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Abstract 

Targeted radionuclide therapy, which is based on the selective delivery of a sufficient radiation 
dose to tumors without significantly affecting normal tissues, is a promising therapeutic ap-
proach for the treatment of a wide variety of malignancies. Integrins, a family of cell adhesion 
molecules, play key roles during tumor angiogenesis and metastasis. Among all the integrins, 
αvβ3 seems to be the most important in the process of tumor angiogenesis. Integrin αvβ3 is 
highly expressed on activated endothelial cells, new-born vessels as well as some tumor cells, 
but is not present in resting endothelial cells and most normal organ systems, making it a 
suitable target for anti-tumor therapy. In this review, we summarize the current development 
and applications of antibody-, peptide-, and other ligand-based integrin targeted radiothera-
peutics for tumor radiation therapy. 

Key words: Cancer, integrin, radionuclide, radioimmunotherapy (RIT), peptide receptor radionu-
clide therapy (PRRT) 

Introduction 

Tumor angiogenesis, the sprouting of new blood 
vessels from preexisting vasculature, is well recog-
nized as an essential mechanism for tumor growth 
and development of metastasis [1, 2]. Without the 
formation of neovasculature to provide oxygen and 
nutrients, tumors cannot grow beyond about 1~2 mm 
in size [3, 4]. Once vascularized, previously dormant 
tumors begin to grow rapidly, invade surrounding 
tissues (invasion), and transfer to distant sites in the 
body (metastasis). The angiogenic process depends on 
vascular endothelial cell migration and invasion, and 
is regulated by cell adhesion receptors. Integrins rep-
resent a subclass of cell adhesion molecules connect-
ing the cytoskeleton with the extracellular matrix 

(ECM) or other cells. Integrins consist of two genet-
ically nonrelated subunits, α and β, which are non-
covalently associated with each other. In mammals, 
there are 18 α and 8 β subunits capable of assembling 
at least 24 different functional heterodimers [5-7]. 
Members of the integrin family play vital roles in the 
regulation of cellular activation, migration, prolifera-
tion, survival, and differentiation [8, 9]. Among all of 
the integrins, integrin αvβ3 has been identified as the 
most important member with overexpression pattern 
among vascular cells during tumor angiogenesis and 
vascular remodeling [1, 10, 11]. Integrin αvβ3 is 
highly expressed on activated endothelial cells and 
new-born vessels, but is absent in resting endothelial 
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cells and most normal organ systems, making it a 
suitable target for anti-angiogenic cancer therapy. In 
addition, it is also expressed on some tumor cells, 
allowing for both tumor cell and tumor vasculature 
targeted therapy. To date, numerous anti-angiogenic 
therapies based on integrin αvβ3 antagonism, in-
cluding antibodies, peptides, small molecules, small 
interfering RNA (siRNA) have been investigated [12].  

Targeted delivery of radionuclides by tu-
mor-specific ligands (antibodies, peptides, or small 
proteins) can specifically deliver radiation to tumors, 
while sparing the normal organs and tissues. The ra-
diation energy given off by the radionuclides would 
also kill the adjacent tumor cells, which do not express 
the target antigen (so-called “crossfire”). In recent 
years, tumor targeted radionuclide therapy restimu-
lates the interests of physicians especially after the 
successful clinical applications of the two Food and 
Drug Administration (FDA) approved antibodies 
(Zevalin and Bexxar) for radioimmunotherapy (RIT) 
of non-Hodgkin’s lymphoma (NHL) [13]. Although 
RIT of solid tumors has shown less progress, a series 
of novel tumor targeted radiotherapeutic agents with 
favorable in vivo pharmacokinetics and enhanced 
tumor-to-nontumor ratios have been investigated in 
preclinical studies, and some of them are tested in 
clinical trials. In this article, we will first introduce the 

radionuclides and bifunctional chelators that are be-
ing used for tumor targeted radionuclide therapy, and 
then summarize the current development of integ-
rin-targeted radiotherapeutics.  

Radionuclides and bifunctional chelators 

A tumor targeted radionuclide therapeutic agent 
is typically composed of the radionuclide and the 
targeting ligand (antibodies, peptides, or small pro-
teins). For direct radio-iodination (with 131I, 125I or 123I), 
the iodine-ligand complex can be easily prepared. 
However, almost all metal radionuclides require che-
lation chemistry for attachment to the ligand. Bifunc-
tional chelators (BFCs) that possess specific functional 
groups allow both conjugation to ligands and stable 
complex formation with metal radionuclides. 

Therapeutic radionuclides  

The suitability of a radionuclide for radiation 
therapy depends on its physical and chemical prop-
erties and the nature of the radiation, such as low or 
high linear energy transfer (LET) emission. The most 
commonly used radionuclides in tumor targeted 
therapy are β-emitters, although Auger elec-
tron-emitting radionuclides and α-emitters are also 
being used (Table 1) [14]. 

 

Table 1. Selected radionuclides useful for tumor targeted radiotherapy 

Nuclide Emission Half-life Emax (MeV) Mean 
range (mm) 

Source Imageable 

90Y β 2.7 d 2.30 2.76 generator No 
131I β, γ 8.0 d 0.81 0.4 reactor Yes 

177Lu β, γ 6.7 d 0.50 0.28 reactor Yes 
186Re β, γ 3.8 d 1.1 0.92 accelerator or reactor Yes 
188Re β, γ 17.0 h 2.1 2.43 generator Yes 
67Cu β, γ 2.6 d 0.57 0.6 accelerator Yes 
213Bi α 45.7 min 5.87 0.04-0.1 generator Yes 
212Bi α 1.0 h 6.09 0.04-0.1 generator Yes 
211At α 7.2 h 5.87 0.04-0.1 accelerator Yes 
67Ga Auger, β, γ 3.3 d 0.18 0.001-0.02 accelerator Yes 
111In Auger, γ 2.83 d 0.86 0.001-0.02 accelerator Yes 

 

 
131I and 90Y are the two most widely used radi-

onuclides in clinical practice today. 131I is readily 
available, inexpensive, and can also provide 
γ-imaging emissions, which makes it possible for 
monitoring the therapeutic efficacy during the period 
of radiation therapy. However, the conventional 
conjugation of 131I to antibodies results in rapid deg-
radation and a reduced residence time in the tumor, 
thus diminishing the tumor dose [15]. 90Y is a more 
energetic pure β-emitter and thus has fewer envi-

ronmental radiation restrictions. 90Y possesses greater 
emission range and most of the decay energy is de-
posited in tumors only if their diameter is 1 cm or 
more [13], which makes 90Y more suitable for irradia-
tion of larger tumors. Since 90Y is a pure β-emitter, 
111In is usually chosen as the surrogate for imaging 
and dosimetry determination. 177Lu is an isotope with 
lower energy and longer half-life compared to 90Y. 
177Lu has an imageable γ emission and this property 
also allows tracking the radiolabeled agents during 
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therapy procedures by using external gamma scin-
tigraphy. Rhenium isotopes (186Re and 188Re) have also 
been used for RIT, and have sufficient γ-energies for 
external scintigraphy, similar to 131I. 67Cu remains an 
interesting candidate for therapy with regards to 
emission energy, half-life and imageable emissions. 
Based on the good results of preclinical and clinical 
evaluations of 67Cu-labeled antibodies, broader clini-
cal investigations in radioimmunotherapy trials are 
desirable. However, the availability of the 67Cu nu-
clide is a limiting factor for its more widespread use. 
Efforts to develop efficient procedures to produce 
large amounts of 67Cu with high specific activity 
would be much more helpful [16]. 

Radiation therapy with α-emitters has received 
renewed interest recently, especially with bismuth 
nuclides, such as 212Bi and 213Bi as eluates from 234Ra 
and 225Ac generators, respectively [17]. The cyclo-
tron-produced radiohalogen 211At is also a promising 
candidate for RIT applications on the basis of half-life 
(t1/2 =7.2 h). The α-particle RIT is best used when there 
are micrometastases or circulating tumor cells, not 
bulky disease, because of their high LET and short 
effective path length in tissues [18]. Such high LET 
radiation has profound effects on DNA, causing 
strand breaks. Low-energy Auger electron-emitters 
are also used as alternative to α- or β-emitters for RIT. 
Most Auger electrons travel nanometer to micrometer 
distances in tissue and have high LET values ap-
proaching those of α-emitters (4-26 keV/μm) [19]. 
These properties render Auger electron-emitters 
highly cytotoxic and damaging to DNA when they 
decay intracellularly, especially when they decay in 
close proximity to the cell nucleus [20]. Studies have 
demonstrated that Auger emitters, such as 67Ga and 
111In, might have a significant role as therapeutics, 
even if their clinical use might be limited to irradia-
tion of microscopic residual disease [21].  

Bifunctional Chelators 

Radiolabeling with the radiometals is performed 
by means of chelation with chelators (Figure 1). Ra-
dioiodinated tyrosine is considered to be excreted 
from the cell after internalization, where the chelated 
radiometals (such as 90Y or 177Lu) metabolites are 
trapped in the lysosomes, thereby increasing the re-
tention time of the isotope within the tumor [13]. 
DTPA (diethylene triamine pentaacetic acid) can che-
late 111In, and 111In-DTPA-Octreotide (OctreoScan) is a 
commonly used agent in clinical application [22]. 
DTPA and derivatives usually lead to fast reaction 
kinetics [23]. DOTA (1,4,7,10-tetraazacyclododecane- 
1, 4, 7,10-tetraacetic acid) is a bifunctional chelator for 
the complexation of various diagnostic radioisotopes, 

such as 64Cu, 68Ga, 86Y and 111In, but also for the com-
plexation of therapeutic radioisotopes, such as 67Cu, 
177Lu and 90Y [24, 25]. DOTA is able to form stable 
complexes with divalent and trivalent metals. NOTA 
(1,4,7-triazacyclononane-1,4,7-triacetic acid) and 
TETA (1,4,8,11-tetraazacyclododenane-1,4,8,11- 
tetraacetic acid) are macrocyclic pyazapolycarbox-
ylate chelators, which are characterized by a higher 
stability than DOTA for 64Cu labeling in vivo [26, 27].  

 

Figure 1. Chemical structures of some common bifunc-

tional chelators. DOTA = 1,4,7,10-tetraazacyclodode-

cane-1, 4, 7,10-tetraacetic acid; NOTA = 

1,4,7-triazacyclononane-1,4,7-triacetic acid; DTPA = di-

ethylene triamine pentaacetic acid; TETA = 

1,4,8,11-tetraazacyclododenane-1,4,8,11-tetraacetic acid.  

 

Integrin αvβ3 targeted radionuclide therapy   

The crucial roles of integrin αvβ3 in tumor an-
giogenesis have led to a promising strategy to block 
its signaling by antagonists, as this would theoreti-
cally inhibit the tumor angiogenesis or enhance the 
efficacy of other tumor therapeutics. In addition, the 
high expression of integrin αvβ3 on tumor new-blood 
vessels and some tumor cells makes the integrin αvβ3 
a suitable maker for cancer-targeted drug delivery [5, 
12]. Several delivery vehicles such as antibodies, RGD 
peptides, peptidomimetics, and other small molecules 
have been investigated for integrin targeted delivery 
of chemical drugs, cytotoxicities and gene inhibitors 
[12]. Integrin αvβ3 targeted radionuclide therapy of 
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tumors by use of antibodies and RGD peptides was 
also investigated in the last decades. 

Antibody-based radiotherapeutics targeting in-

tegrin αvβ3 

The targeted systemic delivery of radiation to 
tumors through radiolabeled antibodies (radioim-
munotherapy) offers several potential advantages 
over external beam radiotherapy, including the ability 
to specifically target multiple sites of disease, avoid or 
minimize normal tissue toxicity, and cause cell death 
of adjacent tumor cells. Preclinical and clinical inves-
tigations with murine mAbs highlighted several is-
sues that require attention before successful applica-
tions in cancer management. Foremost of these issues 
was the inevitable production of human antimurine 
immunoglobulin antibodies (HAMA) after one to 
three treatments in patients. Some other factors lim-
iting treatment include inadequate therapeutic dose 
delivered to tumor lesions, slow blood clearance, high 
uptake in normal organs, and insufficient tumor pen-
etration. To date, this efforts such as the production of 
chimeric mAbs, grafting of complementari-
ty-determining region (CDR) or complete humaniza-

tion of the protein have primarily been applied to 
eliminate HAMA [28].   

Recently, we prepared a 90Y-labeled humanized 
anti-integrin αvβ3 monoclonal antibody AbegrinTM 
and evaluated the RIT efficacy in U87MG glioblasto-
ma xenograft models [29]. Maximum tolerated dose 
(MTD) and dose response analysis revealed 200 μCi 
per mouse as appropriate treatment dose with hepatic 
clearance and no organ toxicity (Figure 2). 
90Y-Abegrin showed partial tumor regression with a 
final fractional tumor volume (Vfinal/Vinitial) of 0.69, as 
compared with that of 3.76 for 90Y-hIgG and 5.43 for 
normal AbegrinTM controls, respectively (Figure 3). 

[18F]-fluorodeoxyglucose (18F-FDG) microPET imag-
ing revealed a reduction of cell proliferation and 
metabolic activity whereas 3’-[18F]fluoro-3’- 
deoxythymidine (18F-FLT) reflected decreased DNA 
synthesis in the 90Y-AbegrinTM group (Figure 4A-D). 
Ex vivo histological analysis also confirmed the ther-
apeutic efficacy of 90Y-AbegrinTM. It was concluded 
that radioimmunotherapy with 90Y-labeled AbegrinTM 
may prove promising in the treatment of highly vas-
cular, invasive, and heterogeneous malignant brain 
tumors [29].  

 

 

Figure 2. A maximum tolerated dose (MTD) study was completed using escalating 90Y-AbegrinTM of 50,100,150, 200, and 

300 μCi. Each dose was tested in seven female athymic nude mice. (A) Body weight changes of animals. (B-E) Animals that 

received 300 μCi suffered from hematologic toxicity with a decline in WBC (B), RBC (C), HGC (D), and platelet counts (E), 

and eventual mortality. Animals that received 50, 100, 150, or 200 μCi of activity did not experience significant reductions 

in WBC, RBC, HGC, or platelet counts. Adapted with permission from [29]. 
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Figure 3. 90Y-AbegrinTM dose response and inhi-

bition of human glioblastoma growth in vivo. Nude 

mice bearing U87MG tumors were injected with a 

one-time dose of 100 μCi of 90Y-AbegrinTM, 
90Y-IgG, AbegrinTM, or saline. The growth inhibition 

of experimental groups was monitored via serial 

caliper measurements. 90Y-Abegrin treatment 

animals maintained a statistically significant reduc-

tion in tumor size beginning on posttreatment day 

2 and eventually showed partial tumor regression 

whereas all other groups showed increased final 

fractional tumor volumes. Adapted with permis-

sion from [29]. 

 
 
 

 

Figure 4. (A-B) Representative coronal microPET images and radioactivity accumulation quantification of female athymic 

nude mice bearing U87MG tumors (treated with 90Y-AbegrinTM, 90Y-IgG, AbegrinTM, or saline) after i.v. injection of 18F-FDG 

(A) and 18F-FLT (B). (C) 18F-FDG imaging revealed a statistically significant reduction in both 90Y-AbegrinTM and AbegrinTM 

signal intensity, suggesting reduced metabolic activity. (D) 18F-FLT imaging showed reduced tumor accumulation value in 
90Y-AbegrinTM group, reflecting reduced DNA synthesis. Adapted with permission from [29]. 
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The strategy to overcome the problems of intact 

antibodies, such as slow blood clearance, high back-
ground uptake, insufficient tumor penetration, has 
been the development of small molecular constructs, 
such as antibody fragments (e.g., Fab’ and F(ab’)2) and 
subfragments (e.g., scFv, (sFv)2), which are capable of 
binding to the tumor while clearing from normal tis-
sues rapidly [28]. However, the tumor residence time, 
which is important for delivering therapeutic radia-
tion doses, also significantly decreases as the immu-
noglobulin fragment becomes smaller. The pretar-
geting strategies that separate tumor targeting from 
delivery of the therapeutic radionuclide are also being 
considered to design optimized RIT agents. However, 
up to now, there are not extensive investigations of 
integrin targeted cancer radioimmunotherapy by use 
of such antibody fragments or pretargeting delivery 
systems. 

RGD peptide-based radiotherapeutics targeting 

integrin αvβ3 

Peptides are usually classified as containing less 
than 50 amino acids, ~5500 Da. This low molecular 
weight renders peptides low in antigenicity, fast in 
clearance, and rapid in tissue and tumor penetration. 
In contrast to monoclonal antibodies, automated 
techniques allow peptides to be produced easily and 
inexpensively [30]. In recent years, a wide variety of 
peptides have been identified with high affinity for 
characteristic receptors that are overexpressed on a 
large number of tumor cell types.  

Since integrin αvβ3 binds a wide range of ECM 
molecules (such as fibronectin, fibrinogen, von Wil-
lebrand factor, vitronectin, and proteolysed forms of 
collagen and laminin) with an Arg-Gly-Asp (RGD) 
triplepeptide motif [29, 31], RGD peptides and ana-
logues were therefore chemically synthesized to 
mimic the structure of the natural ligands of integrins 
and used as the integrin αvβ3 targeting vehicles. The 
RGD triple-peptide itself is limited in the in vivo use 
because of its short circulation half-life. Conforma-
tional restriction by ring closure of the peptides and 
further chemical modification, such as the use of 
D-amino acids, like in the c(RGDfV) (with f standing 
for D-phenylalanine) compound, not only increased 
their αvβ3 binding affinity, but also improved their 
bioavailability [32]. In the last decades, a series of ra-
diolabeled cyclic RGD peptides and analogues have 
been intensively investigated for positron emission 
tomography (PET) and single photon emission com-
puted tomography (SPECT) imaging of integrin αvβ3 
expression [5, 33, 34]. However, only a small fraction 
of reports cover therapeutic tumor targeting. Janssen 

et al. [35] studied the in vivo behavior of the radio-
labeled dimeric RGD peptide E[c(RGDfK)]2 in a sub-
cutaneous (s.c.) ovarian carcinoma nude mouse mod-
el. The dimeric peptide E-[c(RGDfK)]2 labeled with 
111In, 90Y and 99mTc, respectively. Tumor uptake was as 
high as 7.5 %ID/g (111In-DOTA-[c(RGDfK)]2) at 2 h 
p.i. or 6.0 %ID/g (99mTc-HYNIC-E-[c(RGDfK)]2) at 1 h 
p.i. A single injection of 37 MBq of 
90Y-DOTA-E[c(RGDfK)]2 in mice with small s.c. tu-
mors caused a significant growth delay as compared 
with control mice. Treatment with 37 MBq of 
90Y-DOTA-E[c(RGDfK)]2 caused significant increased 
survivals as compared to mice treated with 37 MBq 
90Y-labeled control peptide or untreated mice (median 
survival of 54 versus 33.5 versus 19 days, respective-
ly). Unfortunately, in a follow-up study, increasing 
the number of injections did not improve the thera-
peutic efficacy [36]. Moreover, the prominent renal 
uptake of this conjugate limited its potential in clinical 
applications.   

It has been proposed by others and us that the 
receptor binding characteristics of dimeric and mul-
timeric RGD peptides would be better than that of 
monomeric RGD peptide based upon polyvalency [24, 
33, 35, 37, 38]. The receptor binding of the one RGD 
peptide will significantly enhance the local concen-
tration of the other RGD peptide in the vicinity of the 
receptor, which may lead to a faster rate of receptor 
binding or a slower rate dissociation of the dimeric 
RGD probes. The dimeric or multimer RGD peptide 
with almost one order of magnitude higher integrin 
binding affinity than the monomeric analog, and thus 
the dimeric or multimer RGD probes gave the highest 
tumor specific activity accumulation at all time points 
examined as compared to monomeric RGD peptide 
probes. Multimeric RGD peptides with even higher 
receptor affinity and longer tumor retention time 
might be more suitable for clinical translation. We 
therefore used 90Y-labeled tetrameric RGD peptides 
for integrin αvβ3-targeted internal radiotherapy of 
athymic nude mice tumor xenografts. 90Y-labeled te-
trameric RGD were more effective in inhibiting integ-
rin-positive tumor growth than 90Y-labeled dimeric 
RGD, due to the significantly increased tumor uptake 
[39]. However, the whole body toxicity of 90Y-RGD 
tetramer was also significantly higher than that of the 
same dose of 90Y-RGD dimer because 90Y-RGD te-
tramer also exhibited high uptake in normal organs 
especially the kidneys [39] .  

We and our collaborators have recently devel-
oped a series of new RGD dimers with PEG4 and Gly3 
linkers [40-45]. The insertion of the Gly3 or PEG4 
spacers significantly increased the distance between 
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the two cyclic RGD peptide motifs, resulting in an 
increase in vitro receptor-binding affinity. Important-
ly, the radiolabeled new types of RGD dimers (i.g. 
3PRGD2) possessed as high tumor uptake as RGD 
tetramer (RGD4), but the uptake in normal organs 
was much lower compared with RGD tetramer due to 
the improved in vivo kinetics [39-41], which led to a 
lower toxicity and much higher maximum tolerated 
dose (MTD) of 90Y-DOTA-3PRGD2 in mice [39]. Sig-
nificant anti-tumor vasculature effects can be found in 
the 90Y-DOTA-3PRGD2 treatment group. Compared 
to 90Y-DOTA-RGD4, the low accumulation of 
90Y-DOTA-3PRGD2 in normal organs makes it more 
suitable for high dose or multiple-dose regimens, in 
order to achieve maximum therapeutic efficacy for 
integrin αvβ3-positive tumors [39]. 

In another report, considering that monomeric 
RGD peptides have a lower molecular mass compared 
with antibody or multimeric RGD peptides, Yo-
shimoto et al. [46] proposed that 90Y-labeled RGD 
monomer would be a promising radiopharmaceuti-
cals for tumor therapy causing low radioactive expo-
sure to normal tissues such as kidney and liver. The 
tumor therapeutic and imaging potential of 
90Y/111In-labeled monomeric RGD peptide was inves-
tigated in a human ovarian carcinoma mouse model, 
and it was claimed that the RGD monomer can be 
used for fractionated therapy without evident toxici-
ty. The radionuclide therapy results demonstrated 
that multiple dose administration of 
90Y-DOTA-c(RGDfK) (3 × 11.1 MBq) led to an in-
creased tumor growth inhibition in comparison to the 
single-dose administration (11.1 MBq). However, due 
to the lower tumor uptake of the RGD monomer, the 
single-dose administration did not show significant 
inhibition to tumor growth and the radionuclide 
therapeutic efficacy of the multiple dose administra-
tion was also generally limited, and the optimized 
regimens should be considered to reach the better 
results. 

Others  

Integrin targeted delivery of internal radiother-
apy by non-peptide antagonists has also been re-
ported. 90Y and 177Lu labeled TA138, a 
DOTA-conjugated non-peptide integrin αvβ3 antag-
onist, were prepared under anaerobic conditions to 
protect them from radiolytic degradation [47]. These 
complexes were synthesized in high yield and specific 
activity and showed high affinity for integrin αvβ3. 
111In-TA138 was also synthesized for tumor imaging 
purposes as well as for dosimetry determination of 
90Y-TA138 [48, 49]. High tumor uptake and low back-
ground activity of 111In-TA138 were found in the 

c-neu oncomouse mammary adenocarcinoma model 
(9.39 % ID/g at 2 h p.i.). Despite the differences in 
lipophilicity and solution structure between 
90Y-TA138 and 111In-TA138, biodistribution studies 
showed that 111In-TA138 and 90Y-TA138 are biologi-
cally equivalent with respect to the uptakes in tumors 
and other major organs, indicating that 111In-TA138 
was useful as an imaging surrogate for 90Y-TA138 and 
could predict the radiation dosimetry of 90Y-TA138. 
Radiotherapy using 90Y-TA138 in the c-neu on-
comouse model demonstrated a slowing of tumor 
growth at a dose of 15 mCi/m2, and a regression of 
tumors at a dose of 90 mCi/m2 [48].  

Knottin peptides are small constrained polypep-
tides that share a common disulfide-bonded frame-
work and a triple-stranded β-sheet fold [50]. Knottin 
family members possess one or more surface-exposed 
loops that tolerate much sequence diversity, and dif-
ferent binding motifs could potentially be engineered 
into these loops to create bioactive knottins against 
different molecular targets [51, 52]. Several knottin 
mutants that bind to integrin receptors (αvβ3/αvβ5 or 
αvβ3/αvβ5/α5β1) with low nanomolar affinity have 
been identified [51, 52], and radionuclide and optical 
dye labeled such knottin peptides have demonstrated 
favorable in vivo tumor targeting properties [53-56]. 
Recently, two knottin peptides (2.5D and 2.5F: tar-
geting integrin αvβ3/αvβ5 and αvβ3/αvβ5/α5β1, 
respectively) were radiolabeled with a therapeutic 
radionuclide 177Lu, and the resulting radiopharma-
ceuticals were evaluated for potential radiotherapy in 
a mouse model of human glioma [57]. Compared to 
177Lu-DOTA-2.5D, 177Lu-DOTA-2.5F showed much 
higher tumor uptake and tumor to blood ratios, as 
well as a higher tumor to kidney radiation absorbed 
dose ratio, demonstrating the more promising appli-
cation of 177Lu-DOTA-2.5F as a targeted radionuclide 
therapeutic agents for integrin-positive tumors.  

Radionuclide therapy targeting other integ-
rins 

Although integrin αvβ3 has been extensively 
studied as one of the key players in tumor angiogen-
esis, other integrin members such as integrin α2β1, 
α3β1, α4β1, αvβ5 and αvβ6 are involved in these 
processes as well. Comparing with integrin αvβ3, the 
literature reports of other integrins targeted molecular 
imaging and drug delivery are relatively rare.   

A high-affinity peptidomimetic ligand (LLP2A; 
IC50 = 2 pM) against α4β1 integrin was identified by 
using both diverse and highly focused 
one-bead-one-compound combinatorial pep-
tidomimetic libraries in conjunction with 
high-stringency screening [58]. LLP2A was demon-
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strated that can be used to image α4β1-expressing 
lymphomas with high sensitivity and specificity when 
conjugated to a near infrared fluorescent dye in a 
mouse xenograft model. Thus, LLP2A shows great 
potential as an imaging and therapeutic agent for 
α4β1-positive tumors [58]. In the subsequent studies, 
the near infrared fluorescent dye Cy5.5, 64Cu and 111In 
labeled LLP2A was investigated for optical imaging, 
microPET and whole-body autoradiography (WBAR) 
of tumors, respectively [59, 60]. The s.c. tumors can be 
clearly visualized after i.v. injection of the conjugates, 
which warrants further investigation of the LLP2A 
conjugates as agents for α4β1 targeted imaging and 
therapy of human lymphoid malignancies. Unfortu-
nately, to date, the integrin α4β1 targeted radionu-
clide therapy for tumors in preclinical and clinical 
investigations have not been reported. A peptide 
NAVPNLRGDLQVLAQKVART (denoted as 
A20FMDV2), derived from foot-and-mouth disease 
virus, has been identified as a potent inhibitor of αvβ6 
[61], which is low or undetectable in most adult tis-
sues but is up-regulated dramatically in many carci-
noma tumors [62]. A20FMDV2 was radiolabeled with 
18F and tested in mice bearing both αvβ6-negative and 
αvβ6-positive tumor xenografts [63]. Rapid uptake 
and selective retention of radioactivity in the 
αvβ6-positive tumor, together with the fast renal 
elimination of non-specifically bound activity, re-
sulted in receptor specific imaging of the 
αvβ6-positive neoplasm with good contrast. To fur-
ther improve the tumor targeting property and in-
crease the retention in the target tissue, two 
PEGylated A20FMDV2 variants were prepared and 
both showed significantly improved retention in two 
αvβ6-expressing human tumor xenograft models, 
making them promising for molecular imaging of 
integrin αvβ6 expression [64]. However, for targeted 
radionuclide therapy of tumors, the PEGylated 
A20FMDV2 tracers may have limitations due to the 
low tumor uptake values (less than 3 %ID/g). To de-
velop radiopharmaceuticals for α3β1 integrin target-
ing, an all D-amino acid analog of the residues 531-542 
from the α1 chain of type IV collagen (which binds to 
α3β1 integrin) was synthesized by solid-phase meth-
ods, and then labeled with 64Cu [65]. The tumor ac-
cumulation of the tracer was very low (< 2 %ID/g) 
and blocking studies failed to reduce the tumor up-
take, confirming that the low tumor uptake was 
mostly non-specific accumulation. The combination of 
the results obtained from the in vitro and in vivo data 
strongly suggest that peptides of this class targeted to 
the α3β1 would not be suitable as in vivo imaging 
agents in humans [65]. 

Radiotherapeutics targeting integrins besides 
αvβ3 have not been well investigated may largely due 
to the lack of high affinity/specificity ligands to each 
integrin. Therefore, ligand screening strategies, such 
as phage display, may play a major role in identifying 
novel ligands for each integrin. The optimizing strat-
egies, such as multivalency [33] and PEGylation [66], 
may also be involved in the development of opti-
mized ligands, which may open up new perspectives 
for cancer therapy based on integrin targeted radio-
therapeutics. 

Conclusions  

Integrins are the key regulators of tumor angio-
genesis and metastasis. The vast number of literature 
reports on anti-angiogenic cancer therapy based on 
integrin antagonism confirmed the validity of integrin 
αvβ3 as an anti-cancer target. However, the investi-
gation of integrin αvβ3 targeted delivery of radio-
therapeutics is relatively rare. Integrin targeted radi-
onuclide therapy is considered to specifically deliver 
radiation to the tumor cells or tumor vasculature, 
thereafter leading to the death of tumor cells and the 
inhibition of tumor growth. Integrin αvβ3 targeted 
RIT with 90Y-labeled humanized antibody AbegrinTM 
was investigated in human glioblastoma xenografts 
and it was demonstrated the promising results for 
anti-tumor therapy. However, the radiation uptake in 
normal organs especially in the liver and spleen was 
high due to the slow circulation clearance and liver 
excretion of the intact antibody. RGD peptides that 
specifically targeting integrin αvβ3 were also inves-
tigated for radionuclide therapy of tumors with rapid 
blood clearance and optimized tumor penetration. 
However, the tumor inhibition efficacies of RGD pep-
tides-based radiotherapeutics were nonoptimized due 
to the lower tumor uptake. Therefore, further research 
effort is still needed to develop novel integrin targeted 
radiotherapeutics with better tumor targeting efficacy 
and desirable pharmacokinetics. In addition, the 
combination of integrin targeted radiation therapy 
with other therapeutic modalities, such as chemo-
therapy, is also expected to generate significantly 
greater anti-tumor benefits.  
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