete. 

SERS analysis has been performed on exosomes 
using various shapes of nanoparticles. For instance, 
Au nano stars with a tip-to-tip size of approximately 
71.0 nm were synthesized and utilized for exosome 
analysis in breast cancer diagnosis and postoperative 
assessment, taking advantage of their strong 
plasmonic properties for SERS enhancement [36]. 
Additionally, inverted Au nanopyramids with 
sidewalls at specific angles were created, establishing 
a correlation between the sizes of "hotspots" and the 
sizes of small EVs (∼80–150 nm), which can be seen 
the TEM image of EV in Figure 2A [31]. The SEM 
images in depict the SERS substrate before (Figure 2B) 
and after (Figure 2C) the introduction of EV, which 
illustrate that the vesicles are situated between 
individual nanopyramids. This design enabled the 
substrate to capture SERS signals from individual 
vesicles one at a time. Furthermore, a hybrid SERS 
substrate consisting of graphene covered by Au 
nanopyramids was developed for the identification of 
exosomes originating from different sources [54]. In 
this particular study, a patterning method utilizing a 
layer of self-assembled polystyrene balls was 
employed to fabricate a quasi-periodic structure of 
gold nanopyramids with base dimensions of approxi-
mately 200 * 200 nm². Finite-difference time-domain 
method (FDTD) simulations demonstrated that the 
nanopyramids' sides contained "hotspots" with 
significantly enhanced electromagnetic fields. 

3.4 Core-shell structure  
Core-shell nanostructures comprising multiple 

components have proven to be exceptionally effective 
as SERS substrates for sensitive exosome analysis, as 
they can maintain a robust enhancement effect while 
exerting minimal influence on the biological activity 

 

 
Figure 2. (A) TEM image of EVs (B) SEM image of the SERS Au nanopyramid substrate. (C) SEM image of the SERS Au nanopyramid substrate after introduction of EV. Adapted 
with permission from reference [31], copyright 2023 Royal Society of Chemistry. 
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of exosomes. Among these strategies, the Au@Ag 
core-shell nanostructure is commonly employed to 
enhance detection sensitivity [74]. For instance, the 
Au@Ag substrate exhibits remarkable sensitivity 
when utilized on a 2D hydrophobic substrate, with an 
EF of 4.57*107 [43]. In addition to generating higher 
SERS intensities through the plasmonic properties of 
the core-shell structure, the silver layer also serves the 
purpose of eliminating interference from the coating 
agent molecules in the SERS spectra [38]. In this 
specific study, AuNPs were functionalized with 
4-dimethylaminopyridine (DMAP) molecules to 
facilitate the attachment of EVs. However, DMAP 
itself exhibits a significant SERS signal, which can 
potentially interfere with the SERS signal from the 
EVs. To mitigate this issue, an additional silver layer 
was added to form Au@Ag core-shell NPs. This not 
only eliminates the interference caused by the DMAP 
molecules in the SERS analysis but also enhances the 
SERS signal due to the plasmonic properties of the 
core-shell structure. To be noted, the drying process is 
not required prior to SERS analysis in this case. 
Instead, the solution containing SERS-enhanced 
exosomes can be directly measured using a water 
dipping objective. In addition to the Au@Ag 
core-shell structure mentioned earlier, magnetic 
core-shell structures are also commonly employed in 
exosome analysis. These structures integrate cancer 
exosome isolation and Raman signal enhancement 
into a single system. Typically, the magnetic core-shell 
structure is used in conjunction with a Raman 
reporter and antibodies [50]. At the same time, the 
magnetic core-shell structures are also used in 
label-free strategy. For instance, superparamagnetic 
Fe3O4 NPs serve as cores for separation, while the Au 
layers enable label-free SERS detection [23]. This 
approach effectively distinguishes exosomes from 
different cell sources for cancer diagnosis. 

3.5 Tailored substrate materials 
As mentioned before, silicon [37]/CaF2 [39] 

substrate is a common base used to contain the NPs in 
SERS analysis. In the same time, to improve 
uniformity and SERS signal, researchers have 
developed various bases, such as quartz microfiber 
matrix [40], hydrophobic substrate [43, 54], bacterial 
nanocellulose [34], 3D plasmonic ITO glass [49], 
platinum-black (Pt-black) template [35], and porous 
substrate [28]. Porous substrate is one of the strategies 
to improve the SERS signal. An engineered 3D 
Au-coated TiO2 macroporous inverse opal (MIO) 
structure was developed, exhibiting an impressive EF 
of 1.2*105 [28]. The 3D Au-coated TiO2 MIO structure 
shows advantages of detecting large exosomes, 
primarily through their interconnected nanoscale 

pore networks. Additionally, the TiO2 MIO structures 
demonstrate a remarkable “slow light effect” leading 
to a substantial enhancement of Raman signals from 
exosomes. Another example of the porous substrate 
includes 3D ordered macroporous (3DOM) 
Ag7O8NO3 micropyramids, which were formed by 
AgNPs through a chemical reduction process [57] (See 
Figure 3). The interconnected macropores within 
these micropyramids play a crucial role in facilitating 
the transportation and enrichment of analyte 
molecules. Additionally, the dense distribution of 
AgNPs on the micropyramid skeletons results in the 
generation of strong electromagnetic fields. 
Consequently, the 3DOM Ag micropyramids serve as 
highly efficient single-particle SERS sensing 
substrates, showcasing remarkable SERS sensitivity 
and signal reproducibility. Moreover, employing a 
photolithography process on Si substrates, a precise 
hexagonal array of circular holes was fabricated [52]. 
The primary objective of this process was to construct 
microstructured arrays that could effectively 
encapsulate AuNPs. Significantly, these microstruc-
tured Au arrays have demonstrated their utility in the 
stratification of multiple myeloma patients through 
exosome profiling. 

Comparable to a porous structure, a quartz 
microfiber matrix containing AuNPs was affixed onto 
a borosilicate glass substrate for the purpose of 
conducting SERS measurements [40]. Analyzing the 
SEM images revealed the even distribution of EVs 
within this matrix, with a specific concentration in 
close proximity to the plasmonic gold, thus enabling 
exposure to intense electromagnetic fields resulting 
from the interaction between the excitation laser and 
the localized surface. In addition, bacterial 
nanocellulose produced from commercial nata de 
coco, combined with in situ synthesized AgNPs, has 
been tested as a cost-effective and environmentally 
friendly SERS substrate. In Figure 4, a schematic 
diagram depicts the process of creating the SERS 
substrate through the utilization of bacterial cellulose 
(BC). This approach has yielded impressive EF 
ranging from 104 to 105 [34]. Besides, a custom 
Pt-black SERS template has been developed and 
compared to the commercially available substrate 
(SERS-Au) [35]. The Pt-black SERS template exhibits 
stable, consistent, and low background spectra, 
resulting in the high reproducibility essential for a 
reliable diagnostic template, even though it achieves a 
lower EF compared with SERS-Au. In addition to 
Pt-black, ITO glass has also been utilized to create 3D 
plasmonic AuNPs nanomembranes as substrates, 
which have proven to be successful in cancer 
diagnosis and dynamic monitoring of drug 
therapeutic processes [49]. 
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3.6 Linking molecules 
One strategy to enhance the uniformity of the 

SERS signal is by employing a linking molecule to 
connect the NPs and exosomes. A highly effective and 
straightforward approach to achieve a uniform and 
reproducible SERS substrate is by using the 
3-aminopropyl triethoxy silane (APTES)- 
functionalized SERS substrate [32, 33, 45, 46, 75]. This 
is because films formed by silane coupling agents 
allow for the deposition of coatings with adjustable 
thickness, roughness, and well-defined chemistry. 

Antibodies are widely utilized to enhance the 
binding capability between NPs and exosomes. In 
many cases, a common strategy involves labeling with 
specific antibodies and a particular Raman reporter. 
Additionally, antibodies are also employed for 
label-free SERS analysis. For instance, a study utilized 
epidermal growth factor receptor (EGFR) antibody- 
coated glass to connect AuNPs and exosomes [33]. In 
this research, APTES was also utilized as a linking 
molecule. Another example of using antibodies as 
linking molecules in label-free exosome analysis 
involves SERS analysis based on AuNPs through 
polyethylene glycol and bio-receptors [42]. Besides, 
cysteamine also serves as a valuable biofunctionali-
zation linker. It features a terminal thiol group at one 

end, facilitating binding to the gold substrate. At the 
opposite end, there is a free amine that effectively 
enhances the surface with a positive charge. This 
charge modification enables the non-specific capture 
of inherently anionic EVs [40]. In addition, DMAP can 
also serve as a linking molecule between NPs and 
exosomes. AuNPs have cationic surface charges 
attributed to the DMAP coating, allowing them to 
adsorb onto the anionic EV surface. This association is 
primarily charge-based, although there is a possibility 
that DMAP molecules interact with cysteine-rich 
proteins found on the EV surface [38]. 

3.7 Microfluidic device 
Microfluidic technology can achieve high- 

throughput separation and enrichment of exosomes, 
while addressing some core issues in SERS detection 
[76]. For instance, microfluidic SERS technology can 
precisely control the aggregation time of SERS NPs 
and exosomes by adjusting flow rates and designing 
channel structures, thereby improving their mixing 
efficiency and addressing the issue of poor 
reproducibility in SERS analysis [22]. Moreover, it 
enables high-throughput sample preparation to 
achieve a more stable and reliable analytical detection 
[77]. Most of the current microfluidic SERS technology 
is primarily based on immune probe capture and 

 

 
Figure 3. Schematic depicting the electrochemical cementing technique for the synthesis of 3DOM Ag7O8NO3 micropyramids, followed by their shape-preserving conversion 
into 3DOM Ag micropyramids. Adapted with permission from reference [40], copyright 2021 Royal Society of Chemistry. 
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detection of specific tumor markers in exosomes, 
unable to obtain a complete fingerprint spectrum [76]. 
In the context of label-free analysis, Jalali et al. 
introduced a pioneering method for exosome 
fingerprinting by innovatively combining a plasmonic 
nanostructure with a microfluidic sample delivery 
system [55]. They strategically positioned 
nanobowties at the bottom of the fluidic chamber, 
taking advantage of their strong electromagnetic field 
(EF) enhancement capabilities, which facilitated the 
uniform distribution of exosomes next to the 
plasmonic surface (Figure 5A-B). The final panel in 
Figure 5C illustrates FDTD simulation depicting the 
distribution of the maximum EF on the surface of a 
nanobowtie arranged within a honeycomb array. The 
study successfully demonstrated the synergistic 
combination of nanosurface microfluidics and the 
powerful plasmonic effects of suspended nano-
bowties, leading to the creation of a highly sensitive 
label-free SERS detection device for exosomes.  

4. Data analysis 
4.1 Raman peak assignment 

The exosome's surface comprises a complex 
biochemical composition of lipids, nucleic acids, and 
proteins. The intricacy of this composition is reflected 
in the complex Raman peaks observed during 
analysis. Assigning these peaks accurately is crucial 

for understanding the chemical composition of the 
sample. These peak assignments are generally based 
on various references, including Raman analysis of 
exosomes [60, 78, 79], SERS-based exosome analysis 
[32, 38, 80], SERS analysis of body fluid [81-88], and 
some Raman analysis of body fluid/tissue [89-103], 
and review paper [104-106]. Besides, it is important to 
note that label-free SERS peak assignments are related 
to the spontaneous Raman peaks of exosomes. 
However, several factors such as the type of 
exosomes, laser wavelength, SERS substrate, solvent, 
etc., can influence the actual peak assignment. 
Consequently, Raman profiles and peak assignments 
may vary across different research studies [38, 39, 54, 
55, 58]. Table 3 provides a list of common peak 
assignments related to important biomolecules used 
in exosome characterization. Given that the primary 
composition of the exosome surface is the lipid 
bilayer, many of the assigned peaks correspond to 
lipids and related subpopulations, such as fatty acids, 
cholesterol, and phospholipids. Additionally, 
proteins, nucleic acids, and related compounds are 
frequently utilized for exosome characterization in 
various research studies. Furthermore, glycoproteins 
[39, 58] and phosphoproteins [28] are used as 
biomarkers due to their significance in cancer 
development. Consequently, identifying chemicals 
like saccharides and phosphate groups becomes 
crucial. Apart from specific Raman peak assignments, 

 

 
Figure 4. Schematic illustration of the SERS substrate fabrication using BC. Upper section: Production of BC membrane using commercially available nata de coco cubes, 
accompanied by the in-situ synthesis of AgNPs within the BC matrix for generating SERS substrates. Lower section: Preparation of the SERS assay, measurement process, and 
resulting spectral analysis. Adapted with permission from reference [34], copyright 2019 American Chemical Society. 
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the entire spectrum of certain biomarkers is also 
employed in exosome characterization. For example, 
Shin et al. utilized the fingerprint of common protein 
biomarkers CD9 and CD81, which are expressed on 
the surfaces of all exosomes, along with cancer- 
specific protein biomarkers like EGFR expressed in 
non-small cell lung cancer exosomes [32]. Comparing 
the spectral similarities between the protein 
biomarkers and PCA-decomposed spectra of 

exosomes allowed for the discrimination between 
normal and cancerous exosomes. It is crucial to relate 
to biomolecules/biomarker to the corresponding 
Raman peaks because it provides essential 
information about the exosome's molecular makeup 
and can lead to a better understanding of their 
biological roles, disease biomarkers, and potential 
therapeutic applications. 

 

Table 3. An overview or report of the identified peaks or characteristic signals obtained from Raman spectroscopy analysis of exosomes 

Biomolecular Raman peak (cm-1) 
Lipid 1049 (C-N, C-C stretching of lipids) [39], 1449 (CH2 bending mode of lipids) [39], 1066 (Chain C-C stretching in lipids) [58], 1305 (CH3 CH2 twisting) [58],1447 

(C-H vibration) [58],1450 (CH2, CH3 def) [58], 970 [54], 1070 ((C-C) stretching) [55], 1395 (CH3 scissoring) [55], 1435 (CH2/CH3 scissoring) [55],1455 [55],1307 
((C-N) stretching) [38], 1381 (CH3 symmetric) [38], 1465 [38] 

Fatty acids 1286 [37], 1140 [54] 
Cholesterol 867 [37], 864 [37], 1438 [54], 2890 ((CH2)-Chol stretching) [55], 546 [38], 406 [38] 
Phospholipid  826 (C-O-O vibration) [37], 716 (CN−(CH3)3) [54], 1179 [38], 1211 [38] 
Protein 826 [37], 1145 [37], 1049 (C-N, C-C stretching of Protein) [39], 1149 (CH2 bending mode of protein) [39], 1450 (CH2, CH3 def) [58], 1595 (C = O stretch) [58], 970 

[54], 1111 [54], 1592 [54], 1220 (Amide III) [55], 1435 (CH2/CH3 scissoring) [55], 1620 (ν(C=C) [55], 521 [38], 1618 [38], 1542 [38], 1618 (ν(C=C) [38], 1632 [38] 
Tyrosine 654 [37], 1571 [37], 638 [39], 835 (Asymmetric O-P-O stretching) [58], 1614 [54], 660 ((C-C) twisting) [55], 830 [55], 1220 [55] 
Proline 939 [37],867 [37],930 [39], 947 [58], 1044 (ν3PO4 

3−(symmetric stretching vibration)) [54] 
Phenylalanine 630 [37], 999 [37], 1580 [37], 1002 (C-C symmetric stretch of Phenylalanine) [39], 1012 [54], 1111 [54] 
Tryptophan 867 [37], 1002 (symmetric ring breathing mode) [39], 753 [54], 1566 [54] 
Nucleic acid 1100 [39], 1323 (CH2-CH2 of Nucleic Acids) [39], 1577 (guanine) [39], 1655[39], 816 [58],1662 [58], 970 [54], 1254 [55], 1340 (guanine) [55], 786 [38], 1243 [38] 
Adenine 631[37], 736 [37], 1571 [37], 722 (ν(CC), ν(CO)) [58], 1578 [58], 1183 [58]  
Guanine 654 [37], 1380 [37], 1576 [37], 1577 [2], 1180 [58], 1578 [58], 1183 [54], 1340 [55], 1360 [55] 
Cytosine 1180 [58], 1183 [54], 1287 [54] 
DNA 722 [58], 1510 (ring-breathing modes in the DNA bases) [54], 1592 [54] 668 [38], 1490 [38], 1664 [38] 
Saccharide 460 [39], 593 [39], 835 [58], 947 [58], 1370 [58] 
Thiocyanate 443 [39], 533 [39] 
Phosphate 
group 

1087 [28] 

 
Figure 5. Utilizing a spatially suspended nanobowtie surface within a microfluidic device for enhanced SERS-based detection of EVs. (A) Design and prototype of the microfluidic 
setup. (B) EV detection using SERS methodology. (C) Nanobowtie design and corresponding artificially colored SEM image of the produced nanobowtie structure (Cyan). The 
final section showcases FDTD simulations displaying the distribution of maximum electromagnetic field intensity on the surface of a nanobowtie within a honeycomb array. 
Adapted with permission from reference [55], copyright 2021 Royal Society of Chemistry. 
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4.2 Univariate analysis 
Univariate analysis in SERS analysis refers to the 

interpretation of individual spectral peak indepen-
dently, without considering the interactions or 
correlations between different peaks. The first step of 
the univariate analysis is to assign Raman peaks to 
specific molecular vibrations and select the 
characteristic peak of exosome. Once the characteristic 
peak is selected, statistical methods are generally 
applied to discriminate the normal and cancerous 
exosome sample. For instance, research has revealed 
that the SERS intensity of exosomes at 1087 cm-1, 
attributed to the P-O bond within phosphoproteins, 
can serve as a valuable marker for tumor liquid 
biopsies [28]. A t-test analysis was performed, 
demonstrating a significant difference in Raman 
intensity between plasma exosomes from patients 
with prostate cancer and those without the condition. 
In addition to utilizing a single peak, univariate 
analysis can also involve examining the ratio between 
two peaks. For instance, the ratio R=I2880/I2930 is used 
to assess the packing density of the lipid membrane in 
the CH region [55]. This peak intensity ratio serves as 
an indicator of the lateral packing density of the acyl 
chain in the CH region and, consequently, reflects the 
level of conformational arrangement and interchain 
coupling within the lipid structure. Univariate 
analysis plays a crucial role as a starting point in SERS 
studies, and it can be utilized for discrimination 
analysis in certain cases. However, to achieve a more 
comprehensive understanding, researchers often turn 
to multivariate analysis techniques. These methods 
are employed to explore the interdependencies and 
correlations among multiple spectral features within 
complex SERS datasets, particularly due to the 
intricate SERS fingerprint of exosomes. By utilizing 
multivariate analysis, researchers can uncover more 
intricate patterns and extract valuable insights from 
the data. 

4.3 Linear machine learning methods 
Principal component analysis (PCA) is a widely 

employed technique in label-free SERS-based 
exosome analysis, aimed at reducing data 
dimensionality while retaining crucial information 
[23, 32, 34, 50, 54, 57]. By transforming the data into a 
new set of orthogonal loadings, PCA extracts the 
essential features from the original spectra. The 
sample projections on these Principal components 
(PCs) represent a score matrix, revealing distinct 
clustering patterns among the samples. For instance, 
in this study, PCA was performed on SERS analysis to 
classify A549 cell-derived and BEAS-2B cell-derived 
exosomes [57]. The loading plot (Figure 6A) indicated 
that four main SERS peaks (i.e., 1159, 1343, 1557, and 

1678 cm−1) with high loading values contributed 
significantly to PC1, and these peaks were associated 
with DNA and proteins). This suggests that the 
unique proteins and DNA found in the A549 
cell-derived exosomes played a crucial role in 
distinguishing between the two groups. 
Consequently, the PCA score plot (Figure 6B) 
demonstrated that the two types of exosomes 
exhibited significant differences and were clustered 
into separate groups, validating the effectiveness of 
PCA in accurately classifying the samples based on 
their molecular content. PCA is a powerful tool in 
SERS analysis, offering various benefits such as 
simplifying complex spectral datasets, enabling 
visualization, improving signal-to-noise ratio, and 
assisting in feature extraction and pattern recognition 
tasks. However, it is worth noting that PCA is a 
relatively simple linear unsupervised method. As a 
result, it is often utilized primarily for feature 
extraction and visualization. To achieve more precise 
classification results, researchers commonly 
incorporate more sophisticated methods indepen-
dently or after applying PCA to the data and 
extracting relevant features. These advanced 
techniques may include support vector machines [31, 
42], linear discriminant analysis (LDA) [39, 40, 42, 49], 
partial least squares discriminant analysis (PLS-DA) 
[38, 49]. By leveraging these supervised pattern 
recognition methods, researchers can capitalize on the 
simplified and meaningful representations obtained 
from PCA, allowing for more accurate and 
comprehensive analyses, especially when PCA is used 
as an initial step. This integrated approach helps to 
obtain a more robust and insightful analysis of the 
SERS data, leading to a deeper understanding of the 
underlying patterns and structures within the dataset. 

4.4 Deep learning methods 
Deep learning use artificial neural networks with 

multiple layers to learn and represent complex 
patterns in data, which shown significant promise in 
SERS analysis, as it can handle large and complex 
spectral datasets, extract meaningful features, and 
perform accurate classification or regression tasks [33, 
35-37, 41, 43, 45-48]. Convolutional neural network 
(CNN) is a specialized type of artificial neural 
network designed which is one of the most popular 
deep learning methods used in the SERS analysis. One 
of the CNN architecture was shown in Figure 7 [36]. 
In this study, CNN successfully predicted whether 
exosome samples originated from breast cancer 
patients and accurately assessed different subtypes of 
breast cancer through the SERS signals of exosomes 
derived from normal and breast cancer cells, 
achieving a prediction accuracy of 100%. The 
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increasing number of exosome research samples has 
enhanced the potential of deep learning for clinical 
analysis [15]. In their study using 520 test samples, 
Shin et al. not only detected early cancer but also 
accurately identified the presence of multiple cancer 
types based on CNN, including lung, breast, colon, 
liver, pancreas, and stomach, with an impressive area 
under the curve value of 0.970 based on the same 
database. The evidence provided by multiple research 
studies consistently demonstrates that deep learning 
consistently outperforms linear analysis methods like 
PCA, delivering superior and more precise results in 
various applications [41, 43, 46, 48]. Label-free 
SERS-based exosome analysis with deep learning 

exhibits tremendous potential, offering enhanced 
accuracy, automation, and scalability for processing 
vast and diverse datasets [33, 35-37, 41, 43-48]. For 
example, Wu et al. demonstrated higher accuracy 
using Backpropagation BP neural network models 
(92.4%) compared to PCA-LDA (64.7%) in their 
SERS-based analysis for evaluating nasopharyngeal 
cancer radioresistance [43]. Despite challenges in 
widespread deep learning adoption, including 
resource requirements and training data, continuous 
advancements in techniques and growing SERS-based 
exosome databases promise significant progress in 
this field. We have summarized the pros and cons of 
various data analysis methods in Table 4. 

 
 

 
Figure 6. (A) PCA score depicting the SERS spectra of exosomes derived from two distinct cell lines. (B) PC1 loading plot of PCA score plot from Figure 6A. The enclosed circles 
correspond to the 95% confidence ellipses. Adapted with permission from reference [57], copyright 2023 American Chemical Society.  

 
 

 
Figure 7. The CNN model’s architecture comprises an input layer, four fully connected hidden layers, and an output layer. This arrangement produces a conclusive output which 
represent the predictive probabilities corresponding to each category of cell-derived exosomes. Adapted with permission from reference [36], copyright 2022 American 
Chemical Society. 
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Table 4. Summary of advantages and disadvantages of various data analysis methods 

Technique Principle Advantage Disadvantage Example 
Univariate analysis Interpretation of individual 

spectral peak independently 
Easy interpretation Without considering the 

interactions or correlations 
between different peaks 

Peak: Phosphoproteins peak (1087 
cm-1) [28].  
Lipid membrane in the CH region 
(R=I2880/I2930) [55] 

Linear classification method Unsupervised method, most of 
them are based on the projection 
on new variables 

Relatively easy to implement, 
visualize and interpret 

Cannot predict new sample  PCA [23, 28, 32, 54], TSNE [63] 

Linear Discrimination method Supervised linear method Can predict new sample Relatively low accuracy LDA [39, 40, 42, 49], PLS-DA [38, 49], 
SVM [31, 42] 

Deep learning Artificial neural networks with 
multiple layers to learn and 
represent complex patterns in 
data 

Relatively complicated to 
implement, visualize and 
interpret 

Relatively high level of 
accuracy 

CNN [33, 35-37, 41, 43-48], ANN [36, 
48] 

PCA: Principal Component Analysis; TSNE: t-Distributed Stochastic Neighbor Embedding; LDA: Linear Discriminant Analysis; PLS-DA: Partial Least Squares Discriminant 
Analysis; SVM: Support Vector Machine; CNN: Convolutional Neural Network; ANN: Artificial Neural Network. 

 

5. Conclusion and outlook 
In this comprehensive review, our primary 

emphasis is placed on label-free SERS-based exosome 
detection. Our aim is to provide valuable insights into 
the current endeavors aimed at addressing pivotal 
challenges and to delve into innovative avenues for 
SERS-based exosome analysis, particularly within the 
realm of cancer diagnosis and beyond. The 
exploration begins with a thorough examination of 
exosome isolation and characterization methods, 
emphasizing their importance in SERS analysis due to 
the influence of exosome concentration and size. The 
significant and impactful advancements in 
SERS-based exosome research can only be realized 
through the development of highly efficient exosome 
isolation techniques. A meticulous selection of 
isolation methods tailored to specific biological 
samples and cargo types being screened will not only 
enhance the quality of isolated exosomes but also 
ensure the validity of the SERS results. The 
integration of microfluidic devices with label-free 
SERS analysis automation represents a compelling 
approach to streamline the isolation and analysis 
process. This integration has the potential to reduce 
sample volume requirements and significantly 
improve the overall efficiency and reliability of 
label-free SERS-based exosome research. Further-
more, the development of magnet SERS substrates 
presents an intriguing technique that combines 
exosome isolation and detection. This novel approach 
holds promise in high-throughput SERS analysis, 
opening exciting possibilities for advancing exosome 
research.  

However, despite its potential, SERS-based 
label-free exosome detection faces several significant 
challenges that must be addressed for it to fully serve 
clinical and research applications. Exosomes exhibit a 
remarkable degree of heterogeneity concerning their 
size, composition, and surface proteins, presenting a 
formidable obstacle for SERS-based detection. 
Addressing this challenge necessitates the develop-

ment of versatile SERS substrates and analytical 
methodologies capable of accommodating this 
diversity. Furthermore, while SERS is renowned for 
its exceptional sensitivity, consistently achieving low 
detection limits for exosomes remains a daunting task. 
The inherent low refractive index and weak Raman 
scattering signal of exosomes render their detection at 
low concentrations challenging. Consequently, there 
is a pressing need to explore innovative SERS 
substrates that offer heightened sensitivity and to 
devise advanced signal amplification strategies that 
can push the boundaries of exosome detection. Thus, 
our review delves into the significant advancements 
made in SERS substrates, recognizing their pivotal 
role in enhancing SERS analysis. Overcoming chal-
lenges related to reproducibility, signal uniformity, 
stability, and biocompatibility has been a primary 
focus, leading to the development of various 
innovative methods. For instance, extensive research 
has been conducted on the shape, size, and core@shell 
structure of NPs to improve SERS signal consistency 
and efficiency. Additionally, researchers have 
explored diverse SERS substrate materials, including 
porous materials, bacterial substrates, Pt-black SERS 
templates, and ITO glass, each offering unique 
properties to enhance performance. Moreover, to 
further boost SERS signal quality, molecular linkers 
such as ATPES and antibodies have been developed 
and employed. These molecular linkers play a critical 
role in facilitating efficient SERS signal transduction 
and enhancing the sensitivity and specificity of the 
analysis.  

Last but certainly not least, an essential challenge 
in SERS-based exosome analysis lies in data analysis. 
To address this concern effectively, we present a 
comprehensive overview of data analysis methods, 
with a particular focus on fingerprint analysis 
techniques. These methods encompass both linear 
and non-linear machine learning approaches 
commonly employed in label-free SERS analysis. 
Linear machine learning methods, such as PCA, offer 
valuable insights into the SERS data, allowing for a 
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deeper understanding of underlying patterns and 
structures within the dataset. On the other hand, deep 
learning presents tremendous potential, providing 
enhanced accuracy, automation, and scalability for 
processing vast and diverse datasets. However, the 
widespread adoption of deep learning faces 
challenges, notably the requirement for substantial 
computational resources and extensive training data. 
Despite these obstacles, continuous advancements in 
deep learning techniques and the growing availability 
of comprehensive SERS-based exosome databases are 
expected to drive significant progress in this field. 

For SERS-based label-free exosome detection to 
evolve into a practical clinical tool, it must surmount 
various translational hurdles. These encompass the 
standardization of protocols, validation across 
substantial patient cohorts, and seamless integration 
with established diagnostic workflows. Close 
collaboration between researchers and clinicians is 
imperative to bridge the divide between laboratory- 
based research and clinical implementation. 
Moreover, SERS instrumentation often comes with a 
high cost and complexity, which can restrict its 
accessibility in resource-constrained settings. To 
confront this challenge, proactive measures should be 
taken to develop cost-effective SERS platforms and 
user-friendly devices that can be readily deployed in a 
diverse array of healthcare settings. 
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