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Breaking the premetastatic niche barrier: the role of

endothelial cells and therapeutic strategies

Abstract

The premetastatic niche (PMN) represents a metastasis-facilitative microenvironment established
prior to tumor dissemination, initiated by vascular leakage and endothelial cell (EC) functional
remodeling. ECs play pivotal roles as bridges in different stages of the metastatic cascade. As
critical stromal components within the PMN, ECs not only drive angiogenesis but also actively
orchestrate immune suppression, extracellular matrix (ECM) remodeling, and the inflammatory
signaling characteristic of PMN formation, with multiple specific signaling pathways such as
VEGF/Notch playmg a crucial role. With the evolving understanding of the role of ECs in
controlling tumor metastasis, therapeutic strategies targeting ECs within the PMN, such as
antiangiogenic therapy (AAT), targeting of endothelial glycocalyx (GCX). inhibition of
tumor-derived exosome (TDE) and angiocrine signaling, are becoming research hotspots. This
review systematically delineates the cellular and molecular composition of PMNs, dynamically
dissects their spatiotemporal evolution, and highlights organ-specific mechanisms of EC-driven
PMN establishment. Furthermore, we summarize emerging EC-targeted therapeutic strategies,

providing innovative insights for inhibiting tumor metastasis.
Keywords

Endothelial cells; Imnmumosuppression; Premetastatic niche; Targeted therapy; Angiogenesis

1. Introduction

Tumor metastasis remains the leading cause of cancer-related mortality. Despite recent
advancements in cancer therapeutics, metastatic cancers continue to pose significant clinical
challenges [1]. A critical step in metastasis involves the shedding of circulating tumor cells (CTCs)
from primary tumors, which dissemmate through hematogenous or lymphatic systems to colonize
distant organs [2]. The organotropism of metastasis can be attributed to specialized

microenvironments that actively recruit tumor cells (TCs), as conceptualized by Paget's 1889
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"seed and soil" hypothesis, which emphasizes bidirectional interactions between TCs (seeds) and
host organs (soil) [3] This metastasis-permissive microenvironment was later termed the PMN by
Lyden et al. [4]. Emerging evidence reveals that tumors precondition distant organs by
establishing PMNs prior to metastatic colonization [5]. Characterized by immune suppression,
angiogenesis, vascular hyperpermeability, and organotropism, PMNs provide a hospitable
ecosystem for TCs [5]. Consequently, PMN biology has garnered increasing recognition as a

pivotal determinant of metastatic efficiency.

ECs, as active participants in the tumor microenvironment (TME), play a key role in angiogenesis
and cancer progression. In addition to their canonical angiogenic function in supplying nutrients,
ECs facilitate TC extravasation through vascular permeability modulation and immume evasion [6].
Moreover, TCs play a decisive role in promoting metastasis by promoting angiogenesis at distant
sites [7]. ECs are uniquely positioned to orchestrate interactions among stromal, immune, and
molecular components, distinguishing them from other cell types. Unlike other stromal cells, ECs
directly shape the immune landscape through cytokine/chemokine secretion (e.g., IL-6, CCL2),
which regulates immume cell trafficking and polarization. The unique ability of ECs to interact
with immume and stromal components is further emphasized in ECM remodeling:
post-translational modifications of ECM components dynamically regulate EC adhesion and
paracrine signaling, thereby influencing cellular spatial organization within the TME [8].
Additionally, the cellular composition of the TME varies greatly among different tumor types,
with ECs playing a central role. ECs induce the expression of tight junction proteins by expressing
specific transcription factors (e.g.. ETS1 and SOX7), enhancing the integrity of intercellular
barriers, and thereby affecting the TME [9]. This review systematically examines the cellular and
molecular composition of PMNs, with a particular emphasis on the multifaceted roles of ECs in
PMN establishment. We further highlight the differential effects of ECs across distinct metastatic
organs. Finally, we synthesized emerging therapeutic strategies targeting PMN-associated ECs,

aiming to provide novel insights for preventing metastatic progression.

2. PMN: The Soil for Tumor Metastasis
Over the past decade, our understanding of the PMN has deepened significantly, particularly with
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respect to the multifaceted roles of the immune system, stromal cells, tumor-derived secretory
factor (TDSFs), and miRNA-enriched extracellular vesicles (EVs) in PMN dynamics. This
progress has propelled PMN research from fundamental exploration toward clinical translation for
preventing and treating metastatic progression. Here, we delineate the developmental stages and

formation mechanisms underlying PMN establishment.

2.1. Cellular Constituents: Stromal-Immune Synergy

2.1.1. Stromal cells
The formation of the PMN involves intricate interactions among stromal cells, the vasculature,

and the ECM, which are dynamically remodeled during crosstalk with primary tumors [10].
Stromal cells facilitate metastatic progression by secreting chemokines (e.g., CCL2) to recruit
myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) [11].
Fibroblasts play pivotal roles in PMN establishment and therapeutic resistance [12]. For example,
ovarian cancer cells extensively secrete exosomes enriched with miR-141, which activate the
YAPU/GROo/CXCR signaling cascade to mediate tumor-fibroblast interactions, thereby fostering
PMN development [13]. Moreover, pericytes within PMNs also exhibit protumorigenic properties.
Murgai et al. demonstrated that tumor-derived factors induce KLF4 expression in pericytes, which
results in the formation of fibronectin-rich PMNs, whereas conditional KLF4 knockout in
pericytes suppresses their expansion and impedes lung metastasis [14]. Notably, organ-specific
stromal responses occur—pulmonary ECs downregulate tumeor necrosis factor-related
apoptosis-inducing ligand (TRAIL) under VEGF stimulation to promote PMN formation, whereas
hepatic sinusoidal ECs increase fibronectin expression via TGF-B1 to drive tumor progression [15,
16]. Therefore, an in-depth exploration of stromal cell functions within PMNs has significant

implications for the development of effective strategies to improve cancer therapeutics.

2.1.2. MDSCs

MDSCs, a heterogencous population of immature myeloid cells with immunosuppressive
functions, directly drive tumor metastasis by participating in PMN formation, promoting
angiogenesis, and enhancing tumor invasion [17, 18]. Phenotypically, MDSCs are categorized into
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polymorphonuclear (PMN-MDSC) and monocytic (M-MDSC) subsets, which morphologically
resemble neutrophils and monocytes [19]. Studies have demonstrated that the NLRP3-HSP70 axis
in melanoma induces PMN-MDSC accumulation in lung tissues via TLR4 signaling-dependent
mechanisms in pulmonary epithelial cells, fostering PMN development and conferring
immmmotherapy resistance [20]. Before TCs arrive, lung-infiltrated M-MDSCs enhance TC
adhesion to ECs in the PMN by secreting IL-1p to upregulate ECs E-selectin expression [21].
Notably, specific TDSFs (e.g., TIMP-1 and macrophage migration inhibitory factor [MIF])
facilitate hepatic PMN formation through MDSC recruitment [22]. Chronic psychological stress
activates the glucocorticoid-TAM-CXCL1 axis, driving splenic MDSC mobilization to construct
breast cancer PMNs via CXCR2 signaling [23]. Mechanistically, galectin-1 recruits PMN-MDSCs
through STING activation to mediate ECM remodeling, whereas PMN-MDSCs
increase CTC metastatic potential via ROS/Notch/Nodal signaling crosstalk [24]. Thus, MDSC

accumulation orchestrates PMN maturation and pulmonary metastasis progression.

2.1.3. Neutrophils
Neutrophils, the most abundant immune cells in peripheral blood, have garnered significant

attention for their dual regulatory roles in tumeor progression [25]. Lin28B, nicotine, and TLR3
drive the recruitment of N2-polarized neutrophils to establish an immumosuppressive PMN during
breast cancer lung metastasis [26-28]. Neutrophil phenotypic polarization is dynamically regulated
by microenvirommental cues: IFN-1 induces antitimor N1 polarization, whereas TGF-p
suppresses N1 differentiation and promotes protumor N2 polarization, with the latter secreting
arginase 1 to deplete arginine and impair T-cell cytotoxicity [29, 30]. The recruitment mechanism
of neutrophils involves various signal molecules such as chemokines (e.g., CXCL1/8), exosomes,
and bioactive factors. Notably, TANs dynamically interact with CTCs through adhesion molecule
engagement, cytokine secretion, and neutrophil extracellular trap (NET) formation, thereby
modulating the PMN and TME remodel. Experimental evidence confirms that SPPl-induced
NETs facilitate hepatocellular carcinoma lung colonization by trapping CTCs [31], whereas
strategies targeting CTC—neutrophil interactions (e.g., biomimetic nanoparticle blockade) exhibit
antimetastatic potential [32, 33] Mechanistically, NETs degrade the ECM via protease release
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(e.g., MMP9) and reactivate dormant TCs, underscoring their critical role in metastatic cascades
[34]. In summary, the interaction between neutrophils and ECs is critical for the migration of TCs
and the formation of immunosuppressive PMN, as we will describe in further detail in the

following sections [35-39].

2.1.4. Macrophages
TAMSs dynamically shift their transcriptional programs along a continuous spectrum influenced by

TME-derived stimuli, with M1 (antitumor) and M2 (protumor) phenotypes representing polar
extremes [40] The M2 subset dominates PMN establishment by orchestrating immune
suppression and angiogenesis [41] M1 TAMs are typically activated by LPS and IFN-y, while M2
TAMs are activated by cytokines such as IL-4 and IL-13 [42]. Intermediate macrophage
phenotypes (M2a, M2b, M2c, M2d) have been identified and described, and they significantly
impact PMN formation and EC behavior [43]. For instance, M2a macrophages promote
angiogenesis, whereas M2b macrophages are involved in immune cell recruitment and
inflammatory responses [44]. TDEs deliver specific molecules (e.g., miR-934 and miR-4488) or
regulate critical pathways (CAP2-mediated TGF-P1 secretion; Caveolin-1/PTEN-CCL2/VEGF-A
axis) to drive M2 polarization, thereby enhancing hepatic/pulmonary metastasis and vascular
remodeling [45-48]. Notably, distinct macrophage subsets predict divergent clinical outcomes,
highlighting the importance of resolving TAM heterogeneity. Recent single-cell studies classify
TAMs into resident tissue macrophages (RTMs) and monocyte-derived TAMs [42, 49]: RTMs
activate fibroblasts and induce immunosuppression via phagocytosis of TDEs, whereas
monocyte-derived TAMs remodel the PMN through promnflammatory cytokine secretion. This
spatial-temporal regulatory mechanism underscores the therapeutic potential of targeting TAM

subset differentiation.

2.1.5. T and B lymphocytes
As core components of adaptive immunity, T/B lymphocytes play complex regulatory roles within

the tumor immune microenvironment. PMN establishment is closely associated with regulatory

T-cell (Treg)-mediated immumosuppression [50]. Tregs shape CTC-disseminating
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microenvironments via the secretion of cytokines (e.g., TGF-B and IL-10), with hepatic infiltration
of TNFR2+ Treg subsets correlating with poor prognosis in lung/colorectal cancer liver metastasis
[51, 52]. Pharmacological inhibition of Tregs through NEDDS pathway targeting effectively
reduces postoperative pulmonary metastasis in patients with colorectal cancer [53]. Th2
polarization accelerates metastatic progression via STAT6-dependent complement C3 upregulation
(driving neutrophil recruitment and NET formation) and macrophage phenotypic reprogramming
[54, 55]. Notably, exosomal miR-135a-5p directly suppresses CD4+ T-cell activation, fostering

liver metastasis imnmme tolerance [56].

B lymphocytes regulate the PMN through antibody-mdependent mechanisms, exhibiting unique
roles in lymph node-breast cancer inmmune crosstalk [57]. In breast cancer, B cells drive lymph
node metastasis via the HSPA4 glycosylation-lgG-CXCR4/SDFla axis, while single-cell
sequencing revealed that transeriptional reprogramming of marginal zone B cells in
tumor-draining lymph nodes (angiogenic pathway activation) is negatively associated with
prognosis [2, 58] Intriguingly, T/B-cell synergism promotes breast cancer bone metastasis,
although their spatiotemporal regulatory dynamics in the PMN remain incompletely characterized
[59]. The current understanding of T/B lymphocyte interactions within the PMN remains limited:

thus, conducting more comprehensive studies on these two types of cells is necessary.

2.2. Molecular Drivers: Dual Regulation by TDSFs and EVs

The formation of PMNs involves intricate interactions between diverse cellular and molecular
components, which collectively orchestrate PMN development. These molecules originate not
only from bone marrow-derived and stromal cells but also from TCs. While the previous sections
focused on the roles of bone marrow-derived imnmme cells and stromal cells in PMN
establishment, tumor-derived molecular components are pivotal in driving organ-specific PMN

formation. Therefore, we focused on TDSFs and extracellular vesicles.

2.2.1. TDSFs
TDSFs include proteins, enzymes, cytokines, and other bioactive molecules secreted by TCs under

hypoxic and inflammatory conditions, exerting critical regulatory effects on tumor progression
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and PMN establishment. The functional roles of TDSFs vary across tumor types, with
accumulating evidence demonstrating that TDSFs promote PMN formation by mobilizing and
recruiting bone marrow-derived cells. For example, in colorectal cancer, TDSFs recmuit MDSCs
via the SIPR1-STAT3 signaling axis to facilitate hepatic PMN fonmation [60] Additionally,
CCL2-mediated recruitment of Tregs and TAMSs stinmulates angiogenesis and immunosuppression,
fostering pulmonary PMN development [61, 62]. Recent studies have revealed that gastric
cancer-derived lipopolysaccharide-binding protein activates the TLR4/NF-«B pathway in hepatic
macrophages and hepatic stellate cells, driving fibrotic PMN formation in the liver [63]. In
summary, TDSFs interact with bone marrow-derived immune or host stromal cells through distinct
signaling pathways, thereby inducing these cells to secrete specific molecular components to

support PMN formation.

2.2.2. EVs
Tumor-derived EVs, pivotal mediators of TME crosstalk, exert pleiotropic regulatory effects on

tumor growth and metastatic cascades by delivering bioactive cargoes, including nucleic acids,
proteins, and metabolites [64, 65]. Classified by biogenesis pathways, EVs include exosomes,
microvesicles, apoptotic bodies. ONCOSOINES, and megasomes,
with exosomes and microvesicles being extensively studied for their roles in PMN formation [66].
In recent years, mechanistic insights into EV-mediated metastasis and PMN establishment have
expanded, notably identifymng tumor exosomal integrins as predictive biomarkers for organotropic
metastasis [67-70]. miRNAs are identified as early drivers of PMN driven by EVs, and are
involved in regulating nearly all cancer-associated processes, including ECM remodeling,
angiogenesis, and immune cell recruitment [71, 72]. For instance, miR-21 targets PTEN and the
Akt signaling pathway, reducing the proliferation of Tregs and thereby modulating the function of
immme cells [73]. miR-29a/c targets VEGF to inhibit angiogenesis in the gastric cancer
microenviromment [74]. Additionally, in colorectal liver metastasis, cire-0034880-enriched
EVs increase the activation of SPP1 high CD206" protumorigenic macrophages, remodeling the
host stromal microenviromment to foster overt metastasis [75]. Recent studies have focused on
understanding the effects of specific factors on EV properties and function. For example, Snail
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overexpression in murine colon adenocarcinoma increases Glypican-1 levels in EVs, potentially
augmenting PMN development and metastatic potential [76]. Notably, studies in xenograft models
revealed that tumor EVs prime inflanmmatory responses in distant organs, accelerating PMN

maturation [77].

2.3. Dynamic evolution of the PMN: Spatiotemporal orchestration

by TCs
TCs establish permissive microenvironments in distant organs through spatiotemporally
coordinated mechanisms to enable metastasis. As a critical metastatic checkpoint, PMN formation

evolves through three dynamically interconnected phases.

Phase I: Molecular preprogramming. Primary tumors remotely precondition potential
metastatic organs via the systemic secretion of exosomes, cytokines, and other signaling
molecules. These tumor-derived components (e.g., miRNAs and integrins) establish organotropic
molecular imprints through hematogenous/lymphatic circulation, systematically preconfiguring
the PMN landscape. Recently, Wang et al. systematically organized the roles and mechanisms of
known tumor-derived molecular components in PMN formation, which provided a novel

understanding of PMN formation [78].

Phase II: Microenvironmental remodeling. Resident organ cells respond to tumeor-derived
signals by initiating angiogenesis, immune evasion, and ECM remodeling to prime metastatic
colonization. For example, KLF4-dependent perivascular cells mediate angiogenesis and ECM
remodeling to promote PMN maturation [14] Concurrently, cellular and molecular components
within PMNs enhance TC invasiveness: tumor-associated neutrophils (TANs) facilitate
CTC-endothelial adhesion during intravasation, whereas TANs directly interact with CTCs to
increase their survival [79-82]. Hippo pathway inactivation further amplifies CTC aggressiveness
via Wnt/p-catenin-mediated epithelial-mesenchymal transition (EMT), as evidenced by HCC EVs
delivering miR-665/miR-1273f to suppress Hippo signaling and increase CTC stemness [83-85].
Through these spatiotemporal synergies, tumors engineer premetastatic soil long before physical
CTC arrival [86].
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Phase ITI: CTC Homing and Expansion. Mature PMNs guide CTC homing through chemotactic
gradients. Bidirectional CTC—PMN crosstalk critically regulates colonization: nicotine-induced
N2 TANs activate CTC EMT via adiponectin 2, whereas CTC-derived IL-6 drives neutrophil N2
polarization through STAT3 signaling, forming a prometastatic feedforward loop [28, 87-89].
PMN-MDSCs further enhance CTC metastatic fitness through ROS/Notch crosstalk [24].
Postcolonization, CTCs either enter dormancy or exploit remodeled niches for proliferation,

ultimately developing macroscopic metastases.

Progressive CTC colonization of mature PMNs drives pathological progression from
micrometastases to macrometastases, with CTC-laden PMNs potentially promoting further
dissemination. Collectively, PMN evolution reflects mnot stochastic events but a
precision-engineered  spatiotemporal  program  wherein  tumors  precondition  distant

microenvironments to license metastatic outgrowth (Figure 1).
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Figure 1: Developmental stages of the PMN

From the primary twmor to PMN, TCs promote metastasis in a spatiotemporal manner. This figure

outlines the three-stage dynamic evolution of PMN from initiation to maturation. The entire
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process reflects the precise orchestration by TCs of the preparation of the “soil” in distant organs

and their own colonization.

Phase I: Molecular preprogramming—Primary tumors release exosomes, cytokines, and other
factors to remotely regulate target organs, establishing chemotactic gradients and vascular leakage
signatures. Phase IT: Microenvironment remodeling—Resident cells in the target organ respond to
tumor signals, constructing the PMN through angiogenesis, immune suppression, and ECM
remodeling. Phase III: CTC Homing and Expansion—CTCs interact with the modified
microenvironment, achieving metastatic focus formation through mechanisms such as imnmne

evasion and stemness activation.

3. EC contributions to PMN formation

The PMN represents an aberrant, tumor-permissive microenvironment devoid of cancer cells.
Previous studies have indicated that PMN formation initiates with localized alterations (e.g..
vascular leakage and stromal/lECM remodeling) before exerting systemic inumunosuppressive
effects. ECs, as pivotal PMN components, actively participate in niche establishment through
imimmme suppression, inflanumation, angiogenesis, and ECM remodeling. Here, we aimed to reveal

the specific role of ECs in PMN formation by performing PMN studies related to ECs (Figure 2).

3.1. Stage-Specific Functions of ECs in the PMN

3.1.1. Endothelial Dysfunction: Vascular Barrier Disruption
Under physiological conditions, ECs maintam vascular integrity via VE-cadherin-mediated

adherens junctions and occludin/claudin/Z0-1 tight junction complexes [90]. During PMN
formation, TDSFs and EVs destabilize endothelial barriers, inducing pathological
hyperpermeability [91]. For example, colorectal cancer-derived EVs (e.g., ADAMI17 and
miR-27b-3p) synergistically promote vascular leakage by interfering with the membrane
localization of VE-cadherin and regulating the expression of tight junction proteins
(ZO-1/occludin/Claudin5) via the KLF2ZKLF4-VEGFR2 axis [92-94]. Breast cancer-derived
angiopoictin 2 exacerbates junctional instability by activating MMPs [95]. Concurrently, GCX

cleavage enzymes (e.g., heparanase, MMPs) in the PMN increase permeability via syndecan-3/4
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ectodomain cleavage in a Rho-kinase-dependent manner [96-98]. Metabolic reprogranming also
contributes: VEGF-enriched EVs drive endothelial hyperglycolysis via PFKFB3/GLUT1
upregulation, increasing leakage [99]. Increased vascular permeability facilitates bidirectional

cellular trafficking and microenvironmental crosstalk, thereby accelerating PMN formation

(Figure 2a).

3.1.2. Microenvironment remodeling: Endothelial-stromal-immune cross talk

ECs are driven by tumor-derived molecules and work together with stromal and immune cells to
shape PMNs. On the one hand, stromal and imnwne cells within the PMN regulate EC functions
via paracrine signaling. Fibroblasts activate the P38 MAPK pathway in ECs via the IncRNA
SNHGS to promote angiogenesis [100]. M2-polarized TAMs secrete exosomes enriched with
miR-23a/155/221 to induce vascular leakage [101, 102], whereas interstitial macrophages increase
vascular permeability through the IL-6/VEGF axis [103]. On the other hand, ECs autonomously
contribute to the construction of an immunosuppressive microenvironment and ECM remodeling.
For instance, tumor-derived autophagosomes upregulate PD-L1 expression on ECs via the
TLR4-MyD88-p38/STAT3 cascade, suppressing T-cell activity and polarizing macrophages
toward the M2 phenotype [104, 105]. Activated Notchl receptors (N1ICDs) in ECs drive
neutrophil infiltration and metastasis [39]. Additionally, CD36 upregulation in ECs exacerbates
immunosuppression [106]. This reciprocal crosstalk between ECs and neighboring cells is highly
important for the establishment of a matwe PMN, which primes the microenvironment for

subsequent TC dissemination and colonization.

3.1.3. Metastatic cascade regulation: endothelial-mediated CTC homing and

extravasation

ECs serve as "bridges" for TCs and immune cells during the metastatic process. In the initial stage
of metastasis, TAMs release EGF/TNF-a to promote the intravasation of TCs, and TANs guide
TCs to the vascular endothelial interface through chemotaxis [80, 107]. CTCs in circulation face
shear stress and immune clearance pressures, and their survival and metastatic efficiency are

precisely regulated by adhesion molecules on the endothelial surface [82, 108]. E-selectin
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mediates transendothelial migration by binding to the CD44 receptor on the surface of CTCs, and
its expression is positively regulated by IL-1P secreted by M-MDSCs [21, 109]. ECs in the leaky
region form microenvironmental “hotspots™ for metastatic cancer cell-specific homing through
focal adhesion kinase (FAK)-dependent upregulation of E-selectin [110, 111].For example
E-selectin iz an important homing receptor for hematogenous dissemination in lung cancer,
prostate cancer, and breast cancer [112-114]. In bone, E-selectin can also promote the EMT of
CTCs, increasing bone metastasis. VCAM1 and ICAM]1 are also key adhesion molecules that
drive lung/breast-specific colonization of CTCs through interactions with VL A4 and integrms[115,
116]. Additionally, ECs reduce immune cell adhesion by suppressing VCAM-1/TCAM expression
and foorm a physical barrier to protect CTCs from imnume surveillance through platelet
aggregation [117, 118]. Chemokines secreted by ECs (such as CXCL1/CXCL8/CCL5) guide the
directional migration of CTCs through gradients, with CCL5 activating the androgen receptor to
increase the invasiveness of prostate cancer [119, 120]. Molecules such as Biglycan and EphrinAl
also play roles in promoting TC migration [121]. Studies on pericytes have shown that CTCs
replace pericytes by competing for LICAM on ECs, thereby achieving wvascular basement
membrane infiltration [122]. During extravasation, the expression of CCR2Z on ECs leads to
endothelial retraction and TC extravasation [123]. Recently, high expression of pyroptosis-related
proteins in ECs was shown to further accelerate this process [124]. Notably, ECs maintain the
dormancy of CTCs through factors such as thrombospondin-1, providing a potential niche for

metastatic relapse [91, 114] (Figure 2b).

In summary, ECs play a unique role in the formation of the PMN by altering their function,
remodeling the microenvironment, and providing a "bridge," thereby laying the foundation for
CTC colonization. We also summarize the relevant molecular mechanisms by which TDEg target

ECs to promote the formation of the PMN (Table 1).
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Table 1: Mechanisms of TDEs targeting ECs to promote PMN formation.

Exosome composition  Primary tumor Function and mechanism Target Organ Refs

miR-BART2 5p NPC Induces EC pyroptosis and increases vascular permeability by regulating Bone/Liver/Lung [124]
MREI1A

circ 0011496 HCC Circ_ 0011496 interacts with miR-486-5p to enhance angiogenesis and Lung [125]
vascular penmeability via the VEGF route

cire-ZNF 609 ESCC Circ-ZNF609 disrupts EC tight junctions via miR-150-5p/VEGFA and Liver/Lung/Lymph node [126]
HuR/Z0-1 pathways

miR-103a-3p NPC Promoting TC proliferation and vascular permeability by targeting Z0-1 and  Lung/Lymph node [127]
ACOX-1

miR-1270 BC Disrupts EC tight junctions by down-regulating Z0-1 and occludin expression Lung [128]

miR-27b-3p CRC Post-transcriptional expression of VE-Cad and p120 was inhibited by Liver/Lung [92]
targeting their 3'-UTR in ECs.

miR-374a-5p NSCLC Regulates the distribution of ZO1 and occludin in ECs by targeting y-adducin, Brain [129]
increasing vascular permeability

miR-605-3p GC By regulating the secretion of NOS3, it can increase the NO level of EC and ~ Liver [7]
promote angiogenesis.

MFI2-AS1 NSCLC Increased expression of NFATS through adsorption of miR-107, thereby Lung [130]
activating the PI3K/AKT pathway and promoting angiogenesis

miR-455 NPC Disrupts EC tight junctions and increases vascular permeability by targeting Lung [131]
Z0-1
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miR-519a-3p
miR-3157-3p
miR-638 /miR-663a/
miR-3648 /miR-4258
miR-1260b
miR-619-5p

miR-103

miR-25-3p

miR-23a

miR-105

miR-135b
miR-181b/ miR-27a/
miR-484/ miR-324-3p

miR-126

miR-9

GC

NSCLC

HCC

NSCLC

NSCLC

HCC

CRC

LC

BC

RCC

BC

BC

Targeting DUSP2 induces macrophage M2 polarisation and M2 macrophages
promote angiogenesis
By regulating the expression of VEGF/MMP2/MMP9 and occludin

By down-regulating VE-cadherin and ZO-1 in ECs

Inhibition of HIPK?2 in ECs promotes angiogenesis and enhances tumour cell
migration and drug resistance
Inhibition of RCAN1 .4 promotes angiogenesis and tumour metastasis

Inhibition of VE-Cadherin, pl120-catenin, and ZO-1 expression disrupts EC
tight junctions and adhesion junctions

Regulation of VEGFR2, ZO-1, occludin and Claudin5 expression in ECs by
targeting KLF2 and KI.F4

Enhancement of angiogenesis and vascular permeability by targeting PHD1,
PHD2, and ZO-1

Disrupts EC tight junctions by targeting Z0-1

Enhancement of tube formation in ECs under hypoxic conditions via the
HIF-FIH signalling pathway
Provision of pro-angiogenic mRNAs and miRNAs

Targeting IGFBP2, PITPNC]1, and MERTK to inhibit EC recruitment and
angiogenesis
Down-regulation of E-cadherin, activation of the B-catenin/VEGF pathway,

and promotion of angiogenesis
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Liver

Lung/Bone

Lung/Lymph node/Bone

Lung

Lung

Liver/Lung

Liver/Lung

Lung

Bone/Lung/Brain

Bone

Lung

Lung/Bone

Lung

[132]

[133]

[134]

[135]

[136]

[137]

[93]

[138]

[139]

[140]

[141]

[142]

[143]



CLTA HCC Stabilisation and up-regulation of BSG in ECs to remodel the pre-metastatic  Lung/Lymph node/Bone [144]

microvascular niche

vWF HCC Promoting angiogenesis and metastasis by facilitating the formation of a Lung [145]
positive feedback loop between tumours and ECs by VEGF-A and FGF2

Tspan8-o4/p1 MT Activation of EC membrane receptors induces activation of signalling Lung [146]

Tspan8-u6/f4 pathways and up-regulation of transcription factors to promote angiogenesis.

ADAM17 CRC Regulates membrane localisation of VE-cadherin and enhances vascular Liver/Lung/Peritoneum [94]
permeability by targeting ECs

NDPK-B BC Promotes EC migration and disrupts monolayer integrity, leading to vascular ~ Lung [147]
leakage in the lungs

NID1 HCC Enhancement of angiogenesis and pulmonary vascular endothelial Lung [148]
permeability

uPAR MM Binds to ECs and activates VE-Cadherin, EGFR, and uPAR expression Skin/Lymph node/Lung [149]

ErbB2/ BC* Promoting EC proliferation and invasion and increasing vascular permeability Lung/Liver/Bone [150]

CRK through FAK and PI3K/AKT signalling pathways.

TF BC/PC Activation of PAR-1 on EC causes upregulation of E-selectin expression and  Peritoneuny/Liver/Bone [151]

IL-8 secretion

* Abbreviation: NPC: Nasopharyngeal carcinoma, HCC: Hepatocellular carcinoma, ESCC: Esophageal squamous cell carcinoma,BC: Breast cancer, CRC:
Colorectal cancer, NSCLC: Non-small cell lung cancer, GC: Gastric cancer, LC: Lung cancer, MM*: Multiple myeloma, RCC: Renal cell carcinoma, MT: Mouse

Tumor, MM. Melanoma, BC*: Bladder cancer, PC: Pancreatic cancer.
358
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3.2. Core mechanisms of EC involvement in PMN formation

3.2.1. Angiogenesis
As discussed, ECs critically regulate vascular permeability and TC migration. Angiogenesis, as

one of the core mechanisms of PMN formation, is orchestrated by ECs through multiple pathways.
For instance, EMCN-deficient ECs recruit Ly6G+ neutrophils and upregulate MIMP9, S100A8/A9,
and TGF-p to induce proangiogenic phenotypes and pulmonary PMN formation [35]. In breast
cancer models, loss of TRAIL expression activates the death receptor DRS, triggering
NF-«B/p38-dependent adhesion phenotype switching in ECs to promote myeloid cell infiltration
and tumor colonization [15]. On the other hand, M2 macrophage-derived exosomal miRNAs (e.g.,
miR-155-5p and miR-221-5p) regulate endothelial migration and angiogenesis by targeting
molecules such as GJAL, whereas miR-30a-5p reprograms EC function via PDCDI10-dependent
mechanisms [152-154]. Neutrophils amplify angiogenesis via JAK/STAT3-mediated VEGFA
activation in combination with G-CSF signaling, and NET-DNA enhances this effect by binding
the cede25 receptor on HUVECs to activate the AKT/mTOR pathway [155, 156]. Notably,
exosomal ANGPTL]1 imposes wvascular hyperpermeability and delays PMN maturation by
reprogramming Kupffer cells and suppressing MMPO expression [157]. In addition to TANs, the
angiogenic mechanisms in PMNs involving diverse cellular and molecular components have been

systematically elucidated.

3.2.2. Inmunosuppression

Immune suppression is a well-recognized facilitator of PMN formation, in which ECs drive the
ummmmosuppressive characteristics of the PMN through multiple mechanisms. EVs reprogram
ECs to facilitate immunosuppressive cell infiltration and functional polarization [146]. Activated
ECs mediate immune cell transendothelial migration by secreting chemokines (e.g., CCL2 and
CXCL10), while IL-6 secretion drives macrophage polarization toward protumor phenotypes [158,
159]. Recently, the CXCL12+ EC subpopulation was shown to establish an HCC-specific immune
escape microenvironment by inhibiting cytotoxic T lymphocyte activity and recruiting MDSCs
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[160].

Moreover, proangiogenic molecules such as VEGF induce immune exhaustion by increasing
PD-1/CTLA-4 expression on Tregs and CD8+ T cells [161]. VEGF also suppresses dendritic cell
activation, thereby impairing T-cell priming [162]. Under inflammatory stimuli, angiopoietin-2
(ANGPT2) synergizes with TNF-a to recruit Tregs/MDSCs via adhesion molecule modulation,
amplifying immunosuppression [163, 164]. In breast cancer, tumor-derived autophagosomes
activate the TLR4-MyD88 signaling pathway in ECs to upregulate PD-L1 expression, directly
inhibiting T-cell function [105]. These findings collectively highlight ECs as pivotal regulators of
immmme dynamics, coordinating spatiotemporally resolved molecular networks to establish

imimmmosuppressive niches within PMNs.

3.2.3. ECM Remodeling
The ECM, a complex network of proteins and glycosaminoglycans, plays a pivotal role in TC

motility and invasion TDSFs remodel PMN matrix stiffness and topology by regulating the
expression of ECM structural proteins (e.g., laminin), degradative enzymes (MMP family), and
processing proteins [165]. Mechanistically, ECs directly cleave ECM components via
MMP-2/MMP-9 and activate stromal cell MMP secretion through paracrine cytokines such as
CCL21L-8 [166]. Additionally, the activated DLL4/Notch signaling axis upregulates endothelial
MMP9 expression, whereas neutrophil-derived MMPs disrupt vascular integrity by degrading

VE-cadherin, synergistically facilitating CTC extravasation [167, 168].

Notably, tumor-specific ECM remodeling features significantly impact clinical outcomes.
Melanoma ECs secrete laminin to drive invasive phenotypes, while elevated laminin expression in
renal cell carcinoma is comrelated with poor prognosis [169]. Prior studies using glioblastoma 3D
bioprinted cultures containing TCs, ECs, and hyaluronic acid derivatives demonstrated how ECM
stiffness modulates transeriptional programs and tumor—endothelial crosstalk [170]. In summary,
endothelimm-mediated ECM remodeling provides both physical scaffolding and chemotactic

gradients to support tumor metastasis.

3.2.4. Other mechanisms: inflammation, hypoxia, and organotropism
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Inflammation: Chronic inflanimation drives PMN formation via endothelial dysfunction [171].
ECs mediate tumor-endothelial interactions through ICAM-1, triggering IL-6/TNF-a
inflanmatory cascades to establish liver-metastatic microenvironments [172]. Notch signaling
activation induces endothelial senescence, amplifying neutrophil infiltration and promflammatory
cytokine secretion to accelerate tumor adhesion and metastasis [38]. EC-derived CCLS5 recruits
monocytes to promote breast cancer dissemination [173], whereas macrophage—endothelial
crosstalk exacerbates inflanumatory responses through hypoxia-dependent mechanisms [174].
Additionally, IGFBP7hi endothelial subpopulations disrupt GCX integrity, exposing adhesion
molecules to facilitate T-cell extravasation and amplify inflanmmatory microenvironments [175].

These findings highlight ECs as pivotal orchestrators of inflammatory niche establishment.

Hypoxia: Hypoxia, a central driver of angiogenesis, coordinates PMN formation through
differential endothelial regulation of hypoxia inducible factors (HIFs) [176]. Dynamic
HIF-1o/HIF-2a expression under acute vs. chronic hypoxia reshapes lung metastatic niches,
enhancing TC dissemination [176., 177]. HIF signaling induces
endothelial-specific DGKG expression, activating the ZEB2/TGFfil axis to promote
proangiogenic  phenotypes and Treg  differentiation  [178].  Hypoxia-derived
exosomal miR-23a/135b regulates PMN maturation by targeting vascular permeability and
angiogenesis pathways [138, 140]. Notably, sarcoma-derived hypoxia-modified collagen
VI disrupts pulmonary endothelial barrier integrity, providing structural support for metastasis

[179].

Organotropism: ECs critically regulate organ-specific  metastasis. Transfer of
tumor-derived microRNAs to ECs modulates their migratory properties and organ selectivity
[180]. The causative role of blood flow is a key factor in the direct regulation of organ-specificity
by the vasculature. For example, the liver's unique blood supply pattern can cause primary tumors
to metastasize to the liver through the portal vein. Hemodynamics and fluid flow patterns not only
facilitate the transport of CTCs but also influence their ability to colonize distant sites, as
evidenced by the pattems observed in liver and lung interactions[181]. Moreover, the regulation of
organotropism is multifaceted, involving various biological factors, including the intermittent
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441  nature of blood flow in specific vascular structures, such as liver sinusoids [182]. This intermittent
442 flow canaffect the survival and colonization potential of metastatic cells, as they must adapt to the
443 changing hemodynamic conditions withmn the circulatory system [183] CTC-EC adhesion
444 detenmines organotropism, with TSP-1 and CX3CL1 secreted by ECs influencing TC self-renewal
445  and immune cell recruitment, respectively, to shape "congenial soil" for metastasis [182, 184, 185].
446  Interestingly. mitochondrial transfer from ECs to TCs via tunneling nanotubes enhances
447  invasiveness through metabolic reprogramming [186]. Understanding these EC-tumor interactions

448  1s vital for deciphering organ-specific metastatic mechanisms [187] (Figure 2¢).
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450 Figure 2: Endothelial Mechanisms in PMN Evolution

451  a: In the formation of the PMN, TDSFs and EVs induce endothelial dysfunction, compromising
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vascular barrier integrity. This manifests as increased vascular permeability and leakage The
underlying mechanisms involve multiple factors, including disruption of adherens junctions, activation

of MMPs, degradation of the GCX, and metabolic reprogramming.

b: ECs play a pivotal role in every stage of tumor metastasis. By modulating adhesion molecules,
secreting chemokines, and maintaining the dormaney of CTCs, ECs facilitate the intravasation, survival
in circulation, extravasation, and colonization of CTCs. ECs also provide a "bridge" for TCs and

immune cells, creating a microenviromment conducive to metastasis.

c: ECs contribute to the development of PMN characteristics, with recruited immune cells and
tumor-derived molecular components interacting with ECs via the vasculature to prepare a mature

environment for tutnor metastasis within the PMN.

4. Role of ECs in organ-specific PMNs

Clinical evidence highlights that most cancers metastasize to specific organs, a phenomenon
termed organotropism. Investigating the shared and divergent mechanisms of PMNs across
metastatic organs is critical for deciphering organotropic metastasis and developing targeted

therapies. This section discusses EC-driven mechanisms in organ-gpecific PMN landscapes.

4.1. Lymph node
Lymph nodes (LNs), as critical hubs of the lymphatic system, favor PMN formation by providing

tumor-permissive microenvironments that enhance TC imnume evasion and invasiveness.
LN-associated PMNs are characterized by lymphangiogenesis and high endothelial vemule
remodeling [188]. TDEs promote characteristic changes in the PMN by remodeling lymphatic
endothelial function. For example, melanoma-derived NGFR-enriched EVs are internalized by
LECSs, activating ERK/NF-1B signaling and upregulating ICAM-1 to increase lymphangiogenesis
and TC adhesion [189]. ITGAG+ EVs deliver circRNA-LIPAR into LECs, triggering
E-selectin-mediated lymphatic remodeling [190]. Tumor EVs also coordinate immumosuppression
during LN remodeling via interactions with LECs [191]. LEC-derived CXCL8 recruits TANs to
form NETs, whereas CD36-dependent immune checkpoint signaling reinforces

immunosuppression [106, 192]. POSTN deposition amplifies lymphangiogenesis via VEGF-C
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upregulation, facilitating tumor colonization [193]. Macrophage S1PRI/NLRP3/IL-1p
signaling synergizes with the dendritic cell COX-2/EP3/SDF-1 pathway to increase
lymphangiogenesis and PMN maturation [194, 195]. Collectively, these findings underscore the

intricate crosstalk among ECs, LNs, and PMN formation in metastasis.

4.2. Lung
The high vascular perfusion and oxygen-rich microenviromment of the lungs foster a unique PMN.

Tumor-derived EVs (e.g.. miR-25-3p. ADAMI7. and miR-27b-3p) promote lung PMN
vascularization by targeting ECs [02-04]. Breast cancer-derived autophagosomes activate
the TLR4-MyD88—p38/STAT3 cascade in ECs to upregulate PD-L1, suppressing T-cell imnmme
function and  facilitating  pulmonary  metastasis  [104,  105].  Interestingly,
chemotherapy-induced ANXA6+ EVs remodel ECs into prometastatic phenotypes via NF-xB
activation [196]. Zhang et al. demonstrated that EMCN-deficient ECs (genetically engineered in
murine models of breast and lung adenocarcinoma) recruit Ly6G+ neutrophils and increase

MMP9, S100A8/A9, and TGF-P expression to drive lung PMN formation [35].

Recent insights highlight LAT1 as a regulator of EC proliferation and VEGF-A/mTORC1-driven
angiogenesis, while LAT1 inhibitors suppress lung metastasis by inducing vascular normalization
[197. 198]. Notably, EC-EC-neutrophil crosstalk enhances neutrophil transendothelial migration
through S100A6-mediated tight junction disruption and TRPM2-dependent VE-cadherin
phosphorylation [36, 37]. In addition, alveolar epithelial cells modulate endothelial bamier
integrity via Wnt/P-catenin signaling, whereas M2 macrophages promote vascular leakage through
TGF-pl-induced EMT [199-201]. In short, the unique microenvironment of the lungs helps to

generate PMNs.

4.3. Liver
ECs are pivotal components of the hepatic microenvironment and critically regulate liver
homeostasis and disease pathogenesis [202]. EV delivery of von Willebrand factor (VWF)

enhances angiogenesis in HCC wvia a VEGF-A/FGF2-FGFR4/ERK1 positive feedback

circuit [145]. Recent studies revealed that miR-605-3p suppresses vascularization in hepatic
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PMNs by reducing exosomal NOS3 levels [7]. Experimental evidence has demonstrated that
exercise training mitigates liver metastasis susceptibility by inhibiting NET formation and

modulating EC adhesion molecule expression [203].

Macrophages are key contributors to hepatic PMN establishment. ECs recruit CX3CRI1+
macrophages through CX3CL1 secretion, driving MMP9 upregulation and liver metastasis
progression, potentially through TNF-a signaling [204]. TDEs (e.g., miR-934/203a-3p) induce
macrophage M2 polarization via PTEN/PI3K/AKT pathway activation, synergizing with
CXCL12/CXCR4 signaling to promote colorectal cancer liver metastasis [45, 205, 204].
Additionally, the high permeability and lack of tight junctions in liver sinusoidal endothelial cells
(LSECs) enable the liver to more effectively filter TCs from the bloodstream. For instance, the
fenestrated structure of LSECs allows them to inhibit the activation of hepatic stellate cells under
normal conditions, thereby maintaining the homeostasis of the liver environment. However, TCs
tend to induce the defenestration of LSECs, leading to enhanced TC adhesion. These structural
changes provide a more favorable environment for the growth of TCs [207]. Notably, hepatic
PMN formation is modulated by extemal factors, including gut bacteria, diet, and alcohol, which

collectively shape immunosuppressive microenvironments [208-210].

4.4. Brain

The formation of brain PMNs involves unique mechanisms due to the presence of the blood-brain
barrier (BBB). TDEs regulate BBB permeability to orchestrate the spatiotemporal evolution of the
brain PMN. Recent studies revealed that small-cell carcmoma-derived miR-374a-5p enhances
BBB pemmeability by targeting y-adducin and disrupting the distribution of ZO1 and occludin
[129]. Cytoskeletal remodeling drives tumor transendothelial migration, where TTLL4-mediated
glutamylation of B-tubulin promotes the transport of multiple vesicular bodies, enhancing breast
cancer cell adhesion to the BBB endotheliwn [211]. TCs upregulate adhesion molecules such
as ICAMI and P3-integrin to strengthen their anchorage to the BBB endothelium and induce
endothelial apoptosis, facilitating brain PMN formation [212]. Notably, single-cell sequencing
revealed CD276 upregulation in metastatic ECs, highlighting the unique immune checkpoint

regulatory properties of the BBB [213]. The abundance of microglia in the brain is important for
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the establishment of the PMN. Microglia-derived exosomal miR-19a recruits myeloid cells via
CCL2 activation by suppressing PTEN, whereas endothelial-derived Dkk-1 induces M1-to-M2
microglial polarization, synergistically fostering an imnumosuppressive microenviromment [214,
215]. Targeted interventions (e.g., ESTA blocking the E-selectin/CD44 interaction) significantly
inhibit breast cancer brain metastasis. underscoring the therapeutic potential of
endothelial-specific targets [216, 217]. Exogenous stimuli, such as nicotine exposure, accelerate
brain PMN maturation by inducing TC metabolic reprogranming and enhancing stemness [218].
These findings reveal that the BBB finely regulates the cascade of brain metastases through the

dual mechanisms of structural remodeling and inmunomodulation.

4.5. Bone

Owing to their abundant blood supply and marrow microenvironment, bone tissue allows cancer
cells to infiltrate and proliferate via hematogenous or lymphatic dissemination. Bone remodeling
and homeostasis involve crosstalk between osteocytes and ECs in the marrow. Osteocytes promote
angiogenesis by secreting VEGF to activate ECs [219] while the RANKL/OPG balance regulates
endothelial permeability to influence metastatic efficiency: elevated RANKL/OPG ratios increase
vascular permeability, facilitating bone infiltration [220-222] Mechanical loading suppresses
vascular permeability and PMN formation by reducing the RANKL/OPG ratio via fluid shear
stress-induced inhibition of MMP9 secretion and weakened tumor-endothelial adhesion [223].
Tumor-derived miR-135b enhances angiogenesis under hypoxia through the HIF-FIH pathway,
synergizing with hypoxic microenvironments to accelerate bone metastasis [140], whereas siRNA
nanodelivery systems targeting the bone marrow endothelium offer novel strategies for PMN

intervention [224].

Osteoblasts and osteoclasts critically contribute to PMN formation. Cadherin 11 and integrin
o5 mediate specific recognition of tumor-derived EVs by osteoblasts, creating PMNs that
promote RUNX2-high breast cancer cell colonization [225]. Concurrently, f2-adrenergic receptor
activation in osteoblasts triggers VEGF-dependent angiogenesis, accelerating tumor colonization
[226]. RSPO2 and RANKL signaling through LGR4 recruits osteoclasts to remodel the bone

matrix microenvironment, facilitating PMN development [227].
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In summary, ECs exhibit common regulatory mechanisms and organ-specific functions in the
process of tumor metastasis. In major metastatic organs such as lymph nodes, lungs, liver, brain,
and bones, ECs generally drive the formation of PMNs by promoting angiogenesis and secreting
exosomes to modulate the immme microenvironment. Meanwhile, ECs in each organ have unique
roles. In lymph nodes, ECs enhance the stealthiness and invasiveness of TCs through
lymphangiogenesis and high endothelial venous remodeling: in the lungs, the dense branching of
the capillary network and the slow blood flow characteristics make CTCs more likely to be
retained at the endothelial interface; in the liver, TCs induce the fenestration loss of LSECs,
thereby enhancing the adhesion capacity of TCs; in the brain, ECs promote the infiltration of TCs
by dismantling the "protective net" of the BBB (using certain small molecules to disrupt the
barrier structure) and upregulating immume checkpoints; in bones, ECs regulate wvascular
permeability through the RANKI/OPG dynamic balance, providing a favorable growth
environment for TCs. In conclusion, the commonalities of ECs in different metastatic organs

provide the foundation for tumor metastasis, while the organ-specificity of ECs endows TCs with

"niche selectivity" (Figure 3).
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Figure 3: Role of ECs in organ-specific PMN

ECs play pivotal roles in PMN formation across major metastatic organs, incliding lymph nodes,
lungs, liver, brain, and bone, by orchestrating angiogenesis and modulating immunosuppressive
microenvironments. While these conserved EC-driven mechanisms underpin PMN development,
organ-specific EC adaptations—such as BBB remodeling in the brain or sinusoidal fenestration
regulation in the liver—further fine-tune metastatic tropism. Elucidating the shared and distinct

mechanisms of EC-mediated PMN regulation provides critical insights into organotropism.

5. Strategies and recent advances in targeting EC

5.1. Targeting TDEs: Molecular Interventions in EC-Mediated

PMNs
In recent years, interest in the role of TDEs in promoting the formation of the PMN through their
interaction with ECs has increased (Table 1), highlighting the potential of targeting exosomes in
the regulation of the PMN [228]. Several drugs that inhibit the release of TDEs to impede cancer
progression have been identified. For example, cannabidiol suppresses TDE release, potentially
through alterations in mitochondrial function [229]. TDE inhibitors such as chloramidine and
bisindolylmaleimide-I have also been shown to increase the efficacy of chemotherapeutic agents
[230]. Additionally, Y27632, an inhibitor of ROCK]1 and ROCK2, can block proteins involved in
cell motility, thereby reducing TDE release [231]. On the other hand, traditional Chinese medicine
is also emerging as a potential method to inhibit TDE release [232]. Recently, Jia et al. elucidated
the mechanisms by which the Jiedu recipe and oleanolic acid inhibit PMN formation, which is
associated with TDE release [233, 234]. Another approach to targeting TDEs involves the
inhibition of exosome-related components. For example, TDEs containing BART2-5p promote
metastasis by inducing pyroptosis in ECs, and BART2-5p inhibitors can attenuate this effect [93].
In addition to pharmacological inhibition, genetic manipulation is another extensively studied
strategy for targeting and inhibiting TDEs. Disruption of genes regulating TDE biogenesis and
secretion using RNAi and CRISPR-Cas9 systems has achieved TDE inhibition. For instance, RNA

interference screening of 23 components of the endosomal sorting complex required for transport
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in MHC Il-expressing Hel.a—CIITA cells revealed that silencing HRS, STAMI, and TSG101
reduced the secretion of CD63 and MHC II associated with exosomes [235]. However, this
strategy still faces some adverse effects and challenges. Genetic manipulation may lead to
off-target effects, such as unintended gene insertions, deletions, or mutations, thereby causing
safety issues [236]. Moreover, the current inhibition strategies have limited specificity, as they
block both TDEs and non-TDEzs, potentially inducing adverse reactions in tumor treatment. On the
other hand, since TDE biogenesis involves multiple signaling pathways, single-target blockade
can be easily weakened by compensatory mechanisms [237]. Additionally, the high heterogeneity
of exosomes in the bloodstream makes specific identification difficult [228]. Therefore, it is
necessary to develop multitarget phammacological inhibitors. Meanwhile, to minimize side effects

caused by non-TDEs, precise release of TDE inhibitors is also required (Figure 4a).

5.2. Antiangiogenic therapies: Reducing pathways for tumor

metastasis
PMN formation relies on endothelial "bridging” functions; inhibiting angiogenesis disrupts tumor
intravasation, circulation, extravasation, and distant colonization while impairing immune cell
recruitment for the establishment of an immunosuppressive niche [238]. Anti-angiogenic therapies
primarily target the VEGF signaling pathway to suppress tumor angiogenesis. Multiple kinase
inhibitors (e.g., sorafenib and sunitinib) block VEGF/PDGF signaling and are widely used to
curtail tumeor progression by preventing bypass pathway activation [239]. Paradoxically, sunitinib
promotes PMN formation in metastatic breast cancer by inducing EC senescence, chemokine
secretion, and cell junction loosening [240], necessitating cautious clinical application.
Nanoparticle-based strategies enhance antiangiogenic efficacy [241] Apatinib-loaded
nanoparticles inhibit tumor dissemination via VEGF/VEGFR2 blockade [242]. In addition,
antiangiogenic immunotherapy, which can increase the sensitivity of tumors to angiogenic therapy,
has been a popular research direction in recent years [243]. Preclinical evidence, such as the use of
the bispecific antibody to jointly block ANGPT2 and VEGFA, can significantly improve antitumor
immmmity. Clinically, the combination of PD-1 and VEGF2 inhibitors for the treatment of HCC

outperforms monotherapy in clinical trials [244]. Cumently, drug resistance remains the main
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challenge faced by AAT, with complex and diverse resistance mechanisms [245]. For instance,
bevacizumab, an anti-VEGFA antibody, has been approved for the treatment of various advanced
metastatic cancers, including lung, colorectal, renal, breast, and recurrent glioblastoma. However,
many patients treated with VEGF inhibitors, especially when combined with chemotherapy, may
nitially survive longer but eventually succumb to their disease due to the development of
resistance. After mhibition of VEGF, ECs maintain survival through altemative signaling
pathways such as Angiopoietin/Tie2, FGF, and Notch [246-251]. In addition, multiple studies have
shown that tumors escape therapeutic pressure by activating alternative angiogenic pattems,
including intussusceptive angiogenesis, vessel co-option, and vasculogenic mimiery [252-254]. In
the future, exploring more effective AAT combination therapy regimens, developing specific
biomarkers, and accurately grasping the "timing window" for treatment can significantly improve
the clinical application of AAT [255]. For example, the CXCR4 inhibitor AMD3100 can only
effectively inhibit angiogenesis by blocking SDF-1-mediated precursor recruitment early after
radiotherapy [256, 257]. Altemative approaches, such as vascular promotion and wvascular

disruption, remain exploratory [258-260] (Figure 4b).

5.3. Targeting endothelial GCX: structurally targeted intervention

for ECs in the PMIN
GCX and adhesion molecules regulate endothelial-tumor/immune cell interactions, modulating
adhesion and permeability to inhibit metastasis. Previously, hemodynamic shear stress triggered
GCX degradation, facilitating TC homing to ECs [261]. Further studies have indicated that TCs
can alter the endothelial GCX to form adhesion sites, thereby enhancing their ability to extravasate
into surrounding tissues. This manipulation of the GCX is a crucial step in the metastatic process,
suggesting that therapeutic strategies targeting these interactions may be feasible [262]. Okorafor
et al. focused on the impact of the physical environment on the extravasation of triple-negative
breast cancer, emphasizing that the endothelial GCX acts as a barrier regulating this process. They
proposed that understanding the physical mechanisms underlying these interactions could help
identify new therapeutic targets to prevent metastasis [263]. VEGF differentially reorganizes

heparan sulfate and hyaluronic acid in ECs vs. TCs, creating proadhesive niches [264, 265]. Fu et
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al. conducted an in-depth analysis of the effects of VEGF on the endothelial GCX in the context of
the BBB. Their research indicates that while VEGF reduces GCX coverage on ECs, it increases
GCX coverage on malignant breast cancer cells. This differential effect may facilitate the adhesion
and migration of TCs across the BBB [264]. Recently, Shi et al. provided a detailed map of the
composition and structure of the GCX layer in the aged brain endothelium and revealed the
significant impact of its dysregulation on BBB integrity and brain health [266]. GCX degradation
by macrophage-derived factors was shown to promote PMN maturation, whereas macrophage
depletion preserves GCX integrity [97]. Disrupting hyalwonic acid-CD44 interactions (key for
TC-EC adhesion) significantly reduces TC extravasation [262, 267, 268]. GCX also modulates
TDE uptake/release to drive angiogenesis and metastasis [269]. However, research on endothelial
GCX is mostly based on animal models or cultured cells, with more studies remaining in the
preclinical stage, which cannot accurately reflect the human condition. In summary, understanding
the mechanisms that regulate the interactions between ECs and TCs, as well as their responses to
the physical environment and factors such as VEGF, is crucial for developing targeted therapies to

inhibit metastatic progression [263] (Figure 4c).

5.4. Inhibiting angiocrine signaling: blocking the tumor-promoting
effects of EC.

The concept of angiocrine signaling has evolved from the traditional understanding of ECs as
mere participants in angiogenesis to their more complex role in controlling tumor metastasis [270].
ECs express membrane-bound and secreted factors that influence tumor progression [108]. For
example, VWF, an angiocrine factor, has been demonstrated to enhance TC adhesion and
transendothelial migration. The use of low-molecular-weight heparin to negatively regulate VWF
secretion can inhibit tumor metastasis [271, 272]. The Notch signaling pathway plays a central
role in angiocrine regulation during tumor development, with sustained Notchl activity inducing
EC senescence and the expression of chemokines and adhesion molecules such as VCAMI,
thereby promoting metastasis [39, 273]. Treatment with Notchl- or VCAM]I-blocking antibodies
can prevent Notch-driven metastasis. Moreover, FAK in ECs has been identified as a major

regulator of chemosensitivity in cancer therapy, with FAK inhibition reducing metastasis
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following gemcitabine treatment [274, 275]. On the other hand, the role of TGF-f signaling has
also been emphasized in advanced tumors. It has been observed that endogenous TGF-f signaling
can promote TCs to evade inhibitory effects, which suggests that blocking this pathway may
enhance the efficacy of anti-tumor therapies [276]. This is in line with the finding that some
signaling pathways have dual roles, and inhibiting these pathways can reduce tumor growth and
alter immume responses. For instance, in colorectal cancer, inhibiting specific molecules such as
ADAM17 and soluble JAGGED-1 is associated with the disruption of angioerine signaling,
further supporting the view that targeting these pathways can mitigate tumor-promoting effects
[277. 278]. EGFL7, which is associated with the ECM, is linked to primary tumor growth,
angiogenesis, tumor metastasis, and drug resistance, highlighting the multifaceted role of
angiocrine factors in cancer progression [279]. Recently, Sfrpl derived from TECs was shown to
support cancer stem cell maintenance through WNT signaling, further emphasizing the complex
interplay between TECs and TCs [280]. While combinatorial targeting of angiocrine factors with
established therapies has demonstrated clinical promise, the precise mechanisms underlying these
agents' vascular remodeling effects necessitate further in vivo wvalidation. Additionally, the
spatiotemporal heterogeneity of angiocrine signaling within solid tumors and tumor-type
specificity of individual angiocrine factors remain formidable challenges requiring multi-omics
characterization [270]. Overall, angiocrine factors are involved in various aspects of cancer
progression, including proliferation, stemness, EMT, invasion, and immmmne suppression, making

them promising platforms for developing effective therapeutic strategies (Figure 4d).
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Figure 4: Therapeutic strategies for targeting ECs in PMN

Many therapeutic strategies for PMN have been proposed, with most targeting various cells within
the PMN still in the developmental stage. Among these, we summarize four common therapeutic
strategies targeting ECs. Parts a and ¢ are preclinical therapies, and parts b and d are clinical

therapies.

6. Conclusion and Future Perspective
The PMN hypothesis is an emerging concept concerning tumor metastasis, primarily involving

changes in vascular permeability, activation of stromal cells, remodeling of the ECM, and
recruitment of immune cells. Its importance in cancer metastasis is increasingly recognized. In this
study, we thoroughly discuss the complex relationship between the PMN and ECs, highlighting

the crucial role of ECs in tumor metastasis and PMN formation. Additionally, we further
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synthesized current strategies for targeting ECs within the PMN, ranging from exosome inhibition

to GCX modulation and angiocrine signaling blockade.

However, research gaps persist. While myeloid cells (e.g., macrophages and neutrophils) dominate
PMN studies, EC-centric investigations remain undemrepresented. Nevertheless, the role of ECs in
tumor metastasis should not be overlooked, as their interactions with tumor and immune cells are
crucial for understanding the mechanisms underlying tumor metastasis. Additionally, many
therapeutic approaches, although promising in preclinical models, face translational challenges,

particularly in clinical validation.

Future efforts should prioritize combinatorial therapies integrating EC-targeted interventions with
immune modulation or chemotherapy to enhance efficacy. For example, combining AAT with
immmme checkpoint inhibitors can induce tumor vessel normalization, improve mmmme cell
infiltration and function, and thus achieve a synergistic antitumor effect. Evaluating whether the
combination therapy is synergistic or additive, as well as shifting the focus of antiangiogenic
drugs from VEGF/R to other candidates (e.g., FGF/R), can help further optimize antiangiogenic
immunotherapy. Moreover, using cutting-edge technologies such as single-cell transcriptomics
and spatial transeriptomics can provide in-depth insights into the interactions between endothelial
and immune cells, revealing their dynamic changes and functional differences in the PMN. These
technologies can also help us revolutionize our understanding of PMN cellular heterogeneity. For
example, macrophages and neutrophils exhibit diverse functional subsets within the PMN, the
complexity of which is now resolvable at single-cell resolution. Leveraging these tools will clarify
EC communication networks with PMN components (e.g.. inunune cells and the ECM) and unveil

novel drivers of metastasis.

Abbreviations:

1. PMN: Premetastatic niche

2.  EC: Endothelial cell
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TC: Tumor cell

CTCs: Circulating tumor cells

EV: Extracellular vesicle

TDE: Tumor-derived exosome

ECM: Extracellular matrix

MDSC: Myeloid-derived suppressor cell

TDSF: Tumor-derived secretory factor

TME: Tumor microenvironment

NET: Neutrophil extracellular trap

TAN: Tumor-associated neutrophil

EMT: Epithelial-mesenchymal transition

FAK: Focal adhesion kinase

TAM: Tumor-associated macrophage

Treg: Regulatory T cell

HIF: Hypoxia inducible factor

TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand

BBB: Blood-brain barrier

GCX: Glycocalyx

LSEC: Smusoidal endothelial cell

AAT: antiangiogenic therapy
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