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Abstract 

Rationale: Immune checkpoint inhibitors targeting the programmed cell death (PD)-1/PD-L1 pathway 
have promise in patients with advanced melanoma. However, drug resistance usually results in limited 
patient benefits. Recent single-cell RNA sequencing studies have elucidated that MM patients display 
distinctive transcriptional features of tumor cells, immune cells and interstitial cells, including loss of 
antigen presentation function of tumor cells, exhaustion of CD8+T and extracellular matrix secreted by 
fibroblasts to prevents immune infiltration, which leads to a poor response to immune checkpoint 
inhibitors (ICIs). However, cell subgroups beneficial to anti-tumor immunity and the model developed by 
them remain to be further identified. 
Methods: In this clinical study of neoadjuvant therapy with anti-PD-1 in advanced melanoma, tumor 
tissues were collected before and after treatment for single-nucleus sequencing, and the results were 
verified using multicolor immunofluorescence staining and public datasets.  
Results: This study describes four cell subgroups which are closely associated with the effectiveness of 
anti-PD-1 treatment. It also describes a cell–cell communication network, in which the interaction of the 
four cell subgroups contributes to anti-tumor immunity. Furthermore, we discuss a newly developed 
predictive model based on these four subgroups that holds significant potential for assessing the efficacy 
of anti-PD-1 treatment.  
Conclusions: These findings elucidate the primary mechanism of anti-PD-1 resistance and offer 
guidance for clinical drug administration for melanoma. 
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Introduction 
Malignant melanoma (MM) is a kind of 

malignancy arising from the transformation of 
melanocytes and is acknowledged as one of the most 
lethal tumors worldwide. Despite a global decline in 
the incidence of several cancer types, the occurrence 
of melanoma is on the rise [1, 2]. CD8+ T cells play a 
crucial role in anti-tumor immunity through direct 

contact-mediated cytotoxicity and are integral to 
cellular immunity. PD-1, expressed on the surface of T 
cells, induces T cell dysfunction, exhaustion and 
apoptosis when stimulated by PD-L1. This inhibits the 
activation, proliferation, and anti-tumor function of 
CD8+ T cells specific to tumor antigens, leading to 
tumor immune evasion [3, 4]. Anti-PD-1 (PD-1 
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antibody) binds to CD8+ T cells, preventing the 
interaction between PD-1 and its ligands, thereby 
restoring suppressed tumor-specific T cell cytotoxicity 
[5]. Immune checkpoint inhibitors (ICIs), with 
anti-PD-1 being a representative example, have 
significantly improved the previously poor prognosis 
of MM [6]. However, despite the excellent efficacy of 
anti-PD-1 in melanoma compared to other tumors, 
many patients still develop primary and secondary 
drug resistance, resulting in a low objective response 
rate (ORR) ranging from 16.6% to 38% [7-10]. 
Therefore, the identification of advanced biomarkers 
is crucial for predicting the efficacy of ICIs treatment 
and improving drug selection strategies to overcome 
intrinsic drug resistance. 

The emergence of single-nucleus sequencing 
(snRNA-seq) has provided a novel research 
perspective, allowing us to examine gene expression 
patterns in the cellular stratum and the distinctive 
characteristics enabled by snRNA-seq, thereby 
enhancing our ability to predict prognosis [11-13]. 
Previous studies have demonstrated that various cell 
types within the tumor microenvironment (TME) 
exert different effects on the prognosis of ICIs 
treatment. Livnat et al. revealed that melanoma cells 
induce immunosuppression through autonomous 
programs associated with T cell exclusion [14]. 
Similarly, He et al. identified tumor antigen-specific T 
cells with elevated expression of C-X-C motif 
chemokine ligand (CXCL) 13 as potential prognostic 
biomarkers for ICIs treatment [15]. B cells, myeloid 
cells, fibroblasts, and endothelial cells in the TME 
have been associated with the prognosis of ICIs 
treatment, leading to the development of various 
models for predicting treatment response [16-19]. 
However, due to the complexity of the TME, a single 
cell subgroup alone cannot account for all influencing 
factors, necessitating a refined approach to construct a 
prognostic model based on the single-cell atlas.  

In this study, we conducted a comprehensive 
analysis of snRNA-seq data from MM samples before 
and after anti-PD-1 treatment with varying 
therapeutic effects. Our findings demonstrate that the 
TME of the PD-pre group exhibited high suppression, 
which was reversed by anti-PD-1 treatment, leading 
to an increase in CD8+ T cells. We identified 
subgroups of tumor cells, lymphocytes, myeloid cells, 
and stromal cells that were either diminished or 
absent in the PD-pre group. These four subgroups 
were found to possess distinct immune activation 
functions that promote tumor immunity through cell 
interactions. Furthermore, using seven machine 
learning algorithms and available pre-treatment 
Bulk-RNA data from MM patients treated with 
anti-PD-1, we developed 35 models. Among these 

models, the AdaBoost model constructed from the 
combined gene set demonstrated superior predictive 
capability and accuracy for anti-PD-1 treatment 
compared to previously reported models. Our study 
elucidates the primary mechanism of anti-PD-1 
resistance and provides guidance for clinical drug 
administration and combination therapy for 
melanoma. 

Results  
Single-cell transcriptome atlas of melanoma 
patients with neoadjuvant anti-PD-1 therapy 

The study was divided into four stages: 
diagnosis, treatment, surgery, and follow-up (Figure 
S1A). To confirm the malignancy and tumor stage of 
MM patients, imaging examination (enhanced 
computed tomography (CT)) and histopathological 
examination (needle biopsy) were performed. Patients 
with definite stage III-IV malignant melanoma 
received two courses of toripalimab (240 mg once 
every two weeks for a total duration of four weeks). 
After five weeks, enhanced CT was performed to 
evaluate the treatment response, dividing patients 
into the PD (progressive disease) and NPD 
(non-progressive disease) groups based on the 
curative effect (Figure S1B). Patients in the NPD 
group underwent radical surgical resection. 
Representative hematoxylin and eosin (H&E)-stained 
images of tumors are shown in Figure S1C, 
illustrating the natural tumor microenvironment 
(TME) before treatment (left two panels) and tumor 
necrosis (upper right panel) and fibrosis after 
treatment (lower right panel). We collected data from 
11 melanoma patients who received neoadjuvant 
anti-PD-1 therapy, including three patients in the PD 
group and eight patients in the NPD group (Table 
S1). Additional information about these patients is 
presented in Table S2. Paired pre-treatment 
(NPD-pre) and post-treatment (NPD-post) tumor 
tissues were collected from patients in the NPD 
group, while only pre-treatment (PD-pre) tumor 
tissues were collected from patients in the PD group.  

Single-cell suspensions were generated from all 
freshly frozen tumor tissues and analyzed using 
droplet-based single-cell transcriptome profiling. 
After quality filtering and doublet removal, a total of 
100,554 single cells from melanoma samples were 
profiled. Principal component analysis was applied to 
evaluate variably expressed genes, and a graph-based 
clustering method was used to classify the cells into 
coherent transcriptional clusters. Cells from different 
patients and groups were well mixed (Fig. 1A-B). Cell 
clusters were annotated based on the average 
expression of canonical marker genes, identifying 
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melanoma cells, immune cells (such as myeloid cells, 
plasmacytoid dendritic cells (pDCs), CD8+ T cells, 
CD4+ T cells, regulatory T cells (Tregs), natural 
killer/natural killer T (NK/NKT) cells (Figure S2), 
and B cells), fibroblasts, endothelial cells, and 
epithelial cells (Figure 1C-D). Clusters belonging to 
the same cell type exhibited good correlation at the 
transcriptional level (Figure 1E). The differentiation 
between malignant and non-malignant cells was 
validated using a two-step process. Firstly, the copy 
number variation (CNV) score of each cell was 
determined, and elevated CNV scores were observed 
in melanoma cells (Figure 1F-G). Secondly, the 
number of expressed genes and total gene counts 
were also enriched in melanoma cells (Figure 1H-I), 
confirming the accuracy of our cell types for 
subsequent analyses. 

We compared the proportions of these cell types 
and found that the number of lymphocytes, including 
CD4+ T, CD8+ T, NK/NKT, and B cells, was lower in 
the PD-pre group compared to the NPD-pre group 
(Figure 1I). In patients in the PD-pre group, the 
proportion of B cells significantly decreased (p < 0.05), 
while the proportion of myeloid cells significantly 
increased (p < 0.05) (Figure 1J). Furthermore, we 
observed a significant increase (p < 0.05) in CD8+ T 
cells and a significant reduction (p < 0.05) in pDCs 
following anti-PD-1 neoadjuvant therapy (Figure 1K). 
We also conducted a preliminary identification of 
common immune inhibitory cell subtypes, but no 
significant differences were observed between the 
PD-pre and NPD-pre groups (Figure S3). These 
findings indicate that patients who are insensitive to 
anti-PD-1 therapy present with a suppressed TME.  

High heterogeneity of melanoma cells at 
single-cell level 

After conducting unsupervised reclustering of 
melanoma cells, a total of 56,664 melanoma cells were 
classified into 41 clusters, which were further divided 
into five primary subgroups based on their biological 
function determined by Gene Ontology (GO) analysis 
(see Methods). These five subgroups were labeled 
MM_Immune, MM_Epithelial-mesenchymal transi-
tion (EMT), MM_Proliferation, MM_Stress, and 
MM_Unknown (unable to be assigned to a specific 
functional group and thus classified as unknown) 
(Figure 2A). Each subgroup exhibited unique 
functional signatures.The MM_Immune subgroup 
was involved in antigen presentation and lymphocyte 
chemotaxis. The MM_EMT subgroup was enriched in 
pathways associated with epithelial-mesenchymal 
transition, such as NOTCH, WNT, and TGF-β 

signaling pathways. The MM_Proliferation subgroup 
was associated with cell cycle circuits, and the 
MM_Stress subgroup was related to the unfolded 
protein response (Figure 2B).  

To validate the accuracy of the subgroup 
classification, differential gene expression and gene 
set variation analysis (GSVA) were performed (Figure 
S4A-B). As expected, MM_Immune cells exhibited 
numerous genes related to antigen presentation and 
chemokines, including CD74 molecule (CD74), major 
histocompatibility complex, class II, DR alpha 
(HLA-DRA), immunoglobulin kappa constant 
(IGKC), and C-C motif chemokine ligand (CCL) 21 
[20-22]. The MM_EMT subgroup exhibited elevated 
expression of genes associated with metastasis, such 
as vimentin (VIM), actin beta (ACTB), and secreted 
phosphoprotein 1 (SPP1) [23-25]. The MM_ 
Proliferative subgroup exhibited increased expression 
of genes related to the cell cycle, such as DNA 
topoisomerase II alpha (TOP2A) and enhancer of 
zeste 2 polycomb repressive complex 2 subunit 
(EZH2). This subgroup was most enriched for E2F 
transcription factor targets and G2M checkpoints 
pathway. Finally, the MM_Stress subgroup exhibited 
elevated expression of stress-related genes, including 
SRY (sex determining region Y)-box transcription 
factor 6 (SOX6), tyrosinase (TYR), nuclear factor I A 
(NFIA), and inner mitochondrial membrane 
peptidase subunit 2 (IMMP2L), which are related to 
the regulation of cellular responses to oxidative stress 
[26-29]. The MM cell subgroup characterized by 
immune modulation, WNT signaling, and TGF-β 
signaling pathway activation features has been 
discovered in previous studies [30, 31]. Furthermore, 
functional scores were assessed to validate the gene 
expression signatures of the subgroups. The highest 
scores were observed in the corresponding functions 
of the immune, EMT, proliferation, and stress 
subgroups (Figure 2C), these results indicated a 
notable functional heterogeneity among MM 
subgroups.  

Decreased MM_Immune subgroup predicts 
insensitive to anti-PD-1 therapy 

We observed a significantly higher cell 
proportion of the MM_Immune subgroup in the 
NPD-pre group compared to the PD-pre group (p < 
0.05). However, there were no differences in the 
remaining subgroups between the NPD-pre and 
NPD-post groups (Figure 2A & D, Figure S4C). In the 
t-SNE plot, genes associated with antigen 
presentation, namely CD74 and HLA-DRA, were 
clustered within the MM_Immune subgroup.  
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Figure 1. Single-nucleus profiles of the melanoma ecosystem. A. UMAP plot of 100 554 cells from primary tumor tissues of 11 melanoma patients including 
pre-treatment and post-treatment, showing the annotation and color codes for cell types in the melanoma ecosystem. B. UMAP plot indicating the patient origin and group for 
each single cell. C. Feature plots showing classical marker genes for the annotated 11 cell types. D. Heatmap showing the expression of selected marker genes in the annotated 
cell types. E. Heatmap depicts pairwise correlations of 26 clusters derived from 11 patients. Clustering identifies five coherent expression programs across tumors. F. 
Hierarchical heatmap showing large-scale CNVs in 11 subgroups. CD8+T is the reference subgroup. G. Feature plots for CNV score; Violin plots showing CNV scores cross 11 
subgroups (non-paired t-test). H. Feature plots for nFeature_RNA (the number of genes detected) and nCount_RNA (the number of mRNA molecules detected). I. Bar plots 
showing the fraction of cells originating from NPD-pre, PD-pre and NPD-post group, the fraction of cells originating from each of the patients, and the number of cells, and box 
plots showing the nCount_RNA of the 11 annotated cell types. J. Box plot showing the proportion of annotated 11 subgroups between PD-pre and NPD-pre groups (non-paired 
t test). K. Box plot showing the proportion of annotated 11 subgroups between NPD-pre and NPD-pre groups (paired t-test). 



Theranostics 2024, Vol. 14, Issue 5 
 

 
https://www.thno.org 

2131 

 
Figure 2. Functions and pseudo-temporal trajectories of distinct melanoma cell subgroups. A. t-SNE plot (upper panel) of 56 664 melanoma cells, color-coded by 
their associated cluster, patients, and groups; Bar plot (lower panel) showing the proportions of each subgroup. B. Heatmap showing the function score by GSVA in the 41 
clusters (5 subgroup), including biological functions and names of related signal pathways. C. Heatmap showing the specifically highly expressed genes in each subgroup. D. Box 
plot showing the proportion of annotated melanoma subgroups between PD-pre and NPD-pre groups (non-paired t test). E. Heatmap of the t-values of AUC scores of 
expression regulation by transcription factors, as estimated using SCENIC, per annotated subgroup. F. Pseudo-temporal trajectory (big panel) of pre-treatment melanoma cells 
identified two distinct cell fates colored by subgroup; Pseudo-temporal trajectory (small panel) of pre-treatment melanoma cells identified two distinct cell fates colored by 
Pseudo-time. G. The cell density distribution of the pseudotime-ordered melanoma cells from NPD-pre and PD-pre groups. H. Pseudo-temporal trajectory of PD-pre and 
NPD-pre melanoma cells identified two distinct cell fates colored by groups. I. Heatmap showing the enriched pathways in these three phases of H) J. Violin plots of TCIA score 
of TCGA patients categorized into high and low groups based on their score of the percentage of the MM_immune subgroup (non-paired t test). 
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Additionally, immune-related genes such as 
IGKC and immunoglobulin heavy constant gamma 1 
(IGHG1) were highly expressed in this subgroup, 
suggesting that the immune-driving capacity of the 
MM_Immune subgroup is influenced by 
immune-related genes (Figure S4D). Based on these 
findings, we speculate that the MM_Immune 
subgroup plays a crucial role in determining the 
efficacy of anti-PD-1 therapy in melanoma.We then 
mapped the gene regulatory networks that govern 
these subgroups and found that MM_Immune cells 
exhibited elevated regulon activity for CCAAT 
enhancer binding protein delta (CEBPD) and 
forkhead box D3 (FOXD3) (Figure 2E). The 
CEBPD/toll-like receptor 4 (TLR4) axis regulates 
inflammation, and the absence of the FOXD3/V-set 
immunoregulatory receptor (VISTA) axis results in 
increased expression of PD-L1, which may explain the 
immune activation status observed in the 
MM_Immune subgroup [32, 33]. Further analysis 
confirmed that within the MM_Immune subgroup, 
the proportion of PD-L1-positive cells in tumor cells 
was the lowest, potentially due to the influence of 
FOXD3 (Figure S4E). However, it is important to note 
that the proportion of PD-L1-positive cells is lower in 
the PD-pre group compared to the NPD-pre group, 
which may provide an explanation for the fact that the 
expression level of PD-L1 is not the sole determinant 
of anti-PD-1 therapy efficacy. 

To obtain the MM pseudo-time trajectory, we 
randomly selected 11,000 high-quality pre-treatment 
tumor cells (including the PD-pre and NPD-pre 
groups) to establish a pseudo-temporal trajectory. 
MM_Immune cells were primarily situated at the 
beginning of the phylogenetic tree and gradually 
decreased during development (Figure 2F). By 
generating a pseudo-time trajectory for melanoma 
cells in the NPD-pre and NPD-post groups, we 
confirmed that the MM_Immune subgroup was 
positioned at the root, while the MM_Stress subgroup 
was located at the terminus of the phylogenetic tree 
(Figure S4F). These findings suggest that 
MM_Immune cells represent the initial tumor cells 
that undergo transformation and develop into a 
subgroup of cells with alternative functions. 
However, MM_Immune cells lose their 
antigen-presenting characteristics, which may 
contribute to the observed phenomenon of drug 
resistance in ICIs treatment (Figure 2G). Furthermore, 
when examining the cell fate downstream of 
branching point 1, we observed that tumor cells in the 
PD-pre group mainly gathered in cell fate 1, whereas 
tumor cells in the NPD-pre group primarily gathered 
in the pre-branch and cell fate 2 (Figure 2H). To 
investigate this phenomenon, we conducted gene 

expression analysis of the pre-branch, cell fate 1, and 
cell fate 2. The results indicated that the pre-branch is 
functionally linked to immunity, while cell fate 1 is 
enriched in pathways related to the extracellular 
matrix, adhesion, WNT, and other pathways. Cell fate 
2 primarily focuses on apoptosis and matrix 
metalloproteinase pathways (Figure 2I). We 
hypothesize that melanoma cells diminish the efficacy 
of anti-PD-1 therapy through abnormal activation of 
the extracellular matrix, WNT, and other pathways. 

Subsequently, we performed differential 
expression and functional enrichment analyses within 
the MM_Immune subgroup between the groups 
(Figure S5A–D). The NPD-pre group showed more 
robust pathways associated with lymphocyte, 
complement, and cell migration compared to the 
PD-pre group. These pathways promote the 
recruitment and activation of immune effector cells, 
enhancing the ability to kill tumors. Additionally, the 
NPD-post group exhibited a greater inclination 
towards antigen presentation, oxidative stress, and 
cell death compared to the NPD-pre group, indicating 
the strong tumor-killing ability of anti-PD-1 therapy. 

To confirm the role of the MM_Immune 
subgroup in anti-PD-1 treatment, we utilized the 
Cancer Genome Atlas (TCGA)-Skin Cutaneous 
Melanoma (SKCM) dataset, which includes a large 
cohort of 471 melanoma patients. The patients were 
categorized into high and low groups based on their 
scores for the percentage of the MM_Immune 
subgroup. The Cancer Immunome Atlas (TCIA) 
provided a predictive score for ICIs treatment efficacy 
for each patient in the TCGA-SKCM dataset. 
Comparing the TCIA scores between the high and low 
groups, we observed no difference in the absence of 
anti-PD-1 and anti-CTLA-4 treatment. However, upon 
administration of ICIs (anti-PD-1, anti-CTLA-4, and 
their combination), the TCIA scores were significantly 
elevated (p < 0.0001) in the high-score group 
compared to the low-score group (Figure 2J). These 
results suggest that the percentage of MM_Immune 
cells may serve as an advanced biomarker for 
predicting immune efficacy in patients. 

Loss of function of CD8+ T cells in the TME 
Lymphocytes are integral components of the 

TME and play a critical role in anti-tumor immunity. 
To gain a deeper understanding of lymphocyte 
subgroups in melanoma, we employed an 
unsupervised clustering approach to analyze 27,766 
lymphocytes, resulting in the identification of 23 
distinct clusters (Figure 3A & Figure S6A). We 
integrated subgroups with similar gene expression 
profiles into 19 independent subgroups with unique 
gene expression patterns and functions (Figure 3B). T 
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cells were annotated using previously reported cell 
subgroup markers based on the average expression of 
marker genes in the T cell subgroups (Figure 3C-D) 

[34-36]. The function of T cells was also verified using 
GO analysis (Figure S6B).  

 

 
Figure 3. Heterogeneity of T lymphocyte and loss of function of CD8+ T cells in the TME. A. UMAP plot of 27 766 lymphocytes, color-coded by their associated 
cluster. B. Volcano plot (upper panel) showing the differentially expressed genes in these annotated clusters; Bar plot (lower panel) showing the proportions of T cell (including 
NK/NKT) subgroups. C. Dot plot of subgroup-specific genes of 13 lymphocyte cell types. D. Feature plots showing classical marker genes for the annotated 13 lymphocyte cell 
types. E. Box plot showing the proportion of annotated CD8+T and NK/NKT subgroups between PD-pre and NPD-pre groups (non-paired t test). F. Exhaustion Score and 
activation Score of CD8+T and NK/NKT subgroups. G. Ridge plots showing the expression levels of exhaustion and activation genes in CD8+T and NK/NKT subgroups. 



Theranostics 2024, Vol. 14, Issue 5 
 

 
https://www.thno.org 

2134 

 
The CD8_DLC1 subgroup, characterized by a 

high level of DLC1 Rho GTPase activating protein 
(DLC1), was significantly elevated (p < 0.05) in the 
PD-pre group compared to the NPD-pre group 
(Figure 3E). The distribution of other subgroups can 
be found in Figure S6C. We further observed that 
CD8_DLC1 cells exhibited the highest exhaustion 
score and a high toxic activity score, while the 
CD8_AOAH subgroup exhibited the lowest 
exhaustion score and highest toxic activity score 
among the four distinct CD8+ T subgroups and 
NK/NKT cells (Figure 3F). CD8_DLC1 cells also 
showed high expression levels of PDCD1, CTLA4, and 
LAG3, whereas CD8_AOAH exhibited high 
expression levels of acyloxyacyl hydrolase (AOAH), 
thymocyte-expressed molecule involved in selection 
(THEMIS), and IL7R (Figure 3G). These genes are 
known to be positively associated with melanoma 
prognosis, TCR and cytokine signaling in CD8+ T 
cells, and T cell differentiation and maintenance 
[37-39]. We also observed variations in the activity of 
transcription factors across the three Tex and one Tef 
subgroups (Figure S6D). Basic leucine zipper 
ATF-like transcription factor (BATF) was highly 
active in CD8_TOX cells and slightly active in 
CD8_CCL4 cells [40, 41]. MAF BZIP transcription 
factor (MAF) exhibited high activity in the CD8_DLC1 
and CD8_TOX subgroups [42]. Signal transducer and 
activator of transcription (STAT) 4 was activated in 
CD8_AOAH cells [43]. These findings suggest that 
differences in transcription factor activity may 
contribute to different states of CD8+ T cells, and that 
the regulatory activity of transcription factors within 
Tex is heterogeneous. 

The cytotoxic capacity of CD8+ T cells in the 
PD-pre group was significantly lower compared to 
the NPD-pre group (Figure S6E). To understand the 
mechanism of CD8+ T cell dysfunction, we conducted 
a comprehensive analysis of 4,041 high-quality CD8+ 
T and Tcyc cells, from which we established a 
pseudotemporal ordering. We observed that Tcyc 
cells were located at the root of the phylogenetic tree, 
with high expression of cell division cycle associated 8 
(CDCA8) and centromere protein P (CENPP), while 
CD8_AOAH and CD8_DLC1 cells were predomi-
nantly situated at the terminal branch (Figure S7A-B). 
Additionally, granzyme A (GZMA) and THEMIS 
were not present at the end of the branch represented 
by CD8_DLC1. Furthermore, the aggregation of 
CD8_AOAH and CD8_DLC1 cells gradually diverged 
after the branching point. These observations suggest 
that proliferating CD8+ T cells may undergo 
developmental selection at a specific pseudo- 
timepoint, ultimately determining their functional 

state. We then examined differentially expressed 
genes (DEGs) and enriched biological functions at the 
branching sites, and identified the regulation of 
hydrogen peroxide-induced cell death in cell fate 1 of 
CD8_DLC1 cells. Conversely, CD8_AOAH cells 
demonstrated high immune activity and resistance to 
apoptosis, with a notable association with B cell 
activation. 

CD74+ follicular B cells with function of antigen 
presentation 

Based on the existing literature, we identified 
and annotated six distinct subgroups of B cells (Figure 
4A) [44, 45]. Among these subgroups, B_CD74 
(follicular B) stood out as it exhibited a significant 
correlation with antigen presentation, as indicated by 
the increased expression of CD74 and major 
histocompatibility complex (MHC) class II molecules, 
such as HLA-DRA (Figure 3B & Figure 4B). Previous 
studies have rarely observed B cells mediating 
antigen presentation through MHCII molecules. 
However, recent research suggests that enhancing the 
MHCII-mediated antigen presentation pathway in B 
cells can promote tumor-specific T cell responses and 
inhibit tumor progression [46]. Notably, the B_CD74 
subgroup was absent in the PD-pre group, while its 
proportion in the NPD-pre group showed significant 
variation (p < 0.05), ranging up to approximately 20% 
(Figure 4C). We calculated antigen presentation 
scores and found that this subgroup had the highest 
scores (Figure 4D). Subsequently, we conducted 
pseudo-time analysis of 10,763 highly qualified B cells. 
The B_CD74 subgroup was situated at the terminal 
branch, with MHCII molecules, such as HLA-DQA1 
and HLA-DRB1, distributed along the trajectory of 
cell fate 1, indicating a potent and precise function 
(Figure 4E-F). Further analysis of the branches in the 
trajectories revealed that B cells in the pre-branch 
were enriched in the regulation of leukocyte 
proliferation and the TNF signaling pathway. As cells 
progressed from the pre-branch to cell fate 1, some of 
these cells differentiated into B_CD74 cells, gradually 
activating the B cell receptor and acquiring leukocyte 
migration, endocytosis, and antigen presentation 
capabilities (Figure 4G). Plasma cells were enriched at 
the end of cell fate 2, indicating a higher degree of 
differentiation consistent with their specialized 
biological function (Figure 4E). The main features of 
this branch included intracellular transport, protein 
ubiquitination, and lymphocyte activation, suggesting 
that plasma cells were in an activated state and 
actively regulated intracellular protein metabolism 
and transport (Figure 4G). 
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Figure 4. CD74+follicular B cells with function of antigen presentation. A. Dot plot of subgroup-specific genes of B cell types. B. Feature plots showing classical marker 
genes for the annotated B cell types. C. Bar plot (left panel) showing the proportions of B cell subgroups. Box plot (right panel) showing the proportion of B_CD74 (follicular 
B) between PD-pre and NPD-pre groups (non-paired t test). D. Violin plots of the antigen presentation score of each B cell subgroup (non-paired t test). E. Pseudo-temporal 
trajectory of B cells identified two distinct cell fates colored by subgroup. F. Pseudo-temporal trajectory of B cells colored by the expression of subgroup-specific genes. G. 
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Heatmap showing the enriched pathways in cellfate1 and pre-branch. H. Bar plots of TCIA score of TCGA patients categorized into high and low groups based on their score 
of the percentage of the B_CD74 subgroup (non-paired t test). 

 
 CycleB_AC023590.1 and B_RP11-444D3.1 were 

also found to be missing in the PD-pre group, which 
may indicate local scarcity of B cells in the PD-pre 
group from the perspective of local B cell generation 
(Figure 3B). As shown in Figure 4E, 
CycleB_AC023590.1 was primarily located at the root 
of the developmental tree, exhibiting a lower degree 
of differentiation and primarily responsible for 
proliferation. It may represent the main source of in 
situ B cell generation. B_RP11-444D3.1 was more 
evenly distributed throughout the root, middle, and 
end of the developmental tree, but in smaller 
numbers. This suggests that this subpopulation has 
diverse functions and varying degrees of 
differentiation, rather than representing a specific 
function. In contrast, B_CD74 is characterized by its 
clear antigen presentation function. Therefore, 
B_CD74 was selected as the core subpopulation for 
characterizing B cell function. 

Subsequently, we evaluated the relationship 
between B_CD74 cells and anti-PD-1/CTLA-4 
treatment. Patients were divided into high and low 
groups based on the percentage of B_CD74 cells, with 
the high group exhibiting higher TCIA scores (Figure 
4H). These results indicate that B_CD74 cells play 
important roles in anti-tumor immunity and are 
closely associated with anti-PD-1 therapy. 

The strongest immune activation subgroup in 
myeloid cells 

Expansion of myeloid cells in the TME, including 
dendritic cells (DCs), macrophages, monocytes, and 
mast cells, is a dynamic process that can either 
promote or suppress immune responses (Figure S8A) 
[47]. We employed unsupervised clustering to 
categorize myeloid cells into nine distinct groups, 
each characterized by specific markers (Figure 
S8B-C). Among these groups, migratory DCs 
(migDCs) exhibited notable expression of CD200 
molecule (CD200) and suppressor of cytokine 
signaling 2 (SOCS2); type 1 conventional dendritic 
cells (cDC1s) expressed C-type lectin domain 
containing (CLEC) 9A and BATF3; cDC2s expressed 
CLEC10A and CD1c molecule (CD1C); pDCs 
expressed CLEC4C and IL3RA; and monocytes 
expressed CD14 molecule (CD14). In contrast to 
monocytes, macrophages exhibited increased 
expression of complement C1q A chain (C1QA) and 
complement C1q B chain (C1QB), whereas mast cells 
exhibit high levels of KIT proto-oncogene, receptor 
tyrosine kinase (KIT) and PBX homeobox 1 (PBX1). 
Proliferating cells were characterized by TOP2A and 

CDCA8 expression, and a subgroup lacking 
classification markers was identified and labeled as 
Unknown [48-50]. Additional marker genes are shown 
in Figure S8D. Overall, the proportions of mast cells, 
macrophages, and monocytes were similar between 
the PD-pre and NPD-pre groups. However, the 
NPD-pre group showed enrichment of DCs compared 
to the PD-pre group, prompting further investigation 
into the potential contribution of DCs to anti-PD-1 
efficacy (Figure S8E). We examined the distribution of 
functional genes, including MHC molecules, immune 
checkpoints, and chemokines, within the DC 
subgroups (Figure S8F). The migDCs exhibited 
proclivity towards expressing MHC I molecules and 
immune checkpoints, such as PDCD1 and matrix 
metallopeptidase (MMP). Conversely, cDC1s 
expressed both MHC I and II molecules, as well as 
excitatory and immune checkpoints, such as CTLA4. 
Additionally, the pDCs demonstrated expression of 
interferon (IFN)-γ. Compared with other DCs, cDC2s 
expressed MHC II molecules, which are the most 
abundant chemokines. Meanwhile, cDC2s express 
low levels of immune checkpoints, such as PDCD1 
and CTLA4, but highly express TNF and 
immune-active factors, such as ICOS and TNF 
superfamily member 18 (TNFSF18). 

Based on the aforementioned analysis, we 
concluded that the cDC2_RTN1 subgroup possessed 
the most robust immune activation capacity among 
the DC subgroups. Interestingly, the proportion of 
cDC2_RTN1 cells was significantly higher (p < 0.05) in 
the NPD-pre group compared to the PD-pre group 
(Figure S8G). Furthermore, we observed a more 
intense expression of immune genes in the NPD-pre 
group compared to the PD-pre group (Figure S8H), 
suggesting that cDC2s in the NPD-pre group had a 
more potent immune activation ability. The activation 
of KLF transcription factor 6 (KLF6), a pivotal 
regulator of favorable immune responses in dendritic 
cells associated with antigen presentation, might 
contribute to the remarkable immune activation 
capacity of cDC2s (Figure S8I). Thus, the cDC2 
subgroup may serve as a primary determinant of a 
favorable prognosis. To validate this, patients in the 
TCGA-SKCM dataset were divided into high and low 
groups based on the percentage of cDC2_RTN1 cells. 
Those in the high group exhibited significantly higher 
(p < 0.001) TCIA scores for anti-PD-1 therapy, 
indicating the important role of cDC2_RTN1 cells in 
the effectiveness of anti-PD-1 treatment (Figure S8J). 
Therefore, we determined that the cDC2_RTN1 
subgroup was the strongest immune activator among 
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the DC subgroups and could serve as a reliable 
biomarker for predicting the prognosis of immune 
checkpoint inhibitor (ICI) treatment. 

An iCAF subgroup characterized by immune 
chemotaxis 

Through unsupervised clustering and classical 
markers, we identified six subgroups of interstitial 
cells (Figure 5A): vascular endothelial cells with 
elevated Von Willebrand factor (VWF) expression, 
lympho-endothelial cells with heightened prospero 
homeobox 1 (PROX1) expression, myofibroblastic 
cancer-associated fibroblast (myoCAFs) primarily 
expressing actin alpha 2 (ACTA2) and myosin IB 
(MYO1B), and iCAF characterized by chemokines and 
immunosuppressive factors, each exhibiting distinct 
gene expression patterns (Figure 5B-C). 
Subsequently, we found that the NPD-pre group 
exhibited a greater number of iCAFs with elevated 
levels of CCL21 (maintaining the stability and proper 
localization of immune cell populations is of utmost 
importance for the immune system [51]) expression 
(named iCAF_CCL21), prompting us to hypothesize 
that this particular subgroup may confer a favorable 
impact on anti-tumor immunity (Figure 5D). Previous 
studies have shown that cancer-associated fibroblasts 
(CAFs) can have both promoting and inhibiting 
effects on tumor drug resistance. The immune 
regulation contradiction can be summarized by four 
primary pathways: immune chemotaxis and 
activation of anti-tumor immunity, extracellular 
matrix secretion to impede immune infiltration, 
glucose metabolism acidification, and TME inhibition 
of immune activity and immunosuppressive factor 
secretion [52, 53]. To assess the immunomodulatory 
potential of iCAF_CCL21, we assigned scores to all 
stromal cells based on these four pathways. 
iCAF_CCL21 cells exhibited the highest immune 
chemotaxis score among all CAF subgroups, while 
displaying the lowest scores for extracellular matrix, 
glucose metabolism, and immunosuppressive factors 
(Figure 5E). Notably, iCAF_CCL21 was absent in the 
PD-pre group, suggesting that the immune-related 
pathway mediated by this subgroup was suppressed 
in the PD-pre group, including its intrinsic and 
intercellular communication-mediated immune 
effects (Figure 5F). Based on the gene expression 
characteristics of the iCAF_CCL21 subgroup and its 
enrichment in the NPD-pre group, we believe that this 
subgroup is also a key factor driving immune 
activation. Through SCIENIC analysis, we identified 
high transcriptional activity of the transcription factor 
IRF8 in iCAF_CCL21, which plays a positive role in 
the induction and activation of CD8+ T cells and DCs 
(Figure 5G) [54].  

 Pseudo-time trajectory analysis revealed a 
gradual decline of iCAF_CCL21 cells along the 
pseudo-time trajectory (Figure 5H). Chemokines such 
as CCL19, CCL21, and CXCL13 in the CAF cell 
population disappeared as the proportion of this 
subgroup decreased, suggesting a reduction in the 
capacity to attract T, B, and DC cells within the TME 
and potentially inhibiting the formation of tertiary 
lymphoid structures (Figure 5I) [55]. Previous 
research has shown that patients lacking tertiary 
lymphoid structures tend to have poor response to 
immune checkpoint inhibitor (ICI) treatment [56]. 
However, the markers of iCAF_CCL21 did not predict 
the efficacy of anti-CTLA-4 immunotherapy, but 
showed significant differentiation between 
TCGA-SKCM patients with low and high proportions 
of both anti-PD-1 and anti-PD-1/anti-CTLA-4 
combination therapies (Figure 5J). These results 
suggest that the absence of iCAF_CCL21 is closely 
related to poor response to anti-PD-1 treatment in the 
PD-pre group. 

Differences in cell numbers of subgroups 
between groups by immunofluorescence 

We calculated the markers for the MM_Immune, 
B_CD74, cDC2_RTN1, and iCAF-CCL21 subgroups 
(see Methods). Immunofluorescence staining was 
performed for the MM_Immune marker, IGKC, and 
the melanoma marker, Melan-A (MLANA), in 
formalin-fixed paraffin-embedded tissues of 
melanoma samples (Figure 6A & Figure S9A) 
demonstrated an increased MM_Immune cell ratio in 
the NPD-pre group. Membrane spanning 4-domains 
A1 (MS4A1)+/CD74+ (Figure 6B & Figure S9B), 
RTN1 +/Fc epsilon receptor I (FCER1)+(Figure 6C & 
Figure S9C), and platelet derived growth factor 
receptor beta (PDGFRB) +/CCL21+ cells (Figure 6D 
& Figure S9D) were stained in the same manner. 
These results confirmed that MM_Immune, B_CD74, 
cDC2_RTN1, and iCAF-CCL21 cells were more 
enriched in the NPD-pre group compared to the 
PD-pre group, consistent with the results of the 
aforementioned analysis. 

Anti-tumor immunity maintained by 
iCAF_CCL21 

To detect crosstalk between different cell types in 
the TME, we investigated the cell-cell interaction 
network. We focused on cell types that showed 
significant differences between the PD-pre and 
NPD-pre groups, as well as CD8+ T cells. Comparing 
the PD-pre group to the NPD-pre group, we observed 
more communication and immune-related signals in 
the NPD-pre group (Figure 7A-B).  
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Figure 5. Immune driving and suppressing capabilities of iCAF_CCL21. A. UMAP plot (left panel) of 4 369 interstitial cells, color-coded by their associated cluster; 
UMAP plot (upper right panel) interstitial cells, color-coded by patient origin; UMAP plot (lower right panel) interstitial cells, color-coded by groups. B. Volcano plot showing the 
differentially expressed genes in the six annotated clusters. C. Violin plots showing the subgroup-specific genes of each subgroup. D. Radar chart showing the proportion of 
annotated six subgroups between groups. E. Immunochemotaxis, extracellular matrix, glycolysis, immunosuppressive score of interstitial cell subgroups. F. Violin plot showing 
the proportion of iCAF_CCL21 between PD-pre and NPD-pre groups (non-paired t test). G. Dot plot of the t-values of AUC scores of expression regulation by transcription 
factors, as estimated using SCENIC, per subgroup of interstitial cells. H. Pseudo-temporal trajectory of CAFs colored by subgroup. I. The cell density distribution (upper panel) 
of the pseudotime-ordered CAFs; The expression of chemokine (lower panel) of the pseudotime-ordered CAFs. J. Violin plots of TCIA score of TCGA patients categorized into 
high and low groups based on their score of the percentage of the iCAF_CCL21 subgroup (non-paired t test). 
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Figure 6. MM_Immune, B_CD74, cDC2_RTN1 and iCAF_CCL21 maintain the molecular features between the PD-pre and NPD-pre groups. A. 
Representative images and quantification of immunostaining with anti-MLANA and anti-IGKC antibodies on PD-pre tumor (n = 3) and NPD-pre tumor (n = 8); scale bar: 50 μm 
(left); 20 μm (right) (non-paired t test); High power field (HP): a square with a side length of 140 μm, selected under high power field(80x), has a field of view area of 0.0196 mm². 
B. Representative images and quantification of immunostaining with anti-MS4A1 and anti-CD74 antibodies on PD-pre tumor (n = 3) and NPD-pre tumor (n = 8); scale bar: 50 
μm (left); 20 μm (right) (non-paired t test). High power field (HP): a square with a side length of 140 μm, selected under high power field(80x), has a field of view area of 0.0196 
mm². C. Representative images and quantification of immunostaining with anti-RTN1 and anti-FCER1 antibodies on PD-pre tumor (n = 3) and NPD-pre tumor (n = 8); scale bar: 
50 μm (left); 20 μm (right) (non-paired t test). High power field (HP): a square with a side length of 140 μm, selected under high power field(80x), has a field of view area of 0.0196 
mm². D. Representative images and quantification of immunostaining with anti-PDGFRB and anti-CCL21 antibodies on PD-pre tumor (n = 3) and NPD-pre tumor (n = 8); scale 
bar: 50 μm (left); 20 μm (right) (non-paired t test). High power field (HP): a square with a side length of 140 μm, selected under high power field(80x), has a field of view area of 
0.0196 mm².  
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Specifically, MM_Immune cells were the 
primary signal senders, while CD8+ T cells and Tregs 
were the main signal receivers in the PD-pre group. In 
the NPD-pre group, MM_Immune, B_CD74, CD8+ T, 
and iCAF_CCL21 cells were identified as the primary 
signal senders, while CD8+ T and B_CD74 cells were 
the main signal receivers (Figure 7C). Interestingly, a 
large number of immune-related interactions were 
detected in the NPD-pre group, indicating an increase 
in immune-related signaling pathways (Figure 7D-E). 
We found that MM_Immune cells mainly interacted 
with CD8+ T cells through MHC I molecules. 
Additionally, B_CD74 and cDC2s played 
immunoregulatory roles. B_CD74 cells communicated 
with multiple cell types through the protein tyrosine 
phosphatase receptor type C (PTPRC)-CD22 molecule 
(CD22) pathway, potentially facilitating the 
maturation and activation of immune cells (Figure 
S10A). MHC I and MHC II molecules induced antigen 
presentation and increased the activity of CD8+ T, 
cDC2_RTN1, and other CD4+ T cells (Figure S10B-C). 
Furthermore, the binding of CD6 molecule (CD6) and 
activated leukocyte cell adhesion molecule (ALCAM) 
to the surface of CD8+ T cells promoted their 
activation and infiltration (Figure S10D). Notably, 
B_CD74 cells were recruited and activated by 
iCAF_CCL21 cells through the complement pathway 
(Figure S10E). cDC2_RTN1 was activated via the 
complement pathway as well (Figure S10F). A 
summarized diagram illustrating the differences in 
intercellular communication between the PD-pre and 
NPD-pre groups is presented in Figure 7F. Previous 
studies have found that fibroblast-like cells may 
recruit B cells through the CXCL12-CXCR4 axis [57]. 
In the immune microenvironment of metastatic 
colorectal cancer, impaired antigen presentation by B 
cells through MHC II molecules has also been 
observed [58]. Furthermore, CD6 activation of T cells 
promotes TCR diversity [59], while CR2-mediated 
complement pathway activation enhances B 
cell-driven activation of tumor-specific CD8+ T cells 
in anti-tumor immunity [60]. Our data suggests that 
these previous findings may be interconnected 
through specific crosstalk pathways. When the 
recruiter CAF_CCL21 is deficient, the loss of the 
CXCL12-CXCR4 axis recruitment impairs the 
infiltration of B_CD74 responders, disrupting B 
cell-mediated antigen presentation and suppressing 
the anti-tumor effect of CD8+ T cells. In this process, 
the absence of CAF_CCL21 also impairs 
complement-dependent CR2 activation of B_CD74, 
while the dysfunction of B_CD74 weakens 
CD6-dependent activation of CD8+ T cells, thereby 
attenuating their involvement in anti-tumor 
immunity. This intricate network becomes one of the 

key factors determining the prognosis of anti-PD-1 
therapy in malignant melanoma. 

Predictive potential of Comprehensive.sig 
To improve the prediction of anti-PD-1 efficacy 

in melanoma, we utilized bulk RNA-Seq data from 
published studies [61-64] on anti-PD-1 ICI cohorts. 
Pre-treatment samples from these cohorts were 
carefully selected and analyzed. The cohorts were 
divided into two datasets: a training set (n = 195) and 
a testing set (n = 49). The analytical process is outlined 
as follows (Figure 8A): First, we calculated the 
markers for the four subgroups (see Methods) to 
generate four gene lists: G_MM, G_B, G_DC, and 
G_CAF. Next, we performed a t-test to identify 
differentially expressed genes (DEGs) enriched in 
non-progressive disease (NPD) patients from the ICI 
cohort (p < 0.05), resulting in a gene list, Gx. We then 
intersected Gx with G_MM, G_B, G_DC, and G_CAF 
to obtain four gene sets that represented the 
upregulated immune activation subgroups in the 
NPD-pre group. These gene sets were named MM.sig, 
B.sig, DC.sig, and CAF.sig. Additionally, to 
investigate whether a combination of these gene sets 
could encompass a wider range of biological factors, 
we merged them to create a fifth gene set called 
"Comprehensive.sig". Subsequently, we trained the 
model using seven different machine learning 
algorithms for each gene set, and performed 
10-time-repeated 5-fold cross-validation to optimize 
the parameters in each model. This yielded a total of 
35 models. The performance of these models was 
evaluated and compared using the area under the 
curve (AUC) in a test cohort. The best model, which 
used the combined gene set, achieved the highest 
AUC of 0.847 (Figure 8B) and was selected as the final 
model, referred to as the Comprehensive.sig model 
(Figure 8C-D). Furthermore, we evaluated the AUC 
of the model in each cohort and training set, and the 
results demonstrated that all AUC values exceeded 
0.95 (Figure 8E). To evaluate the model's predictive 
ability for overall survival, we divided patients who 
received ICI treatment into low-risk and high-risk 
subgroups based on the predicted values of "NPD" 
and "PD", respectively. The Kaplan-Meier analysis of 
overall survival (Figure 8F) revealed that the low-risk 
subgroup had significantly longer overall survival (p 
< 0.0001). The predicted results were consistent with 
the inference from xCell (Figure S11A). Zhang et al. 
compared melanoma-specific models and found that 
IMPRES.Sig was the best model [65, 66]. When 
comparing our model with the AUC of IMPRES.Sig in 
the same cohort, our model exhibited a higher AUC in 
terms of predicting anti-PD-1 response (Figure 8G). 
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Figure 7. The inter-cellular communication networks in the tumor ecosystem of melanoma. A. The interaction strength of selected 13 cell types in PD-pre group 
(left panel) compared with NPD-pre group (right panel). B. Heatmaps of overall outgoing and incoming signaling patterns in PD-pre (left panel) and NPD-pre groups (right panel). 
C. Scatter plots showing the incoming and outcoming interaction strength in the ecosystem of PD-pre (left panel) and NPD-pre groups (right panel). D. Dot plot showing 
significantly upregulated interaction pathways in PD-pre group. E. Dot plot showing significantly upregulated interaction pathways in NPD-pre group F. Schematic diagram 
illustrating the differences in intercellular communication between the PD-pre and NPD-pre groups. 



Theranostics 2024, Vol. 14, Issue 5 
 

 
https://www.thno.org 

2142 

 
Figure 8. Prediction of ICIs treatment outcomes using Comprehensive.sig. A. Flow chart of training and testing the Comprehensive.sig model constructed using 
machine learning process. In the training set, we applied 10-time repeated 5-fold cross-validation for parameters tuning of different machine learning algorithms. In the testing set, 
AdaBoost algorithm with best AUC was kept as the fnal Comprehensive.sig model. B. Comparison of multiple ROC plot depicting the performance of each best model of MM.sig, 
B.sig, DC.sig, CAF.sig and Comprehensive.sig in the testing set. C. Comparison of multiple ROC plot depicting the performance of different machine learning algorithms of 
Comprehensive.sig in the testing set. D. Circos plot (upper panel) depicting the performance of models of MM.sig, B.sig, DC.sig, CAF.sig and Comprehensive.sig based on 
different machine learning algorithms in the testing set; Heatmap (lower panel) depicting the performance of models of MM.sig, B.sig, DC.sig, CAF.sig and Comprehensive.sig 
based on different machine learning algorithms in the testing set. E. Comparison of multiple ROC plot depicting the performance of Comprehensive.sig in multiple MM anti-PD-1 
cohorts. F. Kaplan-Meier curves comparing OS between High-risk and Low-risk patients in validation and testing set. “PD” and “NPD” predicted by the Comprehensive.sig 
Model was defined as “High-risk” and “Low-risk” patients respectively. G. Bar plot depicting the AUC values of Comprehensive.sig and IMPRES.Sig in the same SKCM cohort 
(Raiz 2017 and Hugo 2016). 
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Discussion  
We conducted a comprehensive analysis of 

snRNA-seq data from an anti-PD-1 treatment cohort 
to gain insights into the TME in patients with varying 
treatment outcomes. Notably, we observed an 
increase in lymphocytes and a decrease in myeloid 
cells in the TME of patients in the non-progressive 
disease (NPD)-pre group compared to the progressive 
disease (PD)-pre group. We analyzed various cell 
types, including tumor cells, lymphocytes, myeloid 
cells, and interstitial cells, and identified four 
subgroups that were significantly enriched in the 
NPD-pre group and exhibited strong immune-driven 
characteristics. To validate the potential of these 
subgroups as biomarkers for predicting the prognosis 
of anti-PD-1 treatment, we verified our findings using 
TCGA-SKCM and TCIA data. Immunofluorescence 
staining confirmed that these cells were more 
abundant in the tissues of patients in the NPD-pre 
group. Furthermore, through cell-cell interaction 
analysis, we observed that the absence of 
iCAF_CCL21 cells in the PD-pre group may inhibit 
chemotaxis and weaken immune cells. This could 
explain the scarcity of B_CD74 cells and the absence of 
cDC2_RTN1 cells in the PD-pre group. Ultimately, we 
determined that combining the four subgroups into a 
gene set resulted in the most accurate machine 
learning model for predicting the response to 
anti-PD-1 treatment. 

Over the past decade, anti-PD-1 treatment has 
shown superior efficacy compared to high-dose 
interferons, marking a new era in immune checkpoint 
inhibitors (ICIs) treatment [67]. However, the overall 
response rate (ORR) for melanoma remains below 
50%, leading to increased interest in predicting 
treatment outcomes prior to medication administra-
tion. Various biomarkers have been identified to 
predict the response to anti-PD-1 treatment [68-70]. 
Although traditional whole-exome sequencing and 
bulk RNA sequencing can identify a significant 
proportion of biomarkers, such as tumor mutational 
burden and DEGs, their accuracy is limited due to the 
inability to accurately assess gene expression from 
multiple distinct cells. This limitation results in the 
inclusion of irrelevant features when building the 
model, leading to an AUC usually below 0.75. 
Single-cell sequencing provides a precise gene 
distribution map of a sample, allowing for the 
identification of additional biomarkers. When 
combined with bulk RNA data, this approach 
narrows down the range of features and increases the 
AUC to 0.8 or higher. 

We identified four main functions in tumor cells 
related to antigen presentation, EMT, proliferation, 

and stress. We suggested that antigen presentation 
characteristics are closely linked to prognosis, with 
this signature diminishing as tumors progress. 
Importantly, the disparity between the PD-pre and 
NPD-pre groups can be attributed to the upregulation 
of antigen prognostic characteristics and stronger 
lymphocyte-related functions in the NPD-pre group. 
These findings are consistent with those of Lina et al., 
who emphasized the critical role of antigen 
presentation in activating autologous CD8+ T cells in 
the prognosis of ICIs treatment [71]. According to 
Lavinia et al., the loss of heterozygosity resulting from 
frequent genomic alterations in advanced tumors 
frequently affects antigen presentation [72]. Therefore, 
we propose that the antigen presentation signature in 
melanoma may serve as a target to enhance the 
response to ICIs treatment. Additionally, when 
activated by the extracellular matrix and the Wnt 
pathway, melanoma cells are associated with a poorer 
prognosis, which aligns with previous studies 
demonstrating the induction of immune tolerance by 
these factors in melanoma. 

Despite the enrichment of melanoma cells with 
antigen-presenting function in the NPD group, 
enhancing the immunogenicity of these tumors alone 
is insufficient to explain the observed stronger 
anti-tumor immunity in the NPD-pre group. CD8+ T 
cell exhaustion in tumor immunity leads to 
immunosuppression, which is associated with an 
unfavorable patient prognosis [73]. We observed 
heterogeneity in the distribution of transcription 
factors within exhausted T cells undergoing oxidative 
stress-induced cell death. The antigen-presenting 
function of B cells in the cellular immune process is 
crucial, despite their classification as nonclassical 
antigen-presenting cells [74]. We found that the 
B_CD74 subgroup, which possesses antigen- 
presenting ability, accounted for up to 20% 
(maximum proportion) of lymphocytes in the 
NPD-pre group, but was completely absent in the 
PD-pre group. We also confirmed cDC2_RTN1 as the 
subgroup with the highest immune driving potential 
in dendritic cells (DCs), found it to be disabled in the 
PD-pre group, and identified benign subgroups in 
cancer-associated fibroblasts (CAF) with the strongest 
immune chemotactic ability and the lowest 
immunosuppressive potential. We discovered a 
deficiency of highly expressed chemokine factor 
CAF_CCL21 in the tumor microenvironment of PD 
patients. The disruption of the CXCL12-CXCR4 axis 
and the attenuation of complement pathway 
activation may be the fundamental reasons for the 
absence of B_CD74 and the disability of cDC2_RTN1, 
further influencing the activation of CD8+ T cells 
through the ALCAM-CD6 axis and antigen 
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presentation. In fact, we observed higher cytotoxicity 
and activation scores in CD8+ T cells from the NPD 
group compared to the PD group, providing us with a 
framework to explore the intricate anti-tumor 
network within the human body and integrate 
previous discoveries. In conclusion, this framework 
provides a foundation for developing an ICI 
treatment prognostic model that incorporates various 
subgroups. 

Our objective was to develop a customized 
model for predicting the response to anti-PD-1 drugs. 
With the proliferation of machine-learning 
algorithms, researchers now have a wide range of 
options to choose from. However, relying on a single 
approach may not yield optimal results. Drawing 
from the work of Zhang et al. [65], we recognized that 
random forest, K-Nearest Neighbor (KNN), Naïve 
Bayes, and other models have their own strengths and 
weaknesses across different datasets. Therefore, we 
selected seven commonly used models for our 
analysis. In contrast to previous studies, our analysis 
led to the identification of four distinct subgroups. We 
then compared the accuracy of models constructed 
from each subgroup and ultimately chose the best 
model that integrated all four subgroups. As a result, 
our model takes into account the biological factors of 
all four subgroups, rather than just one. In terms of 
predicting the response to anti-PD-1 treatment, our 
model outperforms Xiong et al.'s ImmuneCells.Sig, 
which was developed based on a single subgroup 
(γδT) and the cancerclass package (AUC: 0.97 vs. 0.96 
in Riaz 2017; 0.956 vs. 0.88 in Liu 2019; 0.997 vs. 0.98 in 
the training set) [12]. Furthermore, our model 
demonstrates superior performance compared to 
Auslander N's IMPRES.Sig in terms of anti-PD-1 
prediction (AUC: 0.97 vs. 0.78 in Riaz 2017; 0.956 vs. 
0.83 in Hugo 2016) [66].  

Limitations 
Our study has several limitations. Firstly, we 

employed a single-cell nuclear sequencing method to 
obtain data, which may be less accurate in identifying 
immune cells compared to the standard single-cell 
sequencing approach. This could potentially result in 
minor discrepancies between our immune cell 
analysis and the actual composition [75]. Secondly, 
neoadjuvant therapy involving the use of anti-PD-1 
monoclonal antibodies in combination with 
sensitizers or chemotherapy has become a common 
practice in China to impede the progression of 
melanoma. This makes it increasingly challenging to 
have a large cohort of patients who receive only 
anti-PD-1 antibodies for the treatment of melanoma in 
clinical practice. As a result, we were unable to obtain 
a sizable internal validation cohort to assess the 

accuracy of our model. In the future, we plan to 
continue following up with patients who have chosen 
anti-PD-1 monotherapy to expand our cohort and 
conduct further research. Additionally, the predictive 
value of our model will need to be validated through 
prospective clinical trials investigating the efficacy of 
ICIs. 

Conclusions 
In this study, we conducted an analysis of 

snRNA-seq data from a cohort of patients treated with 
anti-PD-1 therapy, revealing the presence of 
heterogeneity in tumor cells, lymphocytes, myeloid 
cells, and stromal cells. Through our investigation, we 
identified immune-driven subgroups that have the 
potential to serve as biomarkers impacting the 
prognosis of ICIs treatment. Moreover, we developed 
an advanced model that integrates multiple 
subgroups as biological factors to predict the response 
to anti-PD-1 therapy. This model provides valuable 
insights and guidance for the selection and 
combination of anti-PD-1 drugs in the ICIs treatment 
of MM. 

Materials and Methods 
Human tumor specimens 

All melanoma samples were collected from the 
Department of Musculoskeletal Oncology, Fudan 
University Shanghai Cancer Center, after obtaining 
informed consent from the patients. Tumor samples 
without obvious hemorrhage, necrosis, or electrical 
burn were collected during the surgery. 

Single nucleus RNA-seq preparation of 
single-cell suspensions 

Fresh primary lesions of 11 patients were 
isolated immediately following tumor resection and 
transferred to a 50 mL centrifuge tube filled with 
precooled RPMI 1640 medium with 0.04 % bovine 
serum albumin (BSA, Gibco, Carlsbad, CA, USA). 
They were then quickly transported on ice to the 
FDZSH laboratory to minimize the ischemic time. 
Samples were cut into 1 mm3 pieces, followed by 
enzymatic digestion using the Miltenyi Tumor 
Dissociation Kit (Miltenyi, Bergisch Gladbach, 
Germany). The samples were then centrifuged at 300 
g for 30 s, and the supernatant was discarded. Next, 
1× PBS (calcium and magnesium free) containing 0.04 
% BSA (400 µg/ml) was added and then 
centrifugation at 300 g for 5 min. The cell pellet was 
resuspended in 1 ml red blood cell lysis buffer and 
incubated for 10 min at 4 ℃. The samples were then 
resuspended in 1 ml PBS containing 0.04 % BSA. The 
samples were then filtered using Scienceware Flowmi 
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40-µm cell strainers (VWR). Finally, 10 µL of 
suspension was counted under an inverted 
microscope with a hemocytometer. Trypan blue was 
used to quantify the live cells. 

Single nucleus isolation and sequencing 
Nuclei were isolated using the ShBio Nuclei 

Isolation Kit (SHBIO, #52009-10, Shanghai, China). 
Nuclei were counted using a cell counter (Thermo 
Fisher Scientific). Using a Chromium Single Cell 3′ 
Library and Gel Bead Kit v3 (10X Genomics), nuclei 
were immediately loaded onto a Chromium Single 
Cell Processor (10X Genomics) to barcode the RNA 
from single nuclei. Sequencing libraries were 
constructed according to the manufacturer’s 
instructions (10X Genomics) and sequenced using a 
NovaSeq 6000 sequencing system (Illumina, 
20012866) [76].  

Single nucleus RNA-seq data processing 
Reads were processed using the Cell Ranger 

3.0.1 pipeline with default and recommended 
parameters. FASTQs generated from Illumina 
sequencing output were aligned to the human 
genome, version GRCm38, using the STAR algorithm 
[77]. Next, Gene-Barcode matrices were generated for 
each individual sample by counting UMIs and 
filtering non-cell associated barcodes.Finally, we 
generate a gene-barcode matrix containing the 
barcoded cells and gene expression counts. This 
output was then imported into the Seurat_3.0.2 R 
toolkit for quality control and downstream analysis of 
our single cell RNAseq data. All functions were run 
with default parameters, unless specified otherwise. 
We excluded cells with fewer than 200 or more than 
6000 detected genes (where each gene had to have at 
least one UMI aligned in at least three cells). The 
expression of mitochondria genes was calculated 
using PercentageFeatureSet function of the seurat 
package [78]. To remove low activity cells, cells with 
more than 10 percent expression of mitochondria 
genes were excluded. The normalized data 
(NormalizeData function in Seurat package) was 
performed for extracting a subset of variable genes. 
Variable genes were identified while controlling for 
the strong relationship between variability and 
average expression. Next, we integrated data from 
different samples after identifying ‘anchors’ between 
datasets using FindIntegrationAnchors and 
IntegrateData in the seurat package. Then we 
performed principal component analysis (PCA) and 
reduced the data to the top 30 PCA components after 
scaled the data. We visualized the clusters on a 2D 
map produced with t-distributed stochastic neighbor 
embedding (t-SNE) as well as uniform manifold 

approximation and projection (UMAP) [79]. 
Identification of cell types and subtypes by nonlinear 
dimensional reduction (t-SNE) Cells were clustered 
using graph-based clustering of the PCA reduced data 
with the Louvain Method after computing a shared 
nearest neighbor graph [78, 80]. For sub-clustering, 
we applied the same procedure of scaled, 
dimensionality reduction, and clustering to the 
specific set of data (usually restricted to one type of 
cell.) For each cluster, we used the Wilcoxon 
Rank-Sum Test to find significant deferentially 
expressed genes comparing the remaining clusters. 
SingleR and known marker genes were used to 
identify cell type [81].  

Single-cell copy-number variation evaluation 
To distinguish tumor from non-tumor cells, we 

evaluated levels of copy-number variation (CNV) of 
each cell on the chromosome by inferCNV R package 
(version 1.0.4) (https://github.com/broadinstitute/ 
inferCNV). The inferCNV algorithm is based on the 
theoretical foundation that the relative expression of a 
large number of neighboring genes in the genome 
average out to reflect the gene-specific expression 
patterns and abundance distribution that primarily 
reflect chromosomal copy number variations (CNVs). 
After sorting all analyzed genes based on their 
genomic positions, the algorithm uses the moving 
average of 100 analyzed genes and the equation below 
to estimate the chromosome CNV for each cell and 
each analyzed gene: . In 
the equation, CNV(i) represents the estimated relative 
copy number of cell k for the i’th gene in the sorted 
gene list, oj is the j’th gene in the sorted gene list, and 
Ek(oj) is the relative normalized expression of that 
gene in cell k[82]. CNV levels of these main cell types 
was calculated by the amount of gene expression from 
the scRNA-seq data for each cell with cutoff 0.1. 
Genes were then sorted based on their chromosomal 
location and a moving average of gene expression was 
calculated using a window size of genes. The 
expression was then centered to zero by subtracting 
the mean. CD8+T cells were selected as reference cells, 
leaving all remaining cells as the observed cells. The 
parameters of inferCNV analysis included “denoise”, 
default hidden Markov model settings, and a value of 
0.1 for “cutoff”. 

Simultaneous gene regulatory network 
analysis 

SCENIC analysis was performed using the 
motifs database for RcisTarget and GRNboost 
(SCENIC, version 1.1.2.2) with default parameters. In 
detail, we identified transcription factor binding 
motifs over-represented on a gene list with RcisTarget 
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package. The activity of each group of regulons in 
each cell was scored by AUCell package. To evaluate 
the cell type specificity of each predicted regulon, we 
calculated the regulon specificity score (RSS) which 
was based on the Jensen-Shannon divergence (JSD), a 
measure of the similarity between two probability 
distributions. Specifically, we calculated the JSD 
(Jensen-Shannon divergence) between each vector of 
binary regulon activity overlaps with the assignment 
of cells to a specific cell type. The connection 
specificity index (CSI) for all regulons was calculated 
with the scFunctions (https://github.com/ 
FloWuenne/scFunctions/) package. 

Cell-cell communication analysis 
Cell–cell communication analysis was conducted 

with the snRNA-seq data by using the cellchat 
package (version 1.6.1). Only receptors and ligands 
expressed in >10% of cells of any type from old or 
young group were further evaluated, while a cell–cell 
communication was considered nonexistent if the 
ligand or the receptor was unmeasurable. Averaged 
expression of each ligand-receptor pair was analyzed 
between various cell types, and only those with P 
value < 0. 01 were used for the prediction of cell–cell 
communication between any 2 cell types. 

Pseudo-time trajectory analysis 
The R package monocle2 (version 2. 14. 0) was 

used to conduct the pseudo-time trajectory analysis 
[83]. Briefly, a differential expression analysis was 
performed to identify the top significantly 
differentially expressed genes (FDR < 0. 05) between 
groups to build the disease trajectory, and then each 
single cell was assigned a numeric pseudo-time value 
and then ordered along the disease trajectory.  

Enrichment analysis and scoring 
Gene Ontology (GO), and HALLMARK pathway 

enrichment analysis of DEGs were performed by 
clusterProfiler (version 3.14.0) and GSVA (version 
1.48.3) package and Seurat (version 3.0.2). Part of the 
analysis was done with the help of Metascape[84]. 

Calculation of single-cell subgroup marker 
genes 

We used the FindAllMarkers function in the 
Seurat package (version 3.0.2) to identify marker 
genes specific to each cell subset. To establish the 
marker genes, we set the threshold at Log FC > 0.25 
and considered only genes with p-values < 0.05. The 
list of marker genes obtained from this step has been 
included in the supplementary materials (Table S3). 
Subsequently, we selected genes that are functionally 
relevant to the subset, have available antibodies, and 
exhibit high expression specificity (preferably with a 

larger Log FC) as marker genes for immunofluo-
rescence staining. 

ICIs RNA-Seq cohorts 
To validate the predictive value of 

Comprehensive.sig, we systemically collected 
transcriptomic data and clinical information on 
pre-anti-PD-1 treatment samples from four SKCM 
cohorts (Hugo 2016 [61], Liu 2019 [62], Gide 2019 [63], 
and Riaz 2017 [64]). We used the ComBat method to 
remove batch effects of different ICIs RNA-Seq 
cohorts [85]. The patients were randomly divided into 
two datasets: a training set (80 %, n = 195) and a 
testing set (20 %, n = 49). 

Clinical outcomes 
The primary clinical outcomes were ORR and 

overall survival (OS). ORR was assessed using 
Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1 in all cohorts [86], except the 
Hugo 2016 cohort [61], whose ORR was assessed 
using immunorelated RECIST (irRECIST). The 
patients were divided into two groups according to 
their response status: PD and NPD. 

Model training and parameter tuning 
We trained the ICIs treatment response 

classification model with Comprehensive.Sig, using 
seven common machine learning (ML) algorithms, 
including support vector machine (“SVM”), Naïve 
Bayes (“NB”), random forest (“RF”), k-nearest 
neighbors (“KNN”), AdaBoost Classification Trees 
(“AdaBoost”), boosted logistic regressions 
(“LogiBoost”), and cancerclass [87, 88]. For each ML 
algorithm with parameters except cancerclass, 
fivefold cross-validation (CV) was adopted for 
hyperparameter tuning to optimize the performance 
of the model. To ensure robustness, we repeated the 
optimization process 10 times with different random 
seeds for each single resampling [89]. As for 
cancerclass which does not require parameters, we 
trained the model using the entire training set 
directly. 

Model testing 
Seven models were derived from the training set 

using different ML algorithms. These models were 
then applied to the test set and the results were 
compared. The model with the best performance was 
selected as the final model. 

Immunofluorescence staining 
For FFPE tissue sections, heat mediated antigen 

retrieval was performed with citrate pH 6 in a 
microwave oven for 30 min after deparaffinization. 
After washing with PBS, tissue sections were 
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permeabilized and blocked using a solution with TBS 
containing 0.3% Triton X-100 and 5% donkey serum 
(D-TBST solution) for1 h at room temperature. Then 
the tissue sections were incubated with primary 
antibody diluted with D-TBST solution at 4 °C 
overnight. After washing with TBS containing 0.05% 
Tween-20 for three times, the tissue sections were 
incubated with secondary antibody and Hochest 
(1:1000) diluted with D-TBST solution at room 
temperature for 1.5 h. After washing with TBST, slides 
were mounted in mounting solution, cover slipped, 
and sealed with nail polish. After confocal 
microscopy, Slideviewer software was used to 
observe and record the number of positive cells under 
high magnification(80x). 

Statistical analysis 
To conduct statistical tests using R (version 4.1.1) 

or GraphPad Prism 7.0 (GraphPad Software, USA), 
the following procedures were followed. For 
non-paired samples, the first step involved assessing 
the normality of the data distribution. If the data 
followed a normal distribution and exhibited 
homogeneity of variances, the non-paired t-test was 
selected. In cases where the homogeneity of variances 
assumption was violated, the Welch's correction for 
the non-paired t-test was applied. For non-normally 
distributed data, the non-parametric Mann-Whitney 
rank-sum test was used. For paired samples, the 
initial step was to verify the normality of the 
differences between paired samples. If the differences 
followed a normal distribution and were consistent, 
the paired t-test was chosen. In cases where the 
normality assumption was violated, the ratio paired 
t-test was used. If the differences did not follow a 
normal distribution, the non-parametric Wilcoxon 
signed-rank test was employed. A p-value of ≤ 0.05 
was considered statistically significant. A receiver 
operating characteristic (ROC) curve was used, and a 
larger AUC indicated a better predictive performance. 
An AUC of 0.9–1.0 is considered excellent, 0.8–0.9 
very good, 0.7–0.8 good, 0.6–0.7 sufficient, 0.5–0.6 bad, 
and less than 0.5 considered not useful [90]. Patients 
predicted by the final model as “PD” and “NPD” 
were categorized into high-risk and low-risk 
subgroups for survival analysis. Part of the analysis 
was performed using Sangerbox[91]. 
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