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Graphical Abstract 

 

 50 

Abstract:  51 

Background: Markers of aging hold promise in the context of colorectal cancer (CRC) 52 

care. Utilizing high-resolution metabolomic profiling, we can unveil distinctive age-53 

related patterns that have the potential to predict early CRC development. Our study 54 

aims to unearth a panel of aging markers and delve into the metabolomic alterations 55 

associated with aging and CRC. 56 

Methods: We assembled a serum cohort comprising 5,649 individuals, consisting of 57 

3,002 healthy volunteers, 715 patients diagnosed with colorectal advanced 58 

precancerous lesions (APL), and 1,932 CRC patients, to perform a comprehensive 59 

metabolomic analysis.  60 
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Results: We successfully identified unique age-associated patterns across 42 61 

metabolic pathways. Moreover, we established a metabolic aging clock, comprising 9 62 

key metabolites, using an elastic net regularized regression model that accurately 63 

estimates chronological age. Notably, we observed significant chronological disparities 64 

among the healthy population, APL patients, and CRC patients. By combining the 65 

analysis of circulative carcinoembryonic antigen levels with the categorization of 66 

individuals into the "hypo" metabolic aging subgroup, our blood test demonstrates the 67 

ability to detect APL and CRC with positive predictive values of 68.4% (64.3%, 72.2%) 68 

and 21.4% (17.8%, 25.9%), respectively.  69 

Conclusions: This innovative approach utilizing our metabolic aging clock holds 70 

significant promise for accurately assessing biological age and enhancing our capacity 71 

to detect APL and CRC. 72 

Keywords: Aging; Global metabolomics; Metabolic aging clock; Colorectal advanced 73 

precancerous lesions; Colorectal cancer 74 

Running title: Metabolic deviation in colorectal cancer. 75 

 76 

Introduction 77 

Aging is an inevitable life-long decline in physiological functions and is the major 78 

risk factor for high impact chronic diseases such as cancers and cardiovascular 79 

diseases [1]. Aging involves extensive physiological changes and metabolic adaptations 80 

over decades[2]. Modern “omics” platforms, including genomic, transcriptomic, 81 
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proteomic, and metabolomic profiling assays, have provided new opportunities for the 82 

systematic and agnostic characterization of biological aging. 83 

 DNA methylation-based profiling, also known as “DNAm age”, is a powerful tool 84 

for predicting chronological age and assessing biological aging. It can be used across 85 

most tissues and cell types, and it incorporates composite clinical measures to capture 86 

risks for a wide range of age-related outcomes. Two of the most recent and promising 87 

DNAm age algorithms are “DNAm PhenoAge” [3] and “DNAm GrimAge” [4]. DNAm 88 

PhenoAge was developed to predict multifactorial phenotypic age, while DNAm 89 

GrimAge was developed to study aging and age-related traits. Both algorithms have 90 

been shown to be strongly associated with mortality and other age-related health 91 

outcomes. DNAm age is a valuable tool for researchers and clinicians alike. It can be 92 

used to study the aging process, identify individuals at risk for age-related diseases, and 93 

develop personalized interventions to promote longevity. 94 

Metabolic syndrome [5], a cluster of metabolic abnormalities, is age-related and 95 

regulated by key metabolic proteins such as mechanistic target of rapamycin (mTOR), 96 

AMP-activated protein kinase (AMPK), and insulin/insulin growth factor (IGF) [6, 7]. 97 

Dysregulated metabolic control is a long-term cause of aging and increases the risk of 98 

chronic diseases. Metabolomic age models [8, 9], developed with unprecedented high-99 

resolution metabolome coverage, assess biological age. Metabolomic [9] and epigenetic 100 

[10] aging clocks use different biomarkers, but both correlate with chronological age. 101 

Age is the strongest risk factor for cancers, including advanced precancerous 102 

lesions (APL) and colorectal cancer (CRC). As people age, their risk of developing 103 

advanced polyps and CRC increases [11, 12].  In this study, we used a deep 104 
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metabolomic analysis of over 3,000 healthy individuals to investigate how the 105 

metabolome changes with age. We hypothesized that high-resolution metabolomic 106 

profiling could reveal unique age-associated patterns that could precisely predict 107 

chronological age. We also hypothesized that a metabolomic aging blood test could 108 

have clinical applications, such as assessing aging and detecting CRC early. 109 

Results 110 

Shanghai General Population and Cancer Center CRC Cohort Study 111 

The study design and methods are outlined in Figure 1. We collected 112 

pretreatment serum samples (Supplementary Material 1) from 3,002 healthy individuals 113 

from the Shanghai Centers for Disease Control and Prevention (CDC), 715 patients with 114 

advanced precancerous lesions (APL), and 1,932 CRC patients without known 115 

contribution from germline causes or significant family history of cancer or inflammatory 116 

bowel disease (i.e., patients whose CRC is not thought to be caused by a genetic 117 

mutation or a strong family history of cancer). Demographic data are summarized in 118 

Table 1. 119 
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Figure 1: Metabolomics data workflow. In this study, 3,002 healthy volunteers and 2,647 patients with colorectal advanced 

precancerous lesions (APL) or colorectal cancer (CRC) were enrolled, and their serum samples were collected. High-

resolution mass spectrometry was used for serum global metabolomics data acquisition, and 1,603 metabolic features were 

identified after data processing. After metabolic feature analysis, aging associated metabolic pathways were found to regress 

to chronological age. Further exploration of the metabolic features identified nine metabolites as the metabolic aging clock. 

Comparing actual chronological age and metabolic aging clock predicted age of healthy people using a 95% confidence 

interval (CI, 2.5%~97.5%) defined hyper, normal and hypo subgroups. Compared with healthy people, APL and CRC patients 

usually bearing somatic genetic mutations significantly fell into the hypo subgroup. At last, the underlying metabolic patterns 

associated with aging were revealed. 

120 
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 121 

Unique Metabolomic Patterns Predict Chronological Age 122 

Using high-resolution mass spectrometry (Supplementary Material 2) to profile 123 

blood metabolomes, we identified 1,603 metabolic features. Of these, 157 were 124 

associated with aging (Pearson correlation, |𝑟| ≥ 0.3). We aggregated the aging 125 

associated features into KEGG pathways and calculated the value of each pathway as 126 

the weighted sum of the normalized measurement values of aging associated 127 

metabolites on the pathway divided by the number of mapped metabolites 128 

(Supplementary Material 3). Using an elastic net approach, we regressed these 59 129 

pathways on chronological age and found that 42 of them contributed to the multivariate 130 

regression with positive importance scores. 131 

The 42 pathways collectively achieved improved regression on chronological age 132 

(Figure 2A, Supplementary Figure 1): training, 𝑟 = 0.88, 95%CI 0.88-0.89, 𝑠𝑙𝑜𝑝𝑒 = 0.98, 133 

95%CI 0.95-1.00; testing, 𝑟 = 0.81, 95%CI 0.80-0.83, 𝑠𝑙𝑜𝑝𝑒 = 0.96, 95%CI 0.90-1.01. 134 

The top 10 metabolic pathways, ranked by Pearson correlation to chronological age, 135 

were steroid hormone biosynthesis, bile secretion, ABC transporters, histidine 136 

metabolism, metabolism of xenobiotics by cytochrome P450, riboflavin metabolism, 137 

chemical carcinogenesis, phenylalanine metabolism, citrate cycle, and pyrimidine 138 

metabolism. 139 

We performed the pathway-based multivariate regression analysis with men, and 140 

women separately. Using the same statistical pipeline for the general population (Figure 141 

2A, 42 pathways), we identified 70 and 48 metabolic pathways (Figure 2B/2C) for the 142 

multivariate analyses of men and women populations, respectively. The Pearson 143 
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correlation coefficients were 0.90/0.91 (men/women) in training and 0.78/144 

0.87 (men/women) in testing respectively (Figure 2B/2C). The Pearson correlation 145 

coefficients among these three populations, all/men/wo were statistically significant (p-146 

value = 0.0001). The rankings of the importance scores of the significant aging-147 

correlating pathway features were similar among all, men, and women (Figure 148 

2A/2B/2C). For example, the steroid hormone biosynthesis pathway ranked top 1 in 149 

both the all’s and men’s models and ranked top 3 in the women’s model. 150 
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Figure 2. A pathway based metabolic aging clock from the general population. 

Importance scores of underlying pathways from untargeted metabolic profiling (training set:75%; 

testing set:25%). (A). Prediction of metabolic ages from all normal population (both sexes). (B). 

Prediction of metabolic ages from male normal population. (C). Prediction of metabolic ages 

from female normal population.  The pathway IDs in the figure are as follows: P1, Steroid 

hormone biosynthesis; P2, Bile secretion; P3, Phenylalanine metabolism; P4, ABC transporters; 

P5, Metabolism of xenobiotics by cytochrome P450; P6, 2-Oxocarboxylic acid metabolism; P7, 

Lysine degradation; P8, Biosynthesis of amino acids; P9, Pyrimidine metabolism; P10, Chemical 

carcinogenesis; P11, Histidine metabolism; P12, Amino sugar and nucleotide sugar metabolism; 

P13, Protein digestion and absorption; P14, Riboflavin metabolism; P15, Pentose and 

glucuronate interconversions; P16, Arginine biosynthesis; P17, Ascorbate and aldarate 

metabolism; P18, Glyoxylate and dicarboxylate metabolism; P19, Carbon metabolism; P20, 

Taste transduction; P21, Ferroptosis; P22, Proximal tubule bicarbonate reclamation; P23, D-

Glutamine and D-glutamate metabolism; P24, Neomycin, kanamycin and gentamicin 

biosynthesis; P25, Nitrogen metabolism; P26, FoxO signaling pathway; P27, Phospholipase D 

signaling pathway; P28, Gap junction; P29, Circadian entrainment; P30, Long-term potentiation; 

P31, Synaptic vesicle cycle; P32, Retrograde endocannabinoid signaling; P33, Glutamatergic 

synapse; P34, GABAergic synapse; P35, Long-term depression; P36, Amyotrophic lateral 

sclerosis; P37, Huntington disease; P38, Spinocerebellar ataxia; P39, Cocaine addiction; P40, 

Amphetamine addiction; P41, Nicotine addiction; P42, Alcoholism; P43, Sulfur relay system; 

P44, Valine, leucine and isoleucine degradation; P45, Glutathione metabolism; P46, Butanoate 

metabolism; P47, Antifolate resistance; P48, Valine, leucine and isoleucine biosynthesis; P49, 

Fatty acid degradation; P50, Vitamin B6 metabolism; P51, Pantothenate and CoA biosynthesis; 
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P52, Porphyrin and chlorophyll metabolism; P53, Adrenergic signaling in cardiomyocytes; P54, 

Taurine and hypotaurine metabolism; P55, Sulfur metabolism; P56, Neuroactive ligand-receptor 

interaction; P57, Ubiquinone and other terpenoid-quinone biosynthesis; P58, Pentose phosphate 

pathway; P59, Tryptophan metabolism; P60, beta-Alanine metabolism; P61, Arginine and proline 

metabolism; P62, Central carbon metabolism in cancer; P63, Aminoacyl-tRNA biosynthesis; 

P64, Mineral absorption; P65, Glycolysis / Gluconeogenesis;  P66, Pyruvate metabolism; P67, 

Glycine, serine and threonine metabolism; P68, Citrate cycle (TCA cycle); P69, Insulin 

resistance; P70, Sphingolipid metabolism; P71, Sphingolipid signaling pathway; P72, Nicotinate 

and nicotinamide metabolism; P73, Alanine, aspartate and glutamate metabolism; P74, 

Serotonergic synapse; P75, Drug metabolism – cytochrome P450; P76, D-Arginine and D-

ornithine metabolism; P77, Purine metabolism; P78, Biotin metabolism; P79, Cysteine and 

methionine metabolism; P80, Phenylalanine, tyrosine and tryptophan biosynthesis; P81, Steroid 

biosynthesis; P82, Dopaminergic synapse; P83, Galactose metabolism; P84, Fructose and 

mannose metabolism; P85, Caffeine metabolism; P86, Drug metabolism - other enzymes; P87, 

Phosphonate and phosphinate metabolism; P88, Glycosaminoglycan biosynthesis - heparan 

sulfate / heparin; P89, Cholinergic synapse; P90, Folate biosynthesis; P91, Propanoate 

metabolism; P92, Primary bile acid biosynthesis; P93, Glucagon signaling pathway; P94, 

Tyrosine metabolism.  

 151 

Nine-Metabolite Metabolic Aging Clock 152 

Linear modeling links metabolic pathways to aging. We selected from the 153 

significant aging-associated metabolic features to identify a panel of metabolite 154 

biomarkers, called the "metabolic aging clock," to assess aging. The nine metabolites in 155 
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the metabolic aging clock were identified (Supplementary Material 4) using a 156 

combination of level 1 compound identification and multivariate regression 157 

(Supplementary Figure 3). The nine metabolites are shown in Figure 3A. The results of 158 

both the multivariate analysis (importance scores, IS, Figure 3B) and univariate analysis 159 

(Pearson correlation coefficient, r, Figure 3C) are summarized in Figure 3D. The 160 

metabolic aging clock achieved improved regression on chronological age, with a 161 

Pearson correlation coefficient 𝑟 0.95 (95%CI 0.946-0.954) and 𝑠𝑙𝑜𝑝𝑒 1.00 (95%CI 0.97-162 

1.03) in the training, and 𝑟 0.87, 95%CI 0.85-0.89, 𝑠𝑙𝑜𝑝𝑒 0.96, 95%CI 0.90-1.03 in the 163 

testing set (Figure 3E). The results were similar for all subjects, men, and women 164 

(Figure 3E-G): the Pearson correlation coefficient (r) 0.95/0.97/0.97 (all/men/women, p-165 

value, 0.24) in training and 0.87/0.81/0.89 (all/men/women, p-value < 0.0001) in testing 166 

respectively. 167 

 168 
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Figure 3. Structural identification of aging metabolite biomarkers and nine-metabolite-based 

metabolic aging clock. (A). Confirmation of the metabolites predicting chronological age by 

standard compounds. (B). Importance scores of the identified biomarkers in a biomarker-based 

metabolic aging clock. (C). Univariate trajectories of aging biomarkers as a function of the 

chronological age. (D). Nine compound biomarkers ranked by the importance scores in the aging 

clock model. KEGG: Kyoto Encyclopedia of Genes and Genomes; HMDB; Human Metabolome 

Database; R: Pearson Correlation Coefficient for regressing on the chronological age; IS: 

importance score in the multivariate model. (E-G). Prediction of metabolic ages in the training 

(75%) and testing (25%) sets from all the healthy general population (both sexes), from the male 

healthy population, and from the female healthy population. 

 169 

Hypo-aging phenotypes in CRC patients 170 

We used a metabolic clock to assess the metabolic ages of healthy people. We 171 

defined the "Δ metabolic aging" as the difference between the predicted and actual 172 

chronological ages. We used a 95% confidence interval (CI, 2.5%~97.5%) to define the 173 

"normal" (within the 95% CI), "hyper" (above the 97.5%), and "hypo" (below the 2.5%) Δ 174 

metabolic aging subgroup membership. 175 

Compared to healthy people, individuals with "hypo" membership (Figure 4A) 176 

were more likely to have APL or CRC, regardless of the specific CI thresholds used to 177 

define the "normal", "hyper", and "hypo" Δ metabolic aging subgroups (Figure 4B, 4D-E, 178 

4G-H). This suggests that a "hypo" metabolic aging phenotype is associated with an 179 

increased risk of APL and CRC (Supplementary Material 5, Supplementary Table 1, 2, 180 

and 3).  181 
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Figure 4. APL and CRC (all stages) samples have significantly higher fractions, and stage I 

CRC patients with gene mutations are more likely to have “hypo” metabolic age. (A, D, G). 

XY plot of the prediction of metabolic ages as a function of the chronological age in the normal 

general and CRC populations. (B, E, H). Sample fractions of the total in the hypo or hyper 

metabolic age subgroups. (C, F, I). KRAS, NRAS and BRAF mutations were significantly enriched 

in the hypo Δ age group (p < 0.01). The percentages were fractions of stage I CRC samples with 

corresponding mutations. (A-C): Quantile 2.5%, 50%, 97.5%. (D-F): Quantile 5%, 50%, 95%. (G-

I): Quantile 10%, 50%, 90%. 

 182 

Hypo-Aging Phenotypes and Their Potential Clinical Utility for Improving 183 

Colorectal Cancer Diagnosis 184 

The prevalence of APL and CRC in the general population is 7.6% and 0.7% 185 

[13], respectively. Because there were many more APLs and CRCs in the hypo Δ 186 

metabolic aging subgroup, we investigated whether the metabolic aging clock could be 187 

used to detect CRC. 188 

Specifically, we used hypo Δ metabolic aging subgroup membership to diagnose 189 

CRC status. After adjusting for the true incidence rate of CRC in the general population, 190 

the positive predictive values (PPVs, Table 2, Supplementary Table 2C) for APL and all 191 

CRC stages were 65.5% (62.3-68.5%) and 12.7% (10.0-15.9%), respectively. 192 

 193 
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Although serum carcinoembryonic antigen (CEA) does not have sufficient 194 

sensitivity or specificity to diagnose CRC (Table 2 PPV: APL, 5.2% (4.6-5.7%); CRC, 195 

0.4% (0.3-0.7%)), it is still considered the most important biomarker for detecting CRC. 196 

By removing samples with normal CEA measurements from the positives 197 

predicted by the metabolic clock classifier, we created a multi-target panel (nine 198 

metabolites plus CEA) that improved the PPVs to 68.4% ((64.3%, 72.2%), p=1.3x10-5) 199 

for APL, and 21.4% (17.8%-25.9%), p= 1.2x10-10) for CRC. This suggests that CEA and 200 

the metabolic clock work together to improve APL/CRC diagnosis. 201 

Metabolic Aging and CRC Mutation Profiles  202 

To study the genomic mutation patterns of colorectal cancers (CRCs) in the 203 

metabolic Δ aging subgroups, we profiled 412 samples from patients with stage I CRC 204 

(Supplementary Table 3A). Among the 164/412 (39.8%) patients with KRAS, 14/412 205 

(3.4%) with NRAS, and 18/412 (4.4%) with BRAF mutations/stage I CRCs 206 

(Supplementary Table 3B), 78.0% (71.3%, 84.2%) KRAS, 57.1% (28.8%, 85.7%) 207 

NRAS, and 100.0% (100.0%, 100.0%) BRAF mutants were found to be in the "hypo" 208 

metabolic age group (Figure 4C, 4F, and 4I). For reference, 66.1% of stage I CRC 209 

patients fell into the "hypo" subgroup (Figure 5). 210 
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Figure 5. Metabolic clock analysis of APL and stage I CRC subjects. (A). XY plot of the 

predicted metabolic ages as a function of chronological ages. Samples below the 2.5% quantile 

line were defined as hypo Δ metabolic age subgroup and those above the 97.5% one as hyper Δ 

metabolic age subgroup. (B). Enrichment of APL and CRC stage I subjects in Δ metabolic age 

“hypo” subgroup. (C). XY plot of the prediction of metabolic ages as a function of the 

chronological age in the normal general and CRC populations. (D). Sample fractions of the total 

in the hypo or hyper Δ metabolic age subgroups.  
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Discussion  211 

In this study, we used high-resolution mass spectrometry to identify key 212 

metabolic changes that correlate with chronological age in a healthy general population. 213 

We also developed a metabolic aging clock, a predictive model based on nine blood 214 

metabolites, to depict the age clock in the general population and in patients with 215 

colorectal cancer. 216 

 Previous studies have shown that certain biomarkers in our metabolic aging 217 

clock are associated with the aging process. Levels of kynurenine and phenylalanine 218 

increase with age, while levels of dehydroepiandrosterone (DHEAS) sulfate decrease. 219 

Kynurenine is produced by indoleamine 2,3-dioxygenase and tryptophan 2,3-220 

dioxygenase from tryptophan. High levels of circulating kynurenine are thought to be a 221 

primary driver of aging [14-18], linked to increased frailty and mortality in humans.  222 

DHEAS peaks around age 20 and then gradually declines over time. By age 70, DHEA-223 

S levels are about 20-30% lower than in younger adults [19-22]. Recently, researchers 224 

have reported that circulating phenylalanine also increases with age and is closely 225 

related to heart aging[23]. Older people also have a slower plasma clearance rate of 226 

phenylalanine, resulting in age-dependent increases [24]. Metabolites such as citrulline 227 

and ornithine are involved in the L-arginine/nitric oxide pathway and are thought to have 228 

anti-aging effects. The upregulation of circulating citrulline and ornithine could be a 229 

homeostatic response to the aging vesicular system in healthy individuals. Citrate, 3-(4-230 

hdyroxyphenyl) lactate, and gulonate are closely related to cellular energy metabolism. 231 

An accumulation of these metabolites could indicate a shift in cellular metabolism 232 

between either glycolysis or mitochondrial respiration. Prolylleucine is associated with 233 
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muscle tone, type 2 diabetes, and insulin resistance, conditions that are highly 234 

associated with age [25, 26]. Prolylleucine levels are upregulated in males with insulin 235 

resistance and are significantly upregulated in people with type 2 diabetes, regardless 236 

of sex [25]. Prolylleucine has been proposed as a biomarker for type 2 diabetes [25]. 237 

 Our findings that patients with CRC have a hypo metabolic age are consistent 238 

with a recent study of the PhenoAge clock (CpG markers: n=513), which showed a 239 

similar hypo-aging trend among high-risk CRC patients [27]. To develop a binary 240 

classifier for CRC assessment, we applied a random forest method to nine metabolite 241 

aging biomarkers. This improved the performance of the metabolic aging clock predictor 242 

of CRC status modestly: APL, 65.5% (62.3%, 68.5%); CRC, 12.7% (10.0%, 15.9%) 243 

(Table 2). The nine metabolic aging clock markers were originally discovered to regress 244 

to chronological age, but they can also be used directly with a more classical approach 245 

(a random forest method) to train a cancer binary classifier. This provides direct 246 

evidence to support the application of the metabolic aging clock in cancer assessment. 247 

In this study, we validated our hypothesis that the metabolic aging clock and its 248 

hypo-aging membership could improve the early diagnosis of colorectal cancer (CRC). 249 

Our metabolic clock panel results significantly outperformed previous findings, with a 250 

much improved positive predictive value (PPV) for APL (65.5%) and CRC (12.7%) 251 

(Table 2) than CologuardTM [18] (20.0% for APL and 3.72% for CRC) and Septin 9 252 

methylation tests (9.5% for APL and 2.3% for CRC) [28]. We further demonstrated that 253 

the CRC marker CEA could work together with our aging clock to improve the PPVs to 254 

identify APL (68.4%) and all stages of CRC cases (21.4%) (Table 2). Therefore, our 255 

models achieved higher PPV values to identify APL and stage I CRC subjects than 256 
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current clinically available diagnostic methods, using either the metabolic aging clock 257 

panel or the panel plus CEA.  A good disease marker usually becomes more relevant 258 

with the severity of the disease, as it should accurately measure the presence and 259 

progression of the disease. However, our predictive performance with precancerous 260 

lesions and different CRC stages is counterintuitive. We hypothesize that this may be 261 

due to the different mechanisms of action between tumor genesis and later tumor 262 

progression. Tumor genesis is the process by which a normal cell transforms into a 263 

cancer cell, while tumor progression is the process by which cancer cells grow and 264 

spread throughout the body. Future research is needed to address this. 265 

Clinically, KRAS and BRAF mutations are associated with a poor prognosis [29, 266 

30]. Patients with CRC and BRAF mutations do not respond to cetuximab, and all but 267 

one patient with any of the three mutations did not respond [31]. Patients with any of the 268 

three mutations had a poor response rate (7.1%) and reduced survival (progression-free 269 

survival = 8 months) compared with wild-type counterparts (74.4% and 11.6 months). 270 

Our study showed that hypo-aging individuals were also highly enriched in the stage I 271 

CRC patient population with KRAS and BRAF mutations. A hypo-aging phenotype is 272 

typically associated with a less differentiated CRC phenotype and is usually less 273 

responsive to chemotherapeutic agents [32]. Epigenetic data suggests that decelerated 274 

epigenetic aging is associated with a poorer prognosis and lower overall survival rate in 275 

CRC [33]. Our study bridges the gap between clinical observations and epigenetic 276 

studies of CRC patients with KRAS and BRAF mutations in stage I CRC through a 277 

metabolic aging clock, illustrating a spectrum of malignancy with metabolic aging 278 

deviations in this stage. 279 
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Our study has several potential limitations:1. Enrolled patients were not required 280 

to take a germline mutation test, so it is possible that a small number of patients without 281 

a family history of CRC had germline mutations; 2. Our metabolic clock analytics for 282 

early CRC detection may have been confounded by pre-analytic variables and cohort 283 

differences in sex and age, which differed between the general population and CRC 284 

cohorts. A stronger single-site study design would help rule out the possibility of 285 

systematic confounding related to differences in blood collection and processing. In a 286 

subset of our cohort enrolled at Shanghai CDC, identical blood collection was 287 

performed in healthy controls and CRC patients (n=55) who were identified as part of 288 

the CDC screening. Similar hypo-aging membership patterns were observed in this 289 

subgroup of CRC patients (Figure 5C-5D), which supports the validity of our CRC 290 

results (Figure 4A-4B) from Fudan University Shanghai Cancer Center.  In addition, we 291 

built 100 random models (Supplementary Material 6) using the statistical pipeline 292 

already established and compare if the deviation of the CRC/APL cohort from the CI 293 

derived from the general population is immanent/systematic (=bias) or specific for the 294 

age-related signature. Supplementary Figure 4A/B showed that our results are 295 

biologically meaningful and statistically significant. Our findings are unlikely to be due to 296 

technical bias; 3. This study is not designed to test the hypothesis that KRAS, NRAS, 297 

and BRAF mutations in other tumors cause hypometabolic age, or vice versa. Future 298 

studies with multi-cancer detection cohorts that include both pretreatment liquid and 299 

tissue biopsy samples could test these hypotheses, but they are beyond the scope of 300 

this study and is a limitation of the current study. 4. This study cannot test whether any 301 

metabolic age biomarkers change specifically in colorectal cancer (CRC). Although we 302 
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plan to explore the metabolic aging clock's clinical utility in other high-impact diseases, 303 

including other cancers, the generalizability of this approach needs to be validated with 304 

additional independent cohorts that can demonstrate minimal false positives and 305 

localization, evaluate the implementation and real-world performance of the test in 306 

clinical practice, confirm the results in a population with no known diagnosis, and 307 

validate the clinical utility in a high-risk population. 308 

Conclusions 309 

Our global metabolomic analysis revealed high-resolution metabolomic pattern changes 310 

(Figure 6) associated with aging progression and colorectal cancer (CRC) status. Our 311 

findings could lead to new approaches to longevity medicine and early detection of 312 

CRC, but further validation is needed in large, blinded clinical trials. 313 
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Figure 6. Metabolic overview of the reference ageotype. With global metabolomics, many 

metabolites were quantified and identified, forming a metabolic network of 4 clusters: amino acid 

metabolism (orange), biogenic amine metabolism (green), pentose/glucuronate conversions 

(purple) and steroid hormone biosynthesis (yellow). The names of the discovered biomarkers 

were highlighted in bold. Correlation between metabolites and aging was visualized with colored 

edges and fills in the nodes. 

 314 
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Methods 315 

Study design and ethical approval 316 

This study (Figure 1) was approved by the Shanghai Municipal Center for Disease 317 

Control and Prevention Ethical Review Committee (No. 2019-4) and the Ethical 318 

Committee and Institutional Review Board of Fudan University Shanghai Cancer Center 319 

(No. 1902197-15). 320 

Healthy general population subjects in the Shanghai CDC cohort 321 

To be eligible for the study, participants had to be at least 18 years old, not taking any 322 

medication for high-impact chronic diseases (such as cardiovascular diseases or 323 

diabetes mellitus) and have no history of tumors or cancers. Participants were followed 324 

for three years to identify any new cancer lesions or chronic diseases, and those who 325 

developed these conditions were excluded from the study. 326 

Sporadic colorectal cancer (CRC) patients in Fudan University Shanghai Cancer 327 

Center cohort 328 

We excluded patients with Lynch syndrome and FAP, which account for 5-7% of all 329 

colorectal cases and are mainly characterized by early-onset colorectal cancer and 330 

multiple polyps. These conditions may result in unique aging features. Our CRC 331 

subjects were defined as those with cancers that arise from the colorectum without 332 

known contribution from germline causes, a significant family history of cancer, or 333 

inflammatory bowel disease. We constructed the cohort by screening cases to exclude 334 

patients with common familial colorectal cancer according to their family history and 335 

clinical profile. For example, we excluded patients with Lynch syndrome according to 336 

the Amsterdam II criteria. Thus, our study focused on the aging characteristics of 337 
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sporadic colorectal cancer. We also excluded patients who were taking any medication 338 

for high-impact chronic diseases (such as cardiovascular diseases or diabetes mellitus). 339 

The collected samples were derived from the Department of Biobank, Fudan University 340 

Shanghai Cancer Center. 341 

Sample preparation 342 

Our cohort sera were collected from cancer patients before chemotherapy or 343 

radiotherapy administration. We used 3,002 serum samples (Supplementary Material 1) 344 

from healthy general population subjects in the Shanghai CDC cohort, 715 serum 345 

samples from patients with advanced precancerous lesions (APL), and 1,932 serum 346 

samples from CRC patients from Fudan University Shanghai Cancer Center in this 347 

study, after excluding ineligible participants. Demographic data are summarized in 348 

Table 1. We collected whole blood samples from patients and generated sera following 349 

the standard operating procedure (SOP) described in Supplementary Material 1 [34]. 350 

MS acquisition, QA/QC, annotation, structural identification 351 

The MS analytic pipeline for data acquisition, QA/QC, annotation, and structure 352 

identification was described in detail in Supplementary Material 2 [35-61]. 353 

Identification of age associated metabolic pathways. 354 

We were among the first groups to propose a pathway-based computational 355 

methodology for chronological event prediction with global metabolomics [62]. Detailed 356 

analyzing method was described in Supplementary Material 3 [47-65]. We provide a 357 

Supplementary Material 7 (Supplementary Table 5) describing aging associated KEGG 358 

metabolic pathways and their associated mapped metabolomic features.  359 

Construction of a metabolic aging clock with nine compounds 360 
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Through an elastic net regularized regression (𝛼 = 0.125, and 𝜆 = 0.129), a metabolic 361 

aging clock was trained with the metabolite biomarker candidates.  Detailed analyzing 362 

method was described in Supplementary Material 4 [42, 43].  Evidence to support the 363 

appropriateness to use of ElasticNet is described in Supplementary Material 8 and 364 

Supplementary Figure 5 in this study.   365 

Metabolic aging clock for CRC diagnosis 366 

To leverage the clinical utility for the chronological deviations observed in CRC subjects, 367 

our metabolic panel classifies all samples in the hypo-aging group as CRC. In addition, 368 

a multi-target panel was assembled by removing samples with normal carcinoembryonic 369 

antigen (CEA) measurements (≤ 2.5 μg/L for non-smokers and ≤ 5.0 μg/L for smokers) 370 

from the positives assigned by the metabolic clock, since CEA is a known CRC 371 

biomarker [66]. To simulate CRC incidence in general population, predictions from the 372 

testing dataset and the CRC cohort were bootstrapped with replacement at 30x 373 

coverage to an incidence of 760/10,023 for CRC APL samples and 65/10,023 for all 374 

stages of CRC samples [13]. Positive predictive values (PPVs) were calculated with the 375 

ratio of true positive counts to total predictive positive counts. PPV CIs were calculated 376 

with logit transformation and central limit theorem assumption as previously published 377 

[67]. 378 

Metabolic clock in CRC mutation status 379 

A subpopulation of 412 subjects in CRC stage I group were profiled with KRAS, NRAS 380 

and BRAF mutations in the tumor tissue samples. All mutants were assigned into hypo-, 381 

normal and hyper-aging groups by the metabolite-based metabolic aging clock. Then, 382 

sample fractions of mutant samples in each group were calculated for each mutation to 383 
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reveal enrichment trending. Finally, 95% CIs of sample fractions were calculated by 384 

bootstrapping the classification results of mutant samples with replacement at the same 385 

size for 10,000 times to derive the 2.5% and 97.5% quantiles. 386 

Aging metabolic network construction 387 

To visualize the metabolic network underlying the global metabolomic aging patterns, 388 

age correlating metabolites were annotated to various metabolic modules and 389 

pathways. 390 

List of Supplementary Materials 391 

Supplementary Material 1 for the standard operating procedure (SOP) of sera sample 392 

collection. 393 

  394 

Supplementary Material 2 for the detailed MS analytic pipeline for data acquisition, 395 

QA/QC, annotation, and structure identification.   396 

Supplementary Figure. 1. Performances of the pathway based multivariate modeling as 397 

a function of the univariate |r| thresholds. 398 

 399 

Supplementary Material 3 for the identification of age associated metabolic pathways.  400 

Supplementary Figure. 2. Age-related metabolic alterations in colorectal cancer 401 

patients, relative to healthy individuals. 402 

  403 
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Supplementary Material 4 for the identification the metabolic aging clock with nine 404 

compounds.  405 

Supplementary Figure 3 (A). A histogram of chronological age correlation (r) values 406 

obtained for the 157 KEGG/HMDB annotated features. (B). The match scores derived 407 

from the MS/MS spectra comparison of the metabolic clock nine metabolite markers.   408 

  409 

Supplementary Material 5.  410 
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Metabolic Δ aging subgroup memberships, hyper/normal/hypo, determined by the 417 
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Table 1. Demographics showing sample distributions across age and sex in normal and CRC populations.  

 Normal APL CRC - stage I CRC - stage II CRC - stage III 

Total 3002 715 1088 427 417 

Age group, N (%)      

(30,40] 21 (0.7) 14 (2) 12 (1.1) 9 (2.1) 17 (4.1) 

(40,50] 503 (16.8) 105 (14.7) 148 (13.6) 55 (12.9) 60 (14.4) 

(50,60] 1124 (37.4) 219 (30.6) 295 (27.1) 104 (24.4) 123 (29.5) 

(60,70] 851 (28.3) 268 (37.5) 426 (39.2) 161 (37.7) 138 (33.1) 

(70,80] 387 (12.9) 90 (12.6) 175 (16.1) 80 (18.7) 66 (15.8) 

(80,90] 116 (3.9) 19 (2.7) 32 (2.9) 18 (4.2) 13 (3.1) 

Sex, N (%)      

Male 1312 (43.7) 410 (57.3) 623 (57.3) 272 (63.7) 234 (56.1) 

Female 1690 (56.3) 305 (42.7) 465 (42.7) 155 (36.3) 183 (43.9) 
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Table 2. Comparison of positive predictive values (PPVs) of tests for CRC diagnosis. 

 APL CRC - all stages 

Metabolic clock panel a 65.5% (62.3%, 68.5%) 12.7% (10.0%, 15.9%) 

Multi-target panel b 68.4% (64.3%, 72.2%) 21.4% (17.8%, 25.9%) 

CEA 5.2% (4.6%, 5.7%) 0.4% (0.3%, 0.7%) 

Cologuard c 20.0% (18.0%, 22.0%) 3.72% (2.85%, 4.76%) 

Septin 9 methylation d 9.5% (9.1%, 9.9%) 2.3% (1.8%. 2.9%) 

a. Contains the 9 metabolic biomarkers 

b. Contains the 9 metabolic biomarkers and carcinoembryonic antigen (CEA) 

c. Data cited from reference [68]. 

d. Data cited from external source reference [28]. 
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Supplementary Material 1 

Standard Operating Procedure: 

Serum sample collection and processing for molecular analysis 

Serum is the liquid fraction of whole blood that is collected after the blood is allowed to clot. 

The clot is removed by centrifugation and the resulting supernatant, designated serum, is 

carefully removed using a Pasteur pipette. 

 

INSTRUCTIONS for Sample Collection: 

1. BLOOD: Collect blood via venipuncture into vacutainers (see below): 

BLOOD SAMPLE COLLECTION AND PROCESSING1: 

Serum: 

1. Using sterile technique, perform venipuncture and collect 2-mL blood into a vacutainer 

containing no pro- or anticoagulant (red top or tiger-top tube). Document date and time of 

collection. 

2. Whole blood can be stored at 4-8°C within 12 hours before the serum is separated, but it 

must not be frozen. 

3. Allow blood to clot by leaving tube undisturbed at room temperature for 30 min*. 

4. Centrifuge tubes at 1000 × g for 10 min in a refrigerated centrifuge. Document date and 

time. The resulting supernatant is designated serum. 
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5. Following centrifugation, it is important to immediately transfer the liquid component 

(serum) into a clean freezer compatible polypropylene tube using a Pasteur pipette. The 

samples should be maintained at 2-8°C while handling. 

6. The serum should be apportioned into 2 × 250 μL aliquots, and labeled as: specimen 

type: blood (serum). 

7. Freeze immediately at -20°C within 6 hours from the time of collection, and transfer to -

80°C within 7 days for long-term storage. Document date and time。 

8. Record the following information in the CASE REPORT FORM:  

Specimen matrix  

Collection date and time  

Centrifugation times  

Date and time placed in storage 

Freezer ID# and temperature 

Initials 

It is important to avoid freeze-thaw cycles because this is detrimental to many serum and 

plasma components. Samples that are hemolyzed, icteric or lipemic can invalidate certain 

tests, and therefore should be documented. 

1 J Proteome Res. 2009 Jan; 8(1): 113–117. (PMID: 19072545) 

*in order to obtain serum of high quality, blood samples should be allowed time to form a 

clot at room temperature for 30-60 min. 

 

Serum tubes 
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For more information on the tubes, please visit Becton-Dickinson Resources: 

https://www.bd.com/resource.aspx?IDX=7220 

Red No anticoagulant 

Lavender Treated with EDTA 

 

STORAGE AND SHIPPING: 

1. Sample Storage 

All samples should be stored in a frozen environment (-80°C). 

Avoid freeze/thaw cycles as this will negatively affect sample integrity. 

Ensure that all samples are labeled with patient ID, type of sample and date and time of 

draw. 

Each ID number should be associated with either a paper card orelectronic manifest 

including the following information: 

2. Sample Shipping 

All samples should be shipped in a frozen environment (-80°C). 

Avoid freeze/thaw cycles, as this will damage the sample integrity. 

Ensure that all samples are labeled with patient ID, type of sample and date and time of 

draw. 

Shipments should include either card information or electronic manifestassociated with 

patient ID numbers. 

First shipment should be sent once 100 serum and 100 plasma samples have been 

collected. 

https://www.bd.com/resource.aspx?IDX=7220


 4 / 4 

 

Second shipment should be sent at completion of study. 

Shipping Address 

Notify study collaborators of the shipment within 24 hours of sending the package. In this 

email, include the following: 

Collection Site 

Date of shipment 

Tracking number 

Number of samples sent 

Electronic manifest summarizing the samples included in the shipment 

Please name the file: YYYYMMDD Country_Shipment Manifest 
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Supplementary Material 2  

 

Detailed description of the MS analytic pipeline for data acquisition, 

QA/QC, annotation, and structure identification 

Deep metabolomic profiling pipeline and data analysis processes 

Serum samples were retrieved from -80°C freezers and thawed on ice. A 

mixture of 240 μL extraction buffer (stored at -20°C) consisting of methanol, 

acetonitrile and ddH2O (5:3:2 v/v) was added to 10 μL of each sample. 

Samples were vortexed at 4°C and then centrifuged at 12,000 g for 30 min at 

the same temperature. Supernatant (170 μL) from each sample was 

transferred to a vial and stored at -20°C before injection. 

MS acquisition 

Flow-injection analysis (FIA) was performed with QE-Plus mass spectrometer 

(Thermo Fisher, Shanghai, China). Samples were injected at 10 μL each for 3 

min with mobile phase (flow rate at 50 μL/min) consisting of 0.1 % formic acid 

in 5% acetonitrile. The injected samples were sprayed at 4 kV and 325°C and 

scanned with a m/z range of 60-900 at a resolution of 140,000. Ionization 

modes were set to both positive and negative in turn to collect complete 

metabolic profiles for each sample. Meanwhile, these samples were also 

analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) 
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in data-dependent acquisition (DDA) mode according to a protocol previously 

published [1]. 

MS QA/QC 

Several types of controls were analyzed in concert with the experimental 

samples: testing matrix sample, a pool generated by taking a small volume of 

each experimental sample; QC matrix sample, a pool of well-characterized 

human sera (Sigma-Aldrich, S1-M, human serum, normal) served as a 

technical replicate throughout the data sets; extracted water samples served 

as process blanks. Instrument variability was determined by calculating the 

median relative standard deviation (RSD) for the standards that were added 

to each sample prior to injection into the mass spectrometers. Bland–Altman 

plots [2] were used in analyzing the agreement between two different runs for 

the quality control. Overall process variability was determined by calculating 

the median RSD for all endogenous metabolites present in 100% of the 

pooled QC matrix samples.  Experimental samples were randomized across 

the platform runs. To mitigate the potential blood processing and batch 

variance, QC matrix samples were spaced evenly (every 10 testing sera) 

among the injections to ensure intra- and inter-batch consistency 

(Supplementary Table 4) from metabolomics analytics. All the data analyses 

in this study were performed using R (version 4.0.3) programming language 
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and R software packages. Univariate statistical analysis was performed with R 

Stats (version 4.0.3, statistics analytics) package. 

MS data processing  

Raw MS files were converted and centroided with ProteoWizard and saved to 

mzXML files [3]. Injection zones and m/z bands were detected with proFIA 

(version 1.15.0, mass spectrometry data preprocessing analytics) package 

[4]. Detected bands were then aligned to derive data matrix across samples in 

the same batch with MzClust method from xcms (version 3.12.0, high 

resolution mass spectrometric spectra analytics) package [5]. Robust locally 

estimated scatterplot smoothing (LOESS) model was applied to each set of 

aligned bands to remove intra-batch drifting along injection process [6]. Inter-

batch difference was removed by normalizing to the median of normal 

baseline per set of aligned bands (namely metabolic features). Metabolic 

features with more than 30% missing values were removed. The filtered data 

matrix was log2 transformed, centered, and scaled with the means and 

standard deviations (SDs) of the normal population in each metabolic feature. 

Finally, missing values were imputed with k-nearest neighbor (kNN) algorithm 

from impute (version 1.64.0, KNN imputation analytics) package. 

Mass spectrometric feature annotation 

Healthy general population subjects were split randomly into either training 

(75%) or testing (25%) sets. During the downstream elastic net analysis of the 
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age associated pathways, different univariate |r| thresholds (0.3, 0.4, 0.5, 0.6) 

were used for the selection of LCMS features correlating to the chronological 

age.  Supplementary Fig. 1 summarized the resulting pathway based elastic 

net model performance as a function of different |r| thresholds.  

 

 

 

Supplementary Figure 1. Performances of the pathway based multivariate 

modeling as a function of the univariate |r| thresholds. Prediction 

performance is evaluated as a correlation coefficient between the predicted 

metabolic age and the chronological age. Training (75%discovery cohort) 

and testing (25%, validation cohort) sets were constructed from the healthy 

general population. 

 

LCMS metabolic features in the training set were first correlated with 

chronological age and those with absolute correlation coefficients |𝑟| ≥ 0.3 

were preserved. As defined by the Metabolomics Standards Initiative[7], there 
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are four levels of metabolite identification confidence: confidently identified 

compounds (level 1), putatively annotated compounds (level 2), and putatively 

annotated compound classes (level 3) and unknown compounds (level 4). 

The preserved features were annotated (level 2 or 3) with 5 ppm tolerance 

with xMSannotator[8] via KEGG compound data base[9].  

Structural identification and metabolite biomarker 

discovery 

Definitive (level 1) identification requires comparing the two or more 

orthogonal properties such as retention time, m/z, and fragmentation mass 

spectrum for the metabolite of interest to the same properties of an authentic 

chemical standard observed under identical analytical conditions. Metabolite 

biomarker identification was performed as a level 1 identification with 

chemical standards according to MSI [10]. With tandem mass spectrometry 

(MS/MS, Thermo Q Exactive plus, Thermo Fisher) data of serum samples and 

manual review confirmation, the generated MS1/MS2 pairs were searched in 

the public databases: HMDB[11] (http://www.hmdb.ca/), MoNA 

(http://mona.fiehnlab.ucdavis.edu/), MassBank (http://www.massbank.jp/),  

METLIN[12] (https://metlin.scripps.edu), and NIST (https://www.nist.gov/). The 

metabolites of interest were procured and subjected to a level 1 identification 

comparing the retention time, MS1 and MS2 patterns with the biomarker 

candidates, using the same LCMS/MS protocol with the sample analysis. 

http://www.hmdb.ca/
http://mona.fiehnlab.ucdavis.edu/
http://www.massbank.jp/
https://metlin.scripps.edu/
https://www.nist.gov/
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Metabolite biomarker candidates were selected from the metabolites that met 

all the following criteria: (a) the metabolite appeared in the contributing 

pathways with importance score > 0; (b) the metabolite's corresponding 

metabolic feature met |𝑟| ≥ 0.3; (c) the metabolite was validated with 

structural identification.  

 

Among the changing metabolites between the healthy general population and 

CRC patient samples, the major metabolic modules were "citrate cycle", 

"tyrosine metabolism" and "valine, leucine degradation", where similar 

changes across all stages were observed (Supplementary Fig. 2 in 

supplementary material 3). The citrate cycle serves as the central hub of 

energy metabolism and is well known for its dysregulation in oncogenesis.[13] 

Two metabolic modules were found to be stage-specific: "pentose and 

glucuronate conversion" and "ascorbate and aldarate metabolism". 

Furthermore, we also identified a wide variety of metabolites scattering in 

many other metabolic modules, including "steroid hormone biosynthesis" and 

"oxidative phosphorylation". Many oncogenes and tumor suppressors regulate 

in a bi-directional manner the expression of fuel transporters and activity of 

cycle-related enzymes in cancer cells.[14] These enzymes include aconitase 

(also known as aconitate hydratase, AH), isocitrate dehydrogenase (IDH), 

fumarase (FH), succinate dehydrogenase (SDH) and α-ketoglutarate 
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dehydrogenase complex (KGDHC).[15-17] Our study validated the 

dysregulation of IDH activity by changes that occurred in isocitrate and 

oxalosuccinate levels (compounds at both ends of reaction) at the same time, 

while proposing other possibly changed reactions among oxaloacetate, 

citrate, and isocitrate, such as citrate synthase (oxaloacetate to citrate) and 

citrate hydro-lyase (citrate to isocitrate). There were two metabolites with 

significant changes in tyrosine metabolism. Homovanillate has been reported 

as a biomarker for breast cancer and colorectal cancer in urine [18, 19]. 

Regulated by tyrosine through levodopa (L-DOPA), homovanillate is the major 

product of monoamine oxidase and catechol-O-methyltransferase on 

dopamine. 3-(4-hydroxyphenyl)lactate has also been reported as a biomarker 

for colorectal cancer in both plasma and urine,[20] regulated by 3-(4-

hydroxyphenyl) pyruvate. Although these two metabolites have been studied 

in CRC detection, our study unveiled their correlation with the aging process, 

suggesting them as possible evidence of oncogenic alterations on aging. On 

the other hand, sugar alcohols including xylitol, lyxitol, and ribitol are age-

specific in microbiota of mice, by changing host inflammatory and metabolic 

signaling such as insulin sensitivity.[21] Our study shed light on the 

dysregulation of these metabolites as possible age-related biomarker 

candidates in human colorectal cancer in its early stages. In general, our 

study constructed a high-resolution panoramic view of metabolic changes in 
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CRC samples against the metabolic aging clock trained from a healthy 

general population with nine age-related metabolites, complementing and 

revealing the underlying biology of both aging and oncogenic 

pathophysiology. 

 

Our study revealed progressive alteration of metabolic profiles as a function of 

different CRC stages (Supplementary Fig. 2 in supplementary material 3). 

During APL and stage I, metabolites in "pentose and glucuronate conversion" 

and "ascorbate and aldarate metabolism" modules were dysregulated in 

correlation with chronological age, resulting in a hypo-aging trend. 

Bioinformatics analysis combined with experimental verification in colorectal 

cancer found differentially expressed hub genes significantly enriched in the 

"pentose and glucuronate conversion" pathway[22]. Changes in metabolic 

driver genes were observed at the initial stages of oncogenesis,[23] and 

glucose transport and anaerobic metabolism have been studied in cancers 

(including CRC) for over a decade [24]. Both "pentose and glucuronate 

conversion" and "starch as sucrose metabolism" are downstream modules of 

glycolysis on metabolic pathways (hsa01100). This is in line with our 

observation that metabolites in the "pentose and glucuronate conversion" 

module are dysregulated accordingly during the early stages of CRC.  
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Another meta-analysis study of colorectal cancer discovered that differentially 

expressed metabolites enriched in the ascorbate and aldarate metabolism in 

and all the other four modules above[25, 26]. Our study showed the 

correlation of metabolites in "pentose and glucuronate conversion" and 

"ascorbate and aldarate metabolism" as major contributors in the metabolic 

aging clock. Although our study revealed the dysregulated ascorbate and 

aldarate metabolism in the early stages of CRC, including APL and stage I 

CRC, the temporal correlations of metabolites in these two modules were to 

certain extent re-established during stage II and III CRC. Possibly, the cancer-

associated hypoxia rewires the metabolism and re-activates glycolysis during 

CRC development [27].  

 

Z statistics test analysis 

Cohort sex-composition impact on the metabolomic clock performance was 

performed as follows. Let 𝜌̂𝑀 and 𝜌̂𝐹 be the observed correlation coefficients 

of the metabolomic clock in males and female testing cohorts, respectively.  

The test Z statistic in comparing them is given by  

𝑍 =
[
1
2 log

(
1 + 𝜌̂𝐹
1 − 𝜌̂𝐹

) −
1
2 log

(
1 + 𝜌̂𝑀
1 − 𝜌̂𝑀

)]

√
1

𝑛𝐹 − 3 +
1

𝑛𝑀 − 3

 

 

The p-value can be calculated as 𝑃(|𝑁(0, 1)| > |𝑍|). 
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Similar Z statistics analysis was performed to evaluate the positive predictive 

value (PPV) differences when different approaches were used to detect APL 

and CRC. 

 

REFERENCE 

1. Liang L, Rasmussen M-LH, Piening B, Shen X, Chen S, Röst H, et al. Metabolic dynamics and 

prediction of gestational age and time to delivery in pregnant women. Cell. 2020; 181: 1680–92. 

2. Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2015; 25: 141-51. 

3. Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for 

rapid proteomics tools development. Bioinformatics. 2008; 24: 2534–6. 

4. Delabrière A, Hohenester UM, Colsch B, Junot C, Fenaille F, Thévenot EA. proFIA: a data 

preprocessing workflow for flow injection analysis coupled to high-resolution mass spectrometry. 

Bioinformatics. 2017; 33: 3767–75. 

5. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry 

data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical 

Chemistry. 2006; 78: 779–87. 

6. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures 

for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid 

chromatography coupled to mass spectrometry. Nature Protocols. 2011; 6: 1060–83. 

7. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum 

reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics 

Standards Initiative (MSI). Metabolomics. 2007; 3: 211-21. 

8. Uppal K, Walker DI, Jones DP. xMSannotator: An R Package for Network-Based Annotation of 

High-Resolution Metabolomics Data. Anal Chem. 2017; 89: 1063-7. 

9. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 

2000; 28: 27-30. 

10. Viant MR, Kurland IJ, Jones MR, Dunn WB. How close are we to complete annotation of 

metabolomes? Curr Opin Chem Biol. 2017; 36: 64-9. 

11. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome 

database. Nucleic Acids Research. 2007; 35: D521–D6. 

12. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite 

mass spectral database. Therapeutic Drug Monitoring. 2005; 27: 747–51. 

13. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle 

in cancer metabolism. Protein & Cell. 2018; 9: 216–37. 

14. Chen J-Q, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis 

by oncogenes and tumor suppressors in cancer cells. Biochimica et Biophysica Acta (BBA) - Reviews 

on Cancer. 2012; 1826: 370–84. 

15. Eng C, Kiuru M, Fernandez MJ, Aaltonen LA. A role for mitochondrial enzymes in inherited 

neoplasia and beyond. Nature Reviews: Cancer. 2003; 3: 193–202. 



 11 / 11 

 

16. Juang H-H. Modulation of mitochondrial aconitase on the bioenergy of human prostate carcinoma 

cells. Molecular Genetics and Metabolism. 2004; 81: 244–52. 

17. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations 

in gliomas. New England Journal of Medicine. 2009; 360: 765–73. 

18. Nam H, Chung BC, Kim Y, Lee K, Lee D. Combining tissue transcriptomics and urine 

metabolomics for breast cancer biomarker identification. Bioinformatics. 2009; 25: 3151–7. 

19. Cheng Y, Xie G, Chen T, Qiu Y, Zou X, Zheng M, et al. Distinct urinary metabolic profile of 

human colorectal cancer. Journal of Proteome Research. 2012; 11: 1354–63. 

20. Zarei I, Baxter BA, Oppel RC, Borresen EC, Brown RJ, Ryan EP. Plasma and urine metabolite 

profiles impacted by increased dietary navy bean intake in colorectal cancer survivors: a randomized-

controlled trial. Cancer Prevention Research. 2021; 14: 497–508. 

21. Sheng L, Jena PK, Hu Y, Wan Y-JY. Age-specific microbiota in altering host inflammatory and 

metabolic signaling as well as metabolome based on the sex. Hepatobiliary Surgery and Nutrition. 

2021; 10: 31–48. 

22. Zhou H, Yang Z, Yue J, Chen Y, Chen T, Mu T, et al. Identification of potential hub genes via 

bioinformatics analysis combined with experimental verification in colorectal cancer. Molecular 

Carcinogenesis. 2020; 59: 425–38. 

23. Youn A, Simon R. Identifying cancer driver genes in tumor genome sequencing studies. 

Bioinformatics. 2011; 27: 175–81. 

24. Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and 

angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy. 2007; 

53: 233–56. 

25. Tian J, Xue W, Yin H, Zhang N, Zhou J, Long Z, et al. Differential metabolic alterations and 

biomarkers between gastric cancer and colorectal cancer: a systematic review and meta-analysis. 

OncoTargets and Therapy. 2020; 13: 6093–108. 

26. Malila N, Virtanen M, Pietinen P, Virtamo J, Albanes D, Hartman AM, et al. A comparison of 

prospective and retrospective assessments of diet in a study of colorectal cancer. Nutrition and Cancer. 

1998; 32: 146–53. 

27. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, 

angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015; 3: 83–92. 

 



 1 / 8 

 

Supplementary Material 3  

 

We were among the first groups to propose a pathway-based computational 

methodology for chronological event prediction with global metabolomics [1]. 

Representing the biological grouping of individual metabolomic features to 

associate to targeted clinical outcomes, the pathway-based modeling analysis 

was found to have less variability and higher sensitivity than direct global 

metabolomic feature-based modeling.  

 

Annotated mass spectrometric features were aggregated into relevant KEGG 

pathways, and the value of each pathway was calculated as the weighted 

sum of the normalized measurement values of metabolites on the pathway 

divided by the number of mapped metabolites. Specifically, univariate 

correlations 𝑟𝑖 of each metabolic feature 𝑖 were first calculated with 

chronological age. Next, feature directionalities (up/down) were calculated 

according to the positive/negative signs of the correlation coefficients. Then, 

the annotated metabolites were mapped to KEGG pathways 𝑘 in each 

directionality as 𝑃𝑘, up/down = {𝑖|∀compound
𝑖

∈ pathway
𝑘

, 𝑟𝑖 ≷ 0}. Finally, 

pathway expression values 𝑝𝑘𝑗 for sample 𝑗 were calculated with relevant 

metabolite serological abundance values 𝑓𝑖𝑗 as follows, where n(𝐴) stands 

for the number of elements in set 𝐴: 

𝑝𝑘𝑗, up/down =
∑ (𝑟𝑖𝑓𝑖𝑗)𝑖∈𝑃𝑘, up/down

n(𝑃𝑘, up/down)
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The derived pathway matrix was used to perform the multivariate analysis by 

fitting an elastic net model using all pathways against age with tuned 

hyperparameters 𝛼 and 𝜆 from cross validation (CV) on the training set to 

minimize the mean squared prediction error. The importance score of each 

pathway biomarker was measured by the absolute value of the estimated  

coefficient of the normalized pathway level. The higher the importance score 

suggests a bigger role in predicting age.  Caret (version 6.0-86, elastic net 

machine learning analytics) package [2] was used. Pathways with an 

importance score > 0 were defined as age predictor contributing pathways. 

Age predictions were made on both training (75%) and testing (25%) sets of 

the healthy general population.  

 

To further unveil an overview of metabolic changes from the reference 

metabolic ageotype of healthy general population to CRC, aging associating 

metabolites were annotated in KEGG hsa01100 metabolic pathways. 

Pathview (version 1.30.1, KEGG metabolic pathway visualization analytics) 

package [3] in Cytoscape (KEGG metabolic pathway network visualization 

analytics) [4] was used with correlation coefficients of each sample group as 

color key (Supplementary Figure 2). Clusters of metabolites with significant 

correlations in the healthy general population were identified with KEGG 

modules and pattern changes in CRC samples were identified from these 

metabolite clusters. 



 3 / 8 

 

 



 4 / 8 

 

Supplementary Figure. 2. Age-related metabolic alterations in colorectal cancer 

patients, relative to healthy individuals. With reference to A. healthy baseline, 

changes were observed in the "citrate cycle" and "tyrosine metabolism" for all 

CRC stages (B-F). There were also stage-specific alterations, including those in 

the "ascorbate and aldarate metabolism" for APL and stage I CRC (B-C), 

"pentose and glucuronate conversion" in all but stage I CRC (B, C, F) and 

"valine, leucine degradation" in all but stage Ill CRC (B-D). 

 

Among the changing metabolites between the healthy general population and 

CRC patient samples, the major metabolic modules were "citrate cycle", 

"tyrosine metabolism" and "valine, leucine degradation", where similar 

changes across all stages were observed (Supplementary Fig. 2). The citrate 

cycle serves as the central hub of energy metabolism and is well known for its 

dysregulation in oncogenesis [5]. Two metabolic modules were found to be 

stage-specific: "pentose and glucuronate conversion" and "ascorbate and 

aldarate metabolism". Furthermore, we also identified a wide variety of 

metabolites scattering in many other metabolic modules, including "steroid 

hormone biosynthesis" and "oxidative phosphorylation". Many oncogenes and 

tumor suppressors regulate in a bi-directional manner the expression of fuel 

transporters and activity of cycle-related enzymes in cancer cells [6]. These 

enzymes include aconitase (also known as aconitate hydratase, AH), 

isocitrate dehydrogenase (IDH), fumarase (FH), succinate dehydrogenase 
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(SDH) and α-ketoglutarate dehydrogenase complex (KGDHC) [7-9]. Our study 

validated the dysregulation of IDH activity by changes that occurred in 

isocitrate and oxalosuccinate levels (compounds at both ends of reaction) at 

the same time, while proposing other possibly changed reactions among 

oxaloacetate, citrate, and isocitrate, such as citrate synthase (oxaloacetate to 

citrate) and citrate hydro-lyase (citrate to isocitrate). There were two 

metabolites with significant changes in tyrosine metabolism. Homovanillate 

has been reported as a biomarker for breast cancer and colorectal cancer in 

urine [10, 11]. Regulated by tyrosine through levodopa (L-DOPA), 

homovanillate is the major product of monoamine oxidase and catechol-O-

methyltransferase on dopamine. 3-(4-hydroxyphenyl)lactate has also been 

reported as a biomarker for colorectal cancer in both plasma and urine [12], 

regulated by 3-(4-hydroxyphenyl) pyruvate. Although these two metabolites 

have been studied in CRC detection, our study unveiled their correlation with 

the aging process, suggesting them as possible evidence of oncogenic 

alterations on aging. On the other hand, sugar alcohols including xylitol, 

lyxitol, and ribitol are age-specific in microbiota of mice, by changing host 

inflammatory and metabolic signaling such as insulin sensitivity [13]. Our 

study shed light on the dysregulation of these metabolites as possible age-

related biomarker candidates in human colorectal cancer in its early stages. In 

general, our study constructed a high-resolution panoramic view of metabolic 
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changes in CRC samples against the metabolic aging clock trained from a 

healthy general population with nine age-related metabolites, complementing 

and revealing the underlying biology of both aging and oncogenic 

pathophysiology. 

 

Our study revealed progressive alteration of metabolic profiles as a function of 

different CRC stages (Supplementary Fig. 2). During APL and stage I, 

metabolites in "pentose and glucuronate conversion" and "ascorbate and 

aldarate metabolism" modules were dysregulated in correlation with 

chronological age, resulting in a hypo-aging trend. Bioinformatics analysis 

combined with experimental verification in colorectal cancer found 

differentially expressed hub genes significantly enriched in the "pentose and 

glucuronate conversion" pathway [14]. Changes in metabolic driver genes 

were observed at the initial stages of oncogenesis [15], and glucose transport 

and anaerobic metabolism have been studied in cancers (including CRC) for 

over a decade [16]. Both "pentose and glucuronate conversion" and "starch 

as sucrose metabolism" are downstream modules of glycolysis on metabolic 

pathways (hsa01100). This is in line with our observation that metabolites in 

the "pentose and glucuronate conversion" module are dysregulated 

accordingly during the early stages of CRC.  
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Another meta-analysis study of colorectal cancer discovered that differentially 

expressed metabolites enriched in the ascorbate and aldarate metabolism in 

and all the other four modules above [17, 18]. Our study showed the 

correlation of metabolites in "pentose and glucuronate conversion" and 

"ascorbate and aldarate metabolism" as major contributors in the metabolic 

aging clock. Although our study revealed the dysregulated ascorbate and 

aldarate metabolism in the early stages of CRC, including APL and stage I 

CRC, the temporal correlations of metabolites in these two modules were to 

certain extent re-established during stage II and III CRC. Possibly, the cancer-

associated hypoxia rewires the metabolism and re-activates glycolysis during 

CRC development [19].  
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Supplementary Material 4 

Analytical pipeline and workflow. 

 

Step 1: LCMS feature reduction 

Out of the 1,603 LCMS features, 157 features (Pearson correlation, |𝑟| ≥ 0.3) 

were selected for downstream modeling analysis. To prepare for the elastic 

net analysis of age associated pathways, different univariate |r| thresholds 

(0.3, 0.4, 0.5, 0.6) were used for the selection of LCMS features correlating to 

the chronological age. Supplementary Figure 1 summarized the resulting 

pathway based elastic net model performance as a function of the univariate 

|r| thresholds.   

Step 2: 157 LCMS feature mapping to metabolic pathways 

The preserved 157 features were annotated (level 2 or 3) with 5 ppm 

tolerance with xMSannotator[1] via KEGG and HMDB compound data 

base[2]. Annotated mass spectrometric features were aggregated into 

relevant KEGG pathways (n=59), and the value of each pathway was 

calculated as the weighted sum of the normalized concentrations of 

metabolites on the pathway divided by the number of mapped metabolites.   

Step 3: Elastic net method was used to construct a linear model to 

predict chronological age 
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With the elastic net analysis, 42/59 pathways were identified (beta coefficient 

not equal to 0) to contribute to the age prediction.  

Step 4: Metabolic pathway based aging clock deviation analysis.  To 

search for chronological deviations associated with pathologies of aging, a 

quantile linear regression model was fit with quantreg (version 5.75, quantile 

linear regression modeling analytics) package on predictions against 

chronological age from the normal population at 2.5%, 50% and 97.5%. The 

derived regression lines were overlaid with the predictions in both normal and 

CRC populations. Samples with predictions below the 2.5% quantile 

regression line was classified as “hypo-aging”, those with predictions above 

the 97.5% line as “hyper-aging”, and the rest (within 95% confidence interval) 

as normal aging, thus deriving three Δ age groups. Sample fractions in these 

Δ age groups were calculated in targeted categories of the interest. 

Step 5: Structure identification 

Supplementary Figure 3 (A). A histogram of all correlation (r) values obtained 

for the 157 annotated features. Black bars represent absolute correlation 

values ≥ 0.3, gray bars represent absolute correlation values < 0.3. The red 

dashed box represents the range of the nine features selected by the model. 
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Supplementary Figure 3 (B). The match scores derived from the MS/MS 

spectra comparison of the metabolic clock nine metabolite markers.  

mzCloud: https://www.mzcloud.org/; MassBank: https://massbank.jp/Index.
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To identify the structures of LCMS features, we combined two pools of 

features: 

1. Features mapped to HMDB but not KEGG: We selected features with 

absolute correlation values (r) greater than a threshold of 0.5. 

2. Features mapped to 42 age-associated pathways: We included all 

mapped features from these pathways. 

 

The combined pool of features contained 137 features, which we 

subjected to structure characterization and identification. We were able to 

determine the structures of 49 of these features. 

Step 6: Construction of the nine-metabolite-based aging clock 

Through an elastic net regularized regression (𝛼 = 0.125, and 𝜆 = 0.129), a 

metabolic aging clock was trained with the metabolite biomarker candidates.  

The penalty parameters of the elastic net were chosen via cross validations to 

minimize the mean squared prediction error. The importance score of each 

metabolite biomarker was measured by the absolute value of the estimated b 

coefficient of the normalized metabolite level. The higher the importance 

score suggests a bigger role in predicting age.  With positive importance 

scores, nine metabolites were identified to as the panel (“metabolic aging 

clock”) to regress to the chronological age, deriving the metabolic age for 

each healthy or CRC subject.  Regarding the metabolite-based metabolic 

clock, all the final 9 biomarkers’ univariate |r| are > 0.4.  
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Step 7: The nine-metabolite-based aging clock deviation analysis.  

Same algorithmic process will be used as Step 4. 

With the elastic net analysis, 9/49 metabolites were identified (beta 

coefficient not equal to 0) to model the metabolic aging using a bootstrapped 

general population of Shanghai CDC balancing age and gender (Figure 

3E/3F/3G).  The resulted elastic net model was defined as the “metabolic 

aging clock”. Comparative analysis of the enrolled individuals at Shanghai 

CDC and Fudan University cancer center revealed unique metabolic aging 

patterns associated with APL/CRC subjects (Figure 4A/4D/4G; Figure 5A/5C).  

A lower limit in our age prediction model is set at 30 years old.  

To summarize, we only had one threshold (Pearson correlation, |𝑟| ≥ 0.3) 

to select LCMS features for downstream modeling analysis. Then we used 

two elastic net modeling processes to select pathways and structure-

determined metabolic compounds for final linear modeling of chronological 

aging.  
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Supplementary tables 

 

Supplementary Table 1A. Demographics showing metabolic aging clock normal Δ aging subgroup distributions 

 

 Normal APL CRC - stage I CRC - stage II CRC - stage III 

Total 2860 290 377 277 264 

Age group, N (%)      

(30,40] 15 (0.5) 14 (4.8) 7 (1.9) 2 (0.7) 15 (5.7) 

(40,50] 469 (16.4) 47 (16.2) 62 (16.4) 43 (15.5) 37 (14) 

(50,60] 1093 (38.2) 82 (28.3) 113 (30) 63 (22.7) 87 (33) 

(60,70] 824 (28.8) 106 (36.6) 125 (33.2) 103 (37.2) 93 (35.2) 

(70,80] 361 (12.6) 37 (12.8) 56 (14.9) 52 (18.8) 28 (10.6) 

(80,90] 98 (3.4) 4 (1.4) 14 (3.7) 14 (5.1) 4 (1.5) 

Sex, N (%)      

Male 1233 (43.1) 181 (62.4) 230 (61) 182 (65.7) 159 (60.2) 

Female 1627 (56.9) 109 (37.6) 147 (39) 95 (34.3) 105 (39.8) 

 

 

 

 



Supplementary Table 1B. Demographics showing metabolic aging clock hyper Δ aging subgroup distributions 

 

 Normal APL CRC - stage I CRC - stage II CRC - stage III 

Total 76 10 3 15 13 

Age group, N (%)      

(30,40] 5 (6.6) 0 (0.0) 0 (0.0) 4 (26.7) 1 (7.7) 

(40,50] 22 (28.9) 0 (0.0) 1 (33.3) 0 (0.0) 5 (38.5) 

(50,60] 16 (21.1) 3 (30.0) 2 (66.7) 3 (20.0) 2 (15.4) 

(60,70] 6 (7.9) 4 (40.0) 0 (0.0) 1 (6.7) 4 (30.8) 

(70,80] 16 (21.1) 0 (0.0) 0 (0.0) 7 (46.7) 1 (7.7) 

(80,90] 11 (14.5) 3 (30.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Sex, N (%)      

Male 35 (46.1) 8 (80) 2 (66.7) 12 (80) 11 (84.6) 

Female 41 (53.9) 2 (20) 1 (33.3) 3 (20) 2 (15.4) 

 

 

 

 

 

 

 

 



Supplementary Table 1C. Demographics showing metabolic aging clock hypo Δ aging subgroup distributions 

 

 Normal APL CRC - stage I CRC - stage II CRC - stage III 

Total 66 415 708 135 140 

Age group, N (%)      

(30,40] 1 (1.5) 0 (0) 5 (0.7) 3 (2.2) 1 (0.7) 

(40,50] 12 (18.2) 58 (14) 85 (12) 12 (8.9) 18 (12.9) 

(50,60] 15 (22.7) 134 (32.3) 180 (25.4) 38 (28.1) 34 (24.3) 

(60,70] 21 (31.8) 158 (38.1) 301 (42.5) 57 (42.2) 41 (29.3) 

(70,80] 10 (15.2) 53 (12.8) 119 (16.8) 21 (15.6) 37 (26.4) 

(80,90] 7 (10.6) 12 (2.9) 18 (2.5) 4 (3) 9 (6.4) 

Sex, N (%)      

Male 44 (66.7) 221 (53.3) 391 (55.2) 78 (57.8) 64 (45.7) 

Female 22 (33.3) 194 (46.7) 317 (44.8) 57 (42.2) 76 (54.3) 

 

 

 

 

 

 

 

 



Supplementary Table 2A. Metabolic Δ aging subgroup membership, hyper/normal/hypo, determined by the nine-compound based metabolic 

aging clock 

 

 Normal APL CRC - stage I CRC - stage II CRC - stage III 

Total 3002 715 1088 427 417 

Δ age group, N (%)      

Hyper 76 (2.5) 10 (1.4) 3 (0.3) 15 (3.5) 13 (3.1) 

Normal 2860 (95.3) 290 (40.6) 377 (34.7) 277 (64.9) 264 (63.3) 

Hypo 66 (2.2) 415 (58) 708 (65.1) 135 (31.6) 140 (33.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table 2B. Metabolic Δ aging subgroup memberships, hyper/normal/hypo, determined by the pathway based multivariate 

analysis. 

 

 Normal APL CRC - stage I CRC - stage II CRC - stage III 

Total 3002 715 1088 427 417 

Δ age group, N (%)      

Hyper 102 (3.4) 36 (5) 46 (4.2) 63 (14.8) 56 (13.4) 

Normal 2818 (93.9) 552 (77.2) 811 (74.5) 330 (77.3) 334 (80.1) 

Hypo 82 (2.7) 127 (17.8) 231 (21.2) 34 (8) 27 (6.5) 

 

 

Supplementary Table 2C. Classification performance after bootstrapping cohort samples to the true incidence rate in the general population. 

 

Class Model name True 

positive 

True 

negative 

False positive False negative Sensitivity Specificity 

CRC – APL Metabolic clock panel 13388 268873 7067 9419 58.70% 97.44% 

CRC - stage I~III Metabolic clock panel 1028 268873 7067 922 52.72% 97.44% 

CRC – APL Multi-target panel 9532 271539 4401 13268 41.81% 98.41% 

CRC - stage I~III Multi-target panel 1201 271539 4401 737 61.97% 98.41% 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Supplementary Table 3A. Demographics showing sample distributions across age and sex in CRC stage I population 

 

Total 412 

Age group, N (%)  

(30,40] 6 (1.5) 

(40,50] 56 (13.6) 

(50,60] 102 (24.8) 

(60,70] 154 (37.4) 

(70,80] 76 (18.4) 

(80,90] 18 (4.4) 

Sex, N (%)  

Male 250 (60.7) 

Female 162 (39.3) 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 3B. Demographics showing sample distributions across CRC mutations in CRC stage I population (N=412) 

 

Mutant KRAS NRAS BRAF 

Mutation, N (%) 164 (39.8) 14 (3.4) 18 (4.4) 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Supplementary Table 4. %CV of the biomarker metabolite abundance in QC matrix samples which were spaced every 10 testing sera 

 

Biomarkers Within-run %CV Between-day %CV Total %CV 

Ornithine 6.4 4.7 7.9 

3(4-Hydroxyphenyl)lactate 7.7 3.9 8.6 

Citrate 7.7 3.9 8.6 

Gulonate 7.8 3.6 8.6 

DHEAS 8.5 4.5 9.6 

Citrulline 6.5 4.8 8 

Phenylalanine 4.5 6.4 7.8 

Kynurenine 9 5.4 10.6 

Prolylleucine 5.2 5.7 7.7 
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It is important to exclude potential technical bias in our study.  

 

We have performed a follow up analysis in a subset of our cohort enrolled at Shanghai CDC, where identical blood collection was performed in 

CRC patients. We observed similar hypo-aging membership patterns in this subgroup of CRC patients, which supports the validity of our CRC 

results from Fudan University Shanghai Cancer Center.  The following evidence was added in the discussion: “In a subset of our cohort enrolled 

at Shanghai CDC, identical blood collection was performed in healthy controls and CRC patients (n=55) who were identified as part of the CDC 

screening. Similar hypo-aging membership patterns were observed in this subgroup of CRC patients, (Figure. 5C-D), which supports the validity 

of our CRC results (Figure. 4A-B) from Fudan University Shanghai Cancer Center. 

 

In addition, we developed 100 random models to assess whether the deviation of the CRC/APL cohort from the CI derived from CTRL is inherent 

to the age-related signature or due to other factors.  

 

Supplementary Figure 4A shows the performance of 100 randomly built models to detect APL. All model PPVs are < 0.35, which is statistically 

lower (p-value < 0.05) than the original model (Table 2).

 

 

 

 

 

 

 



Supplementary Figure 4B shows the performance of 100 randomly built models to detect CRC. All model PPVs are < 0.35, which is statistically 

lower (p-value < 0.05) than the original model (Table 2). 

 

 

In summary, our computational analysis results suggest that our results are biologically meaningful and statistically significant. Our findings are 

unlikely to be due to technical bias.  This analysis supports our observations with the Shanghai CDC subset follow-up study, 
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Deep metabolomics profiling of healthy individuals revealed unique age-associated patterns in KEGG metabolic pathways. Each canonical pathway was divided into 

either a positive ("up") or negative ("down") age-correlated version based on the age correlation of its component compounds. An "up" pathway comprises significantly 

positive age-correlated pathway component compounds, while a "down" pathway comprises significantly negative age-correlated pathway component compounds. As 

detailed in Supplementary Material 3, the subject’s value of either "up" or "down" pathway was calculated as the weighted sum of the normalized measurement values 

of the corresponding “up” or “down” metabolites on the pathway divided by the number of mapped metabolites. 

 

Supplementary Table 5 provides a detailed breakdown of these pathways and their associated mapped metabolite features, including pathway name, KEGG ID, total 

number of metabolites in the pathway, number of annotated metabolites, number of significant metabolites, names of significant metabolites within the pathways, and 

pathway rank in the all-combined men and women cohort, as well as in the men and women cohorts separately. 

Supplementary Table 5. Aging associated KEGG metabolic pathways and their associated mapped metabolomic features.” 

 

Pathway name Direction 

Total 

number of 

metabolites 

in pathway 

Number of 

metabolites 

annotated 

Number of 

metabolites 

significant 

Names of significant metabolites within 

pathways 

Pathway 

rank in 

all 

Pathway 

rank in 

men 

Pathway 

rank in 

women 

map00140: Steroid 

hormone biosynthesis 
down 99 5 1 

Dehydroepiandrosterone sulfate;3beta-

Hydroxyandrost-5-en-17-one 3-sulfate;DHEA 

sulfate; KEGG ID: C04555 

1 1 2 

map04976: Bile 

secretion 
down 97 8 1 

Dehydroepiandrosterone sulfate;3beta-

Hydroxyandrost-5-en-17-one 3-sulfate;DHEA 

sulfate; KEGG ID: C04555 

1 1 2 



map02010: ABC 

transporters 
up 137 45 12 

D-Xylose;Wood sugar; KEGG ID: C00181 

Hydroxyproline;L-Hydroxyproline;trans-4-

Hydroxy-L-proline; KEGG ID: C01157 

5-Aminolevulinate;5-Amino-4-oxopentanoate;5-

Amino-4-oxovaleric acid; KEGG ID: C00430 

Xylitol; KEGG ID: C00379 

L-Arabinose;L-Arabinopyranose; KEGG ID: 

C00259 

L-Ornithine;(S)-2,5-Diaminovaleric acid;(S)-2,5-

Diaminopentanoic acid;(S)-2,5-

Diaminopentanoate; KEGG ID: C00077 

D-Methionine;D-2-Amino-4-(methylthio)butyric 

acid; KEGG ID: C00855 

L-Cystine;L-Dicysteine;L-alpha-Diamino-beta-

dithiolactic acid; KEGG ID: C00491 

D-Sorbitol;D-Glucitol;L-Gulitol;Sorbitol; KEGG ID: 

C00794 

Mannitol;D-Mannitol; KEGG ID: C00392 

D-Ribose; KEGG ID: C00121 

Uridine; KEGG ID: C00299 

2 3 1 

map00340: Histidine 

metabolism 
down 47 17 1 

3-(Imidazol-4-yl)-2-oxopropyl 

phosphate;Imidazole-acetol phosphate; KEGG 

ID: C01267 

3 10 6 

map00980: 

Metabolism of 

xenobiotics by 

cytochrome P450 

down 121 11 1 
N-Hydroxy-1-aminonaphthalene;1-

Naphthylhydroxylamine; KEGG ID: C14789 
4 4 14 

map00740: Riboflavin 

metabolism 
up 20 2 1 Ribitol;Adonitol; KEGG ID: C00474 5 12 4 



map00360: 

Phenylalanine 

metabolism 

up 60 26 8 

Phenyllactate;(R)-Phenyllactate;(R)-3-

(phenyl)lactate; KEGG ID: C05607 

Benzoate;Benzoic acid;Benzenecarboxylic 

acid;Phenylformic acid;Dracylic acid; KEGG ID: 

C00180 

cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-

diol;(2E)-3-(cis-5,6-Dihydroxycyclohexa-1,3-dien-

1-yl)prop-2-enoate; KEGG ID: C12622 

4-Hydroxy-2-oxopentanoate;4-Hydroxy-2-

oxovalerate; KEGG ID: C03589 

2-Hydroxy-2,4-pentadienoate;cis-2-

Hydroxypenta-2,4-dienoate;Oxopent-4-enoate;2-

Oxopent-4-enoate;2-Hydroxypenta-2,4-dienoate; 

KEGG ID: C00596 

3-(2-Hydroxyphenyl)propanoate;2-

Hydroxyphenylpropanoate;3-(2-

Hydroxyphenyl)propionic acid;Melilotate;3-(2-

Hydroxyphenyl)propionate; KEGG ID: C01198 

3-(2,3-Dihydroxyphenyl)propanoate;2,3-

Dihydroxyphenylpropanoate; KEGG ID: C04044 

3-(3-Hydroxyphenyl)propanoic acid;Dihydro-3-

coumaric acid;3-Hydroxyphenylpropanoate;3-(3-

Hydroxyphenyl)propanoate; KEGG ID: C11457 

6 2 NA 

map05204: Chemical 

carcinogenesis 
down 99 11 1 

S-(1,2-Dichlorovinyl)-L-cysteine;DCVC; KEGG ID: 

C20317 
6 9 8 



map00020: Citrate 

cycle (TCA cycle) 
up 20 7 4 

Citrate;Citric acid;2-Hydroxy-1,2,3-

propanetricarboxylic acid;2-Hydroxytricarballylic 

acid; KEGG ID: C00158 

Oxaloacetate;Oxalacetic acid;Oxaloacetic acid;2-

Oxobutanedioic acid;2-Oxosuccinic acid;keto-

Oxaloacetate; KEGG ID: C00036 

Oxalosuccinate;Oxalosuccinic acid; KEGG ID: 

C05379 

Isocitrate;Isocitric acid;1-Hydroxytricarballylic 

acid;1-Hydroxypropane-1,2,3-tricarboxylic acid; 

KEGG ID: C00311 

7 NA 5 

map00240: Pyrimidine 

metabolism 
up 65 19 3 

Uridine; KEGG ID: C00299 

Pseudouridine; KEGG ID: C02067 

(R)-5,6-Dihydrothymine;(5R)-Dihydrothymine; 

KEGG ID: C21028 

8 8 9 

map00130: 

Ubiquinone and other 

terpenoid-quinone 

biosynthesis 

up 92 11 1 
(R)-3-(4-Hydroxyphenyl)lactate; KEGG ID: 

C03964 
9 NA 7 

map00760: Nicotinate 

and nicotinamide 

metabolism 

up 55 20 3 

2-Methyleneglutarate;alpha-Methylene glutarate; 

KEGG ID: C02930 

2,3-Dimethylmaleate;Dimethylmaleic acid; KEGG 

ID: C00922 

Methylitaconate;2-Methylene-3-methylsuccinate; 

KEGG ID: C02295 

10 NA 21 

map00260: Glycine, 

serine and threonine 

metabolism 

down 50 22 2 

Creatine;alpha-Methylguanidino acetic 

acid;Methylglycocyamine; KEGG ID: C00300 

L-Tryptophan;Tryptophan;(S)-alpha-Amino-beta-

(3-indolyl)-propionic acid; KEGG ID: C00078 

11 NA NA 

map00480: 

Glutathione 

metabolism 

up 38 6 2 

L-Ornithine;(S)-2,5-Diaminovaleric acid;(S)-2,5-

Diaminopentanoic acid;(S)-2,5-

Diaminopentanoate; KEGG ID: C00077 

12 17 15 



map00040: Pentose 

and glucuronate 

interconversions 

up 55 26 20 

Xylitol; KEGG ID: C00379 

L-Lyxonate;L-Lyxonic acid; KEGG ID: C05412 

Ribitol;Adonitol; KEGG ID: C00474 

L-Gulonate;L-Gulonic acid;Gulonate;Gulonic acid; 

KEGG ID: C00800 

L-Arabitol;L-Arabinol;L-Arabinitol;L-Lyxitol; KEGG 

ID: C00532 

D-Arabitol;D-Arabinitol;D-Arabinol;D-Lyxitol; 

KEGG ID: C01904 

(4R,5S)-4,5,6-Trihydroxy-2,3-

dioxohexanoate;2,3-Diketo-L-gulonate; KEGG ID: 

C04575 

D-Ribulose;D-erythro-2-Pentulose;D-

Arabinoketose;D-Arabinulose;D-Riboketose; 

KEGG ID: C00309 

D-Xylulose;D-threo-Pentulose;D-Lyxulose; KEGG 

ID: C00310 

L-Ribulose;L-erythro-Pentulose;L-

Arabinoketose;L-Arabinulose;L-Riboketose; 

KEGG ID: C00508 

L-Lyxose; KEGG ID: C01508 

D-Xylose;Wood sugar; KEGG ID: C00181 

D-Mannonate; KEGG ID: C00514 

L-Arabinose;L-Arabinopyranose; KEGG ID: 

C00259 

L-Galactonate;L-Galactonic acid; KEGG ID: 

C15930 

D-Lyxose; KEGG ID: C00476 

D-Xylonate; KEGG ID: C00502 

L-Xylulose;L-threo-Pentulose;L-Lyxulose; KEGG 

ID: C00312 

L-Xylonate;L-Xylonic acid; KEGG ID: C05411 

D-Altronate; KEGG ID: C00817 

13 13 23 



map00270: Cysteine 

and methionine 

metabolism 

down 63 19 1 L-Homocystine;Homocystine; KEGG ID: C01817 14 NA 27 

map00480: 

Glutathione 

metabolism 

down 38 6 1 

Bis-gamma-glutamylcystine;Oxidized gamma-

glutamylcysteine;Bis-gamma-L-glutamyl-L-

cystine;Oxidized gamma-L-glutamyl-L-cysteine; 

KEGG ID: C03646 

14 NA 11 

map04261: 

Adrenergic signaling 

in cardiomyocytes 

up 10 1 1 Isoproterenol;Isoprenaline; KEGG ID: C07056 14 23 12 

map00250: Alanine, 

aspartate and 

glutamate metabolism 

down 28 14 1 

2-Oxosuccinamate;2-Oxosuccinamic 

acid;gamma-Aminooxaloacetate;Oxaloacetamide; 

KEGG ID: C02362 

15 NA 18 

map00760: Nicotinate 

and nicotinamide 

metabolism 

down 55 20 1 
Iminoaspartate;Iminoaspartic 

acid;Iminosuccinate; KEGG ID: C05840 
15 NA 18 

map04728: 

Dopaminergic 

synapse 

up 12 4 2 

3-Methoxytyramine; KEGG ID: C05587 

Homovanillate;Homovanillic acid;3-Methoxy-4-

hydroxyphenylacetate; KEGG ID: C05582 

16 NA NA 

map00270: Cysteine 

and methionine 

metabolism 

up 63 19 2 

L-Cystine;L-Dicysteine;L-alpha-Diamino-beta-

dithiolactic acid; KEGG ID: C00491 

L-Methionine;Methionine;L-2-Amino-

4methylthiobutyric acid; KEGG ID: C00073 

17 NA NA 

map04974: Protein 

digestion and 

absorption 

up 47 24 2 

L-Methionine;Methionine;L-2-Amino-

4methylthiobutyric acid; KEGG ID: C00073 

L-Cystine;L-Dicysteine;L-alpha-Diamino-beta-

dithiolactic acid; KEGG ID: C00491 

17 11 25 

map00260: Glycine, 

serine and threonine 

metabolism 

up 50 22 2 

5-Hydroxyectoine; KEGG ID: C16432 

5-Aminolevulinate;5-Amino-4-oxopentanoate;5-

Amino-4-oxovaleric acid; KEGG ID: C00430 

18 NA 36 



map00330: Arginine 

and proline 

metabolism 

down 78 34 2 

N-Methylhydantoin;N-Methylimidazolidine-2,4-

dione; KEGG ID: C02565 

Creatine;alpha-Methylguanidino acetic 

acid;Methylglycocyamine; KEGG ID: C00300 

19 NA NA 

map00520: Amino 

sugar and nucleotide 

sugar metabolism 

up 108 10 2 

L-Arabinose;L-Arabinopyranose; KEGG ID: 

C00259 

D-Xylose;Wood sugar; KEGG ID: C00181 

20 10 NA 

map00310: Lysine 

degradation 
up 54 20 5 

6-Amino-2-oxohexanoate;2-Oxo-6-

aminocaproate; KEGG ID: C03239 

L-2-Aminoadipate 6-semialdehyde;2-

Aminoadipate 6-semialdehyde;L-

Allysine;Allysine;(S)-2-Amino-6-oxohexanoate; 

KEGG ID: C04076 

2-Amino-5-oxohexanoate; KEGG ID: C05825 

(S)-5-Amino-3-oxohexanoic acid;(S)-5-Amino-3-

oxohexanoate; KEGG ID: C03656 

Glutarate;Glutaric acid;Pentanedioic acid;1,3-

Propanedicarboxylic acid; KEGG ID: C00489 

21 6 34 

map00250: Alanine, 

aspartate and 

glutamate metabolism 

up 28 14 2 

Citrate;Citric acid;2-Hydroxy-1,2,3-

propanetricarboxylic acid;2-Hydroxytricarballylic 

acid; KEGG ID: C00158 

Oxaloacetate;Oxalacetic acid;Oxaloacetic acid;2-

Oxobutanedioic acid;2-Oxosuccinic acid;keto-

Oxaloacetate; KEGG ID: C00036 

22 NA NA 

map00630: Glyoxylate 

and dicarboxylate 

metabolism 

up 62 18 4 

Isocitrate;Isocitric acid;1-Hydroxytricarballylic 

acid;1-Hydroxypropane-1,2,3-tricarboxylic acid; 

KEGG ID: C00311 

trans-2,3-Epoxysuccinate; KEGG ID: C03548 

Citrate;Citric acid;2-Hydroxy-1,2,3-

propanetricarboxylic acid;2-Hydroxytricarballylic 

acid; KEGG ID: C00158 

Oxaloacetate;Oxalacetic acid;Oxaloacetic acid;2-

22 NA 28 



Oxobutanedioic acid;2-Oxosuccinic acid;keto-

Oxaloacetate; KEGG ID: C00036 

map04742: Taste 

transduction 
up 32 9 1 

Citrate;Citric acid;2-Hydroxy-1,2,3-

propanetricarboxylic acid;2-Hydroxytricarballylic 

acid; KEGG ID: C00158 

22 NA 38 

map04922: Glucagon 

signaling pathway 
up 26 8 3 

Isocitrate;Isocitric acid;1-Hydroxytricarballylic 

acid;1-Hydroxypropane-1,2,3-tricarboxylic acid; 

KEGG ID: C00311 

Citrate;Citric acid;2-Hydroxy-1,2,3-

propanetricarboxylic acid;2-Hydroxytricarballylic 

acid; KEGG ID: C00158 

Oxaloacetate;Oxalacetic acid;Oxaloacetic acid;2-

Oxobutanedioic acid;2-Oxosuccinic acid;keto-

Oxaloacetate; KEGG ID: C00036 

22 NA NA 



map01210: 2-

Oxocarboxylic acid 

metabolism 

up 134 39 8 

Oxalosuccinate;Oxalosuccinic acid; KEGG ID: 

C05379 

L-Ornithine;(S)-2,5-Diaminovaleric acid;(S)-2,5-

Diaminopentanoic acid;(S)-2,5-

Diaminopentanoate; KEGG ID: C00077 

Isocitrate;Isocitric acid;1-Hydroxytricarballylic 

acid;1-Hydroxypropane-1,2,3-tricarboxylic acid; 

KEGG ID: C00311 

L-Methionine;Methionine;L-2-Amino-

4methylthiobutyric acid; KEGG ID: C00073 

Citrate;Citric acid;2-Hydroxy-1,2,3-

propanetricarboxylic acid;2-Hydroxytricarballylic 

acid; KEGG ID: C00158 

(S)-2-Acetolactate;(S)-2-Hydroxy-2-methyl-3-

oxobutanoate;(2S)-2-Hydroxy-2-methyl-3-

oxobutanoate; KEGG ID: C06010 

3-Hydroxy-3-methyl-2-oxobutanoic acid;3-

Hydroxy-3-methyl-2-oxobutanoate;2-Oxo-3-

hydroxyisovalerate; KEGG ID: C04181 

Oxaloacetate;Oxalacetic acid;Oxaloacetic acid;2-

Oxobutanedioic acid;2-Oxosuccinic acid;keto-

Oxaloacetate; KEGG ID: C00036 

(R)-2,3-Dihydroxy-3-methylpentanoate;(R)-2,3-

Dihydroxy-3-methylvalerate;(2R,3R)-2,3-

Dihydroxy-3-methylpentanoate; KEGG ID: 

C06007 

23 5 31 

map00280: Valine, 

leucine and isoleucine 

degradation 

down 42 14 2 

(S)-3-Methyl-2-oxopentanoic acid;(S)-3-Methyl-2-

oxopentanoate;(3S)-3-Methyl-2-oxopentanoic 

acid;(3S)-3-Methyl-2-oxopentanoate; KEGG ID: 

C00671 

4-Methyl-2-oxopentanoate;2-Oxoisocaproate; 

KEGG ID: C00233 

24 16 26 



map00290: Valine, 

leucine and isoleucine 

biosynthesis 

down 23 14 2 

(S)-3-Methyl-2-oxopentanoic acid;(S)-3-Methyl-2-

oxopentanoate;(3S)-3-Methyl-2-oxopentanoic 

acid;(3S)-3-Methyl-2-oxopentanoate; KEGG ID: 

C00671 

4-Methyl-2-oxopentanoate;2-Oxoisocaproate; 

KEGG ID: C00233 

24 NA NA 

map00472: D-Arginine 

and D-ornithine 

metabolism 

up 11 7 5 

L-Ornithine;(S)-2,5-Diaminovaleric acid;(S)-2,5-

Diaminopentanoic acid;(S)-2,5-

Diaminopentanoate; KEGG ID: C00077 

2-Amino-4-oxopentanoic acid;2-Amino-4-

oxopentanoate;(2R)-2-Amino-4-oxopentanoate; 

KEGG ID: C03341 

5-Amino-2-oxopentanoic acid;5-Amino-2-

oxopentanoate;2-Oxo-5-amino-pentanoate;2-

Oxo-5-aminopentanoate;alpha-Keto-delta-

aminopentanoate;2-Oxo-5-aminovalerate; KEGG 

ID: C01110 

D-Ornithine; KEGG ID: C00515 

(2R,4S)-2,4-Diaminopentanoate;D-threo-2,4-

Diaminopentanoate;2,4-Diaminopentanoate; 

KEGG ID: C03943 

25 NA 20 

map00380: 

Tryptophan 

metabolism 

up 83 12 4 

5-Hydroxyindoleacetate; KEGG ID: C05635 

L-Kynurenine;3-Anthraniloyl-L-alanine; KEGG ID: 

C00328 

2-Oxoindole-3-acetate;2-Oxoindole-3-acetic 

acid;2-Indolinone-3-acetate;2-(2-Oxo-1,3-

dihydroindol-3-yl)acetate; KEGG ID: C22202 

Formyl-5-hydroxykynurenamine; KEGG ID: 

C05647 

26 NA NA 

map00982: Drug 

metabolism - 

cytochrome P450 

up 87 12 1 
5-Phenyl-1,3-oxazinane-2,4-dione; KEGG ID: 

C16596 
26 NA 19 



map04726: 

Serotonergic synapse 
up 42 3 1 5-Hydroxyindoleacetate; KEGG ID: C05635 26 NA 19 

map00330: Arginine 

and proline 

metabolism 

up 78 34 9 

cis-4-Hydroxy-D-proline; KEGG ID: C03440 

5-Amino-2-oxopentanoic acid;5-Amino-2-

oxopentanoate;2-Oxo-5-amino-pentanoate;2-

Oxo-5-aminopentanoate;alpha-Keto-delta-

aminopentanoate;2-Oxo-5-aminovalerate; KEGG 

ID: C01110 

L-Glutamate 5-semialdehyde;L-Glutamate 

gamma-semialdehyde; KEGG ID: C01165 

trans-3-Hydroxy-L-proline;trans-L-3-

Hydroxyproline; KEGG ID: C05147 

L-Ornithine;(S)-2,5-Diaminovaleric acid;(S)-2,5-

Diaminopentanoic acid;(S)-2,5-

Diaminopentanoate; KEGG ID: C00077 

Hydroxyproline;L-Hydroxyproline;trans-4-

Hydroxy-L-proline; KEGG ID: C01157 

4-Acetamidobutanoate;N4-

Acetylaminobutanoate; KEGG ID: C02946 

cis-3-Hydroxy-L-proline;cis-3-Hydroxyproline; 

KEGG ID: C19706 

Creatinine;1-Methylglycocyamidine; KEGG ID: 

C00791 

27 NA 29 

map00071: Fatty acid 

degradation 
up 50 4 1 

Glutarate;Glutaric acid;Pentanedioic acid;1,3-

Propanedicarboxylic acid; KEGG ID: C00489 
28 19 NA 

map00650: Butanoate 

metabolism 
up 42 13 1 

(S)-2-Acetolactate;(S)-2-Hydroxy-2-methyl-3-

oxobutanoate;(2S)-2-Hydroxy-2-methyl-3-

oxobutanoate; KEGG ID: C06010 

28 19 NA 

map00750: Vitamin 

B6 metabolism 
up 28 4 1 

2-(Hydroxymethyl)-4-oxobutanoate;alpha-

Hydroxymethyl succinate semialdehyde;2-

Hydroxymethyl succinate semialdehyde; KEGG 

ID: C04106 

28 19 NA 
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Elastic net regularized regression (ElasticNet) requires the following data prerequisites: 

• Linearity: The relationship between the independent and dependent variables should be linear. 

• Independence: The independent variables should be independent of each other. 

• Normality: The dependent variable should be normally distributed. 

• Homoscedasticity: The variance of the dependent variable should be equal across all levels of the independent variables. 

 

Supplementary Figure 5. Evidence to support the appropriateness to use of ElasticNet in this study.   

A.. The validation for linearity has already been demonstrated in Figure 3C. All nine metabolic features used in the model exhibit good monotonicity. 

  
 

 



 

 

 

B. As shown in the heatmap below, the correlation coefficients between the features are all less than 0.5, indicating no significant inter-feature 

correlations and verifying the independence among the features. Furthermore, Elastic Net combines both L1 regularization (Lasso) and L2 

regularization (Ridge), allowing it to simultaneously address variable selection (feature selection) and control model complexity. The presence of 

these two regularization terms enables Elastic Net to maintain model sparsity in the presence of multicollinearity. It selects the most important 

independent variables and pushes their coefficients towards zero while reducing the instability in coefficient estimation caused by multicollinearity. 

  

  

  

  



C. For the distribution of features, we used density plots for validation. Our plots show that each of the distributions of the nine features closely 

follows a normal distribution. 

 

  

  

  

  

  



D. To address feature homoscedasticity, we applied a logarithmic transformation during data standardization to ensure the homoscedasticity of 

features. Additionally, we plotted residual graphs for each feature. From these graphs, it can be observed that the residuals for each feature exhibit 

random distribution, constant variance, and no apparent trends. Consequently, our dataset meets the requirement of equal variance. 

 

  

  

  

  

  

  



E. Regarding the issue of different gender distributions between the two datasets, we took into account the influence of gender on the model before 

modeling. Consequently, we independently established models for both the male and female populations and validated them on the cancer dataset. 

Therefore, we believe that the differing gender distributions will not affect the predictive results. 

 

 

 

 

 

 


