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Abstract 

Paving the way towards the application of polyelectrolyte multilayer capsules in theranostics, we 
describe diagnostic multi-functionality and drug delivery using multicompartment polymeric 
capsules which represent the next generation of drug delivery carriers. Their versatility is par-
ticularly important for potential applications in the area of theranostics wherein the carriers are 
endowed with the functionality for both diagnostics and therapy. Responsiveness towards external 
stimuli is attractive for providing controlled and on-demand release of encapsulated materials. An 
overview of external stimuli is presented with an emphasis on light as a physical stimulus which has 
been widely used for activation of microcapsules and release of their contents. In this article we 
also describe existing and new approaches to build multicompartment microcapsules as well as 
means available to achieve controlled and triggered release from their subcompartments, with a 
focus on applications in theranostics. Outlook for future directions in the area are highlighted. 
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Introduction 
Theranostics is an emerging area which com-

bines multifunctionalization [1] for diagnostics and 
therapy, while nano and micromaterials are devel-
oped to enable both functionalities. Such a synergy, 
particularly if the materials allow to perform diagno-
sis and therapy simultaneously, will allow physicians 
not only to detect diseases, but ideally will also permit 
them to administer proper medicines at the appro-
priate time, location and dose in the body and to fight 
many diseases including cancer [2]. Laser light is par-
ticularly interesting for theranostics [3] largely due to 
its potential in phototherapy [4]. Application of light 
to theranostics opens extensive opportunities in 
pharmaceutical research to monitor effects of drugs, 
their distribution, release, and dose thus representing 
the next step [5] for nanomedicine [6].  

A very interesting class of materials for 
theranostics is multicompartment polyelectrolyte 
multilayer capsules, which are responding to different 
stimuli [7]. Multicompartmentalization is an attractive 
strategy because it allows for assembling or encapsu-
lating several types of molecules simultaneously in 
the same carrier. Such an approach is particularly 
suitable for theranostics as some compartments are 
intended for diagnostics, while other subcompart-
ments are to be used for therapy. A generalization of 
various approaches to multicompartmentalization has 
been recently presented by Delcea et al [1]. The 
structure of multicompartment [8] delivery vehicles 
can be very diverse [9, 10] including a hybrid micro-
capsule-liposome system with liposomes [11-13] or 
self-assembled construction [14] including those 
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based on polymeric systems [15]. Another desirable 
feature of a theranostic carrier is the induction of 
on-demand drug release [16, 17] to initiate a thera-
peutic treatment. Various stimuli are available for 
release [18] and these stimuli can be logically divided 
into physical, chemical and biological ones.  

Endogenous biological stimuli are most often 
used for permeability [19] control as well as for per-
forming a relatively slow release [20],[21] of pharma-
ceutical cargo based on enzymatic degradation [22, 
23]. One example is enzyme-catalyzed carrier degra-
dation, which can also be accomplished using sophis-
ticated coupled mechanisms [24]. Another class of 
release mechanisms, at least for in-vitro experiments, 
is based on chemical reactions, i.e. chemical stimuli. A 
number of chemical stimuli such as differences in salt 
concentration, solvent types or pH levels [25] can be 
used for inducing cargo release. While chemical 
stimuli can be quite effective and quick, they are typ-
ically not suited for in-vivo applications. In this re-
gard, physical stimuli such as light, magnetic fields 
and mechanical forces are more promising for appli-
cation in a biological context since they have little or 
no effect on the surrounding medium and can be 
well-controlled due to possibilities to adjust the stim-
ulating fields’ strength. Laser light has a special niche 
in this area as an external physical stimulus since it 
can be very well controlled spatially and temporally 
so that high resolution imaging is possible for diag-
nostics with highly localized controlled activation of 
the therapeutic action. In addition, also from a re-
search perspective it is of interest since it can be easily 
combined with existing optical microscopes, thus al-
lowing detailed investigation of light-carrier interac-
tion in a biological environment.  

In what follows we will describe approaches for 
theranostics in which multicompartmentalization of 
microcapsules can be logically applied for diagnostics 
and treatment.  

Diagnostics and Treatment  
Diagnostics using materials encapsulated in 

some compartments and therapy performed by drugs 
encapsulated in other compartments is the cor-
ner-stone of theranostic applications. In order to 
conduct the diagnostics part effectively, it is essential 
to develop and apply appropriate imaging. Here one 
would clearly distinguish two types of imaging mo-
dalities: a) those used in cell culture work, and b) 
those applicable in-vivo. Microscope-based ap-
proaches prove to be the most effective ones for cell 
cultures. Here contrast agents are incorporated into 
some compartments of the carrier according to the 
intended imaging modality to be used. Cell labeling is 
achieved by fluorophores, which permit visualization 

of cytoskeleton, nucleus, and other subcompartments 
as well as visualization of individual molecules with 
super-resolution. An interesting application is la-
bel-free, Raman imaging [26]. A number of other ap-
proaches can be used for in-vivo imaging; these in-
clude: X-ray, ultrasound, computer tomography 
(x-ray based), positron emission tomography, mag-
netic resonance imaging, and their combination often 
referred to as multimodal imaging.  

Diagnosing various parameters can be intended 
for prevention or treatment, the latter being an in-
herent part of theranostics. Many different parameters 
can be diagnosed including acidity (pH) and ionic 
contents [27], glucose and other biomarkers, products 
of enzyme-catalyzed reactions, host-pathogen and 
other biomolecular interactions, bacteria, etc. Some of 
these parameters, like pH, can provide very important 
information on functions of cells, organs, and eventu-
ally the body. And these parameters can be monitored 
by molecules encapsulated into different subcom-
partments of multicompartmental capsules. Also, 
with regard to therapeutic applications, some of the 
above methods can be used not only for direct visu-
alization, but also for activation and/or release of 
active bio-molecules from diagnostic subcompart-
ments of multicompartmental capsules. The treatment 
modality is administered based upon results obtained 
from the diagnostic assays.  

The following sections describe various ap-
proaches describing different types of multicom-
partmental microcapsules and methods of remote 
control [28] for on-site specific release.  

Multicompartment microcapsules  
Multicompartment microcapsules have been de-

signed almost specifically with theranostics in mind. 
Diversity of materials for encapsulation into different 
compartments and variety of multicompartment 
morphologies and structures make multicompart-
mentalization a very versatile approach. Various dif-
ferent approaches can be used for assembling multi-
compartment capsules, namely: a) assembly from 
previously pre-formed different subcompartments; b) 
direct synthesis of capsules (or templates on which 
capsules are assembled); c) a combination of synthesis 
and assembly from previously pre-formed subcom-
partments [1].  

Here we will discuss four of the most important 
multicompartmentalization morphologies, as illus-
trated in Figure 1. First, concentric structures can be 
obtained in which multiple compartments are built 
(concentrically) around the first compartment, see 
Figure 1 (a) [1]. The first compartment can be built 
around a particle or a capsule, while subsequent con-
centric subcompartments are further built around this 
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first block. Synthetic routes (for example, calcium 
carbonate) are used in this case for fabrication. This 
process can be separated in several steps. First the 
inner core is synthesized, which can be used as a 
precursor for outer concentric shells that are synthe-
sized consequently. During further synthesis of con-
centric subcompartments around the primary sub-
compartment (or the inner core), some single com-
partment cores can also appear [29]: then functional-
ization of concentric multicompartment microcap-
sules by magnetic nanoparticles can be used for sep-
aration purposes.  

The second type of multicompartment capsules 
is the so-called pericentric type, Figure 1 (b) [1]. In this 
approach, multiple compartments are adsorbed or 
connected (possibly chemically) to the first and main 
carrier capsule. This is a versatile approach amenable 
for mass production since it is based on a relatively 
simple assembly of pre-fabricated particles/capsules. 
The interaction of subcompartments takes place due 
to electrostatic forces, steric entrapment or hydrogen 
bonding. To this end, subcompartments are typically 

modified by oppositely charged polymers or mole-
cules capable of inducing the above interactions.  

The third type of multicompartment capsules are 
innercentric, in which case various compartments are 
incorporated into the interior of the first and main 
compartment, see Figure 1 (c) [1]. The subcompart-
ments can be synthesized during the assembly pro-
cess of this type of multicompartment capsules. Alt-
hough the feasibility was already demonstrated, the 
relative complexity of this approach is a potential ob-
stacle for widespread use.  

In the fourth and last approach acentric struc-
tures are prepared and described [1, 14]. Here, the 
subcompartments can be either synthesized during 
the assembly process of the multicompartment cap-
sules, or they might be already pre-formed. Many 
different implementations of such an approach are 
possible [30]. Its key attribute is non-uniformity or 
non-symmetry of the structure. Figure 1 (d) shows 
several structures wherein two different subcom-
partments are connected, thus forming an elongated 
two-compartment capsule.  

 
Figure 1. Overview and the road-map for future directions of multicompartment microcapsules.Four different approaches are identified 
in the schematics: a) concentric, b) pericentric, c) innercentric, and d) acentric. The structure in the middle incorporates all four ap-
proaches. The corresponding confocal microscope images of the first steps in each direction are also presented. Scale bars correspond to 
2 mm. [1] Reproduced by permission of Wiley-VHC.  
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Anisotropic multicompartment micro-
capsules  

Anisotropy of drug delivery vehicles, as in the 
case for the acentric capsules discussed above, is an 
important characteristic for theranostics. Anisotropy 
of delivery carriers is a very desirable feature for 
pulmonary drug delivery [31] because elongated car-
riers possess the same aerodynamic diameter as an 
equivalent spherical carrier but allows for delivery of 
a larger amount of cargo. Porosity of carriers is an-
other desirable feature that is of importance for opti-
mizing the aerodynamic diameter as it allows tuning 
the effective density. In this regard, calcium carbonate 
particles or hydrogels[32] are attractive candidates.  

Early attention to anisotropic particles was given 
by De Gennes providing a significant impetus for 
development. Particles in which one half is distinct 
from the other are called Janus particles [33]. Chemi-
cal synthesis and modification are two of the most 
common routes of controlling [34] the patchiness [35] 
of Janus particles. Using these routes, various aniso-

tropic structures and approaches were reported using 
microfluidics [36], electroless deposition [37], micro-
contact printing [38], grafting [39], and plasma 
polymerization [40].  

Anisotropic multicompartment structures have 
been recently reported using a method of partially 
shielding a lower part of particles/capsules incorpo-
rated into soft films [30]. In such an approach, parti-
cles or capsules are sedimented onto the films leaving 
the upper part non-protected. In the subsequent step, 
(typically) smaller particles/capsules are adsorbed 
onto the non-protected part of embedded particles. 
Extraction of embedded particles is done by turning 
the films upside-down and adding a solvent (sodium 
hydroxide of higher pH for hyaluronic ac-
id/poly-L-lysine films). The solvent loosens the in-
teraction between the films and capsules/particles, 
thus allowing the latter to detach and be collected.  

Controlling protrusion of microcapsules into the 
soft polymeric films and thus controlling the degree of 
modification or patchiness [41] can be achieved by 
making the films harder or denser [34], see Figure 2.  

 
 

 
Figure 2. Fluorescence CLSM images showing an overview of a-f) half covered (4.8 μm SiO2)@QDs (quantum dots) and g-l) 2/3 covered 
(SiO2)@QDs. Dotted lines represent the centre line, while bold lines show the termination of particle modification. Images a) and g) show 

top view, while c-f) and i-l) depict side view of protruding SiO2 particles into FITC labeled (HA/PLL)12 films with AuNP concentration of 
a-f) 0 μl and g-l) 300 μL. Arrows in a) and g) point to location of particles; insets in a) and g) show magnification of the transmission images 
of protruding (SiO2) particles into (HA/PLL)12 films. Arrows in b) and h) indicate the (HA/PLL)12 film height. Scale bars correspond to 5 
μm. [34] Reproduced by permission of Wiley-VHC.  

 



 Theranostics 2013, Vol. 3, Issue 3 

 
http://www.thno.org 

145 

This modification can be done by chemical 
cross-linking or by adding metal nanoparticles onto 
the surface of the films. While particles can still be 
embedded into the denser films, they penetrate over a 
smaller distance [34]. Thus, the masked part of the 
particles or the degree of patchiness can be controlled 
through the stiffness of films. This property has been 
measured by the AFM colloidal probe technique [42, 
43]. Peculiarly, such a modification also promotes 
growth of cells (which grow more effectively on 
harder substrates) on these soft PLL/HA films as it 
was recently shown by Schmidt [44]. Anisotropic 
morphology of particles can be also used for direc-
tion-specific release of drug molecules. In such an 
approach if only a specific part of the microcapsules is 
functionalized by nanoparticles for triggered release, 
then release will take place only at the site of nano-
particles. A proof-of-principle of such an approach 
has been recently demonstrated for giant microgel 
templated beads [45].  

Enzymatic and ionic sensing  
The next step following assembly of the multi-

compartment capsules is the incorporation of sensing 
modalities for diagnosis. One can discriminate be-
tween two major approaches. The first is encapsula-
tion of larger biomolecules which would serve as 
sensors for ions. Ions are very small entities which 
easily penetrate the polyelectrolyte polymeric net-
work. It is this principle that was used for fabrication 
of polyelectrolyte multilayer capsules: ions penetrat-
ing inside the polymeric shell dissolve the template 
upon which microcapsules are built. Ions are there-
fore constantly present at equilibrium inside and out-
side capsules. Monitoring ions allows for instance to 
assess local pH, which is a very important physiolog-
ical parameter. For monitoring ions, larger (typically 
above 1 kD) fluorescent sensor molecules are encap-
sulated into the interior of sensing subcompartments. 
These molecules change their fluorescence character-
istics (intensity and/or spectrum) which can be easily 
observed using fluorescence microscopy [27]. 

An alternative route for sensing is that based on 
the detection of products of enzyme-catalyzed reac-
tions. This approach has some similarities to that for 
the detection of ions: larger sensor molecules are en-
capsulated inside some subcompartments of multi-
compartment theranostic capsules. The polymeric 
mesh allows not only ions, but also small molecules to 
penetrate through the polymeric network. The larger 
enzymatic signal molecules change their (often fluo-
rescent) properties which allows for detection of 
products of enzyme catalyzed reactions [46].  

Therapeutic treatment and stimuli for 
inducing release from capsules  

Therapeutic drugs, such as peptides, proteins 
and biomolecules are encapsulated into capsules with 
a polyelectrolyte polymeric mesh. This polymeric 
mesh permits ions and small molecules to go through, 
but protects encapsulated drugs which are to be used 
for treatment. These therapeutic molecules will need 
to be released [47, 48] if the diagnostic signal necessi-
tates so.  

Release of molecules can be performed using 
different physical stimuli, including electromagnetic 
fields, ultrasound, mechanical force and temperature, 
Figure 3. Some stimuli possess certain limitations. For 
example, temperature (global temperature in solution, 
cell culture or in the body) cannot be substantially 
changed, thus limiting its application range. Mechan-
ical force is applicable only at specific conditions 
permitting exerting the force. On the other hand, ex-
erting mechanical forces can be used for measuring 
the stiffness [49] of capsules and the threshold forces 
[20] necessary for release. This approach is ideally 
suited for bench tests of capsules, but it is difficult to 
exert pressure on capsules in-vivo.  

Ultrasound [50] is an interesting physical stim-
ulus for release and some initial work using ultra-
sound has been conducted to initiate en-
zyme-catalyzed reactions. Enzyme and substrate were 
assembled into the same multicompartment micro-
capsule: the enzyme was held in the interior com-
partment, while the substrate was incorporated into 
liposomes attached to the surface of the pericentric 
multicompartment microcapsules [51]. Upon applica-
tion of ultrasound, the substrate leaked from the lip-
osomes, penetrated into the interior of the inner par-
ticle, initiating the enzyme-catalyzed reaction, Figure 
4. An alternative approach is using microcapsules 
with freely-floating liposomes [52] or multicompart-
ment particles [9], Figure 5. As an example, this ap-
proach can be used to fight cancer. An interesting 
feature of this approach is that both the enzyme and 
substrate are encapsulated in the same carriers. Cal-
cium carbonate (in the vaterite form) particles used to 
demonstrate the feasibility of such an approach are 
biocompatible, porous, and easy to make. Most im-
portantly, it was observed that enzymes immobilized 
in the pores of particles, were still fully active [51]. 
Although some progress on reducing the intensity of 
ultrasound has been recently achieved, a significant 
hurdle here is to achieve ultrasound mediated release 
at a power density that is medically acceptable.  
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Figure 3. Schematics showing various methods of release. The three main categories: physical, biological and chemical, are further 
sub-divided and are shown with specific methods of release. [18] Reproduced by permission of The Royal Society of Chemistry. 

 
Figure 4. a) Evolution of the enzymatic reaction inside porous microparticles. b–d) Confocal transmission (middle row) and fluorescence 
(bottom row) images of microparticles after 1 min (b), 10 min (c), and 15 min (d) of ultrasonication and addition of H2O2. The insets show 
fluorescence profiles drawn across the same microcontainer (the red lines in the bottom row). The red profiles in the insets corresponds 
to emission 1 min after sonication, the yellow and white profiles to emission 10 and 15 min after sonication, respectively. [51] Reproduced 
by permission of Wiley-VHC.  



 Theranostics 2013, Vol. 3, Issue 3 

 
http://www.thno.org 

147 

 
Figure 5. Hierarchy of multicompartment particles for conversion of reactants to products. Reproduced by permission from [9]. 
Copyright (2011) American Chemical Society.  

 
Electromagnetic energy, such as laser light, can 

be used as a trigger signal as well. The wavelength 
used is an important parameter since absorption of 
laser light by biomolecules is wavelength dependent. 
UV wavelengths are not useful since penetration in 
tissue is too limited due to scattering and absorption 
by biomolecules. Visible light typically cannot be used 
either since it is already needed for exciting the fluo-
rescent moieties used for sensing and diagnosis. Laser 
light in the near-infrared range (the so-called biologi-
cally “friendly” window [53]) can pass relatively well 
through water (or a biological medium) so that a rea-
sonable penetration depth in tissue can be obtained. 
This allows noble metal nanoparticles, such as gold 
nanorods [54], gold nanoparticles [55] or even carbon 
nanotubes [56], to be used for exerting a therapeutic 
action as they can have a strong absorption in the 
near-infrared range due to the surface plasmon reso-
nance effect. More information on laser-induced re-
lease from capsules can be found in the next section. 

Laser-induced remotely activated release 
of encapsulated materials 

Light energy can be converted into heat [57, 58] 
by nanoparticles [59, 60]. The amount of heat gener-
ated can be carefully controlled by tuning the laser 
intensity, illumination time and the surrounding en-
vironment [60]. This effect has been used to induce 

release from microcapsules [57, 61-63], Figure 6. For 
example, when irradiated by a continuous wave laser, 
the nanoparticles will act as local heaters, causing a 
heat gradient in the surrounding tissue. Here it is 
important to distinguish between a “global” versus 
“local” temperature rise. As it was mentioned above it 
is undesirable to raise the global temperature of bio-
logical matter. However, under appropriate illumina-
tion conditions, heating can be locally induced with-
out affecting the cell or tissue. It is this localized tem-
perature rise that has been used for inducing transient 
permeability [64] of the polymeric shell of capsules, 
thus achieving controlled release of the pharmaceuti-
cal cargo. Increasing the concentration of nanoparti-
cles or augmenting the laser power density can lead to 
increased heat accumulation and therefore to explo-
sive release or activation of microcapsules. It can also 
be used for hypothermia wherein extensive accumu-
lation of heat is desirable for the killing of cancer cells 
[65].  

Localized, mild temperature rise can be used to 
obtain a non-destructive permeability change of the 
capsule walls [64]. An advanced feature here is the 
possibility of a transient permeability change when 
the polyelectrolytes of the capsule walls are in the 
so-called “glassy” state. Localized heating slightly 
exceeding the “glass” transition temperature renders 
the polymeric complex flexible. The osmotic pressure 
of encapsulated materials is enough to push some 
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molecules through the polymeric shell. Upon turning 
off the laser beam, the polymeric complex goes back 
into the “glassy” state sealing the polymeric shell 
anew. Thus, the permeability of microcapsules can be 
regulated transiently upon switching laser: on- and 
off.  

Using laser induced permeability control, release 
of encapsulated materials has been accomplished in-
side living cells by microcapsules [53] and directly 
from particles [55]. Using intracellular release inside 
living cells, the immune response has been investi-
gated wherein peptides released from the interior of 
microcapsules were found to form the complex with 
MHC Class I polymers eliciting movement to the cell 
surface and the surface presentation [66]. This process 
is one of the key principles of immune system de-
fense. Cell viability following capsule uptake and 
triggered release has been verified either by observing 
cell division or by specific essays, thus proving the 
feasibility and potential of such an approach for fu-
ture in vivo use. It can be noted that either stabilized 
nanoparticles [67] or direct synthesis [68] of nanopar-
ticles on the surfaces can serve to achieve desirable 
distribution of nanoparticles.  

Vapor nanobubble induced by laser nanoparticle 
interaction in water and biological media have re-
cently proven to offer exciting possibilities, such as 

the highly specific intracellular delivery [69] and 
processing [70] of therapeutics. Vapor nanobubbles 
can be induced by pulsed [71] or continuous wave 
[72] laser irradiation: the former case is certainly a 
very promising approach for drug delivery, hypo-
thermia treatment or material modification. Short 
laser pulses possess specific advantages [73]: high 
laser peak power and better dissipation of heat. Gen-
erating bubbles by continuous wave laser irradiation 
has been shown applicable for affective soft, poly-
meric films [72]. A short pulse laser (typically in the 
order of nanoseconds [74] or less) illuminating metal 
nanoparticles such as gold nanoparticles leads to ex-
treme localized heating of these nanoparticles due to 
the excitation of surface plasmon resonance. As a 
consequence, the spinodal temperature of the sur-
rounding medium, such as water, can be easily sur-
passed and causes the nucleation of vapor at the na-
noparticle surface and the formation of transient 
nanobubbles. When the thermal energy in consumed, 
the vapor nanobubble will collapse, causing local 
pressure waves that can damage nearby tissue. The 
size of the vapour nanobubbles can be precisely con-
trolled through the laser pulse fluence. It was shown 
that vapor nanobubbles can aid in drug delivery, 
cancer treatment and gene therapy. 

 
 

 
Figure 6. Confocal microscope images demonstrating remote release of encapsulated rhodamine-labeled PSS polymers from a poly-
electrolyte multilayer capsule containing gold sulfide core/gold shell nanoparticles in its walls. Fluorescence intensity profiles along the line 
through the capsule show that it is filled with fluorescent polymers before (a) and empty after (b) laser illumination. After the release of 
encapsulated polymers, the leftover fluorescent intensity is observed only in the walls of the capsule, (b). Insets show black and white 
transmission microscope images of the same capsule. Incident intensity of laser diode operating at 830 nm was set at 50 mW. Reproduced 
with permission from [57]. Copyright (2005) American Chemical Society.  
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Bright perspectives for multicompart-
ment capsules for theranostics  

It is envisioned that theranostics will take a 
unique place in the nanomedicine field in the near 
future. Precise diagnostics and unique custom initi-
ated, on-demand treatments are the hallmarks of 
personalized medicine so vigorously being developed 
now. The use of multicompartment capsules would 
furthermore allow driving the development of 
theranostics to another level, Figure 7. A lot of effort is 
being put in exploring the concept of multimodality, 
where either different imaging or different therapeu-
tic modalities can be exploited in a combined manner 
so that any intrinsic shortcomings of a single modality 
can be compensated for by the strengths of another. 
Using multicompartment capsules would allow the 
same entity to be bestowed with several types of im-
aging contrast agents together with several types of 
drugs. The different trigger systems also allow the 
incorporation of various types of therapeutics which 
can then be selectively released, depending on the 
opportune time and conditions. As an example, the 
multicompartment capsules could simultaneously or 
in a specific order release several anti-HIV drugs to 
form a more potent cocktail than a single entity. Also, 
when the same drug would be incorporated in dif-
ferent shells, the use of various stimuli at different 
time points would allow a repeated release of high 
levels of the drug at the target site, which could offer 
many advantages over a single bolus injection or re-
peated injections of the drug. Further research and 

developmental work, including in vivo studies, will 
surely contribute to its wide applicability in biomedi-
cine.  

Further assembly of microcompartment capsules 
can be based not only on synthetic carriers, but also 
based on red blood cells [75, 76] from which release 
has also been recently demonstrated [77].  

Conclusions 
Theranostics is an emerging area which com-

bines diagnostics and therapy. It will allow physicians 
not only to detect diseases, but will also permit them 
to adequately administer medicines, thus paving the 
way to personalized medicine. Multicompartment 
microcapsules are ideal candidates for application in 
theranostics owing to the multifunctionality by the 
constituting subcompartments. Indeed, therapeutic 
compounds can be incorporated inside some sub-
compartments, while other subcompartments can be 
filled with sensing agents, which are to be used for 
sensing and diagnosis. A particular attractive prop-
erty of such elaborate drug delivery carriers is that 
they allow for diagnostics and subsequent treatment 
by implementing release of drugs at a desired site and 
rate. Laser light, in combination with noble metal 
nanoparticles, has proven to be a particularly attrac-
tive for achieving localized triggered release. Further 
developments of light sensitive drug carriers, and 
capsules in general [78], are expected to impact the 
area of theranostics and nanomedicine in the future. 

 

 
Figure 7. Schematics of implementation of theranostic multicompartment capsules: diagnostics is achieved by monitoring pH, glucose, 
lactose, etc., while therapy is attained by release of encapsulated drugs/medicine. 
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