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Abstract 

Elevated level of urokinase receptor (uPAR) is detected in various aggressive cancer types and is 
closely associated with poor prognosis of cancers. Binding of uPA to uPAR triggers the conversion 
of plasminogen to plasmin and the subsequent activation of metalloproteinases. These events 
confer tumor cells with the capability to degrade the components of the surrounding extracellular 
matrix, thus contributing to tumor cell invasion and metastasis. uPA-uPAR interaction also elicits 
signals that stimulate cell proliferation/survival and the expression of tumor-promoting genes, thus 
assisting tumor development. In addition to its interaction with uPA, uPAR also interacts with 
vitronectin and this interaction promotes cancer metastasis by activating Rac and stimulating cell 
migration. Although underlying mechanisms are yet to be fully elucidated, uPAR has been shown to 
facilitate epithelial-mesenchymal transition (EMT) and induce cancer stem cell-like properties in 
breast cancer cells. The fact that uPAR lacks intracellular domain suggests that its signaling must be 
mediated through its co-receptors. Indeed, uPAR interacts with diverse transmembrane proteins 
including integrins, ENDO180, G protein-coupled receptors and growth factor receptors in 
cancer cells and these interactions are proven to be critical for the role of uPAR in tumorigenesis. 
Inhibitory peptide that prevents uPA-uPAR interaction has shown the promise to prolong patients’ 
survival in the early stage of clinical trial. The importance of uPAR’s co-receptor in uPAR’s tu-
mor-promoting effects implicate that anti-cancer therapeutic agents may also be developed by 
disrupting the interactions between uPAR and its functional partners. 
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Introduction 
Tumors are result of uncontrolled proliferation 

of cells in different organs. In order for primary tumor 
to metastasize to distant organs, tumor cells must 
undergo a multistage process that includes detach-
ment of tumor cells from primary tumors, cell migra-
tion and invasion through the degradation of extra-
cellular matrix (ECM), intravasation into the blood-
stream, extravasation from the circulation and colo-
nization in a distant organ (1). Urokinase receptor 
(uPAR) plays a critical role in cancer metastasis by 

facilitating various steps of cancer metastasis. Ele-
vated level of uPAR is often detected in aggressive 
tumor types and is associated with poor patient sur-
vival (2, 3). Studies from various experimental tumor 
models demonstrate that inhibiting uPAR expression 
or interfering uPA-uPAR partnership suppresses the 
progression of various cancer types (4). Inhibitory 
peptide that prevents uPA-uPAR interaction has been 
tested in clinical trials that have shown promising 
result of prolonging survival of patients with meta-
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static ovarian cancers (5). This review intends to give 
an overview on the current knowledge about the role 
of uPAR in cancer progression. Figure 1 describes the 
tumor biology of uPAR in nutshell.  

General features of uPAR 
Human uPAR gene is located at chromosome 

19q13 and encodes a 335-aminoacid protein. uPAR 
protein includes an N-terminal 22-aminoacid secre-
tory signal peptide and a C-terminal 30-aminoacid 
region that acts as the signal for addition of the gly-
cosyl phosphatidylinositol (GPI) anchor (6). The ma-
ture uPAR is highly glycosylated and anchored to the 
cell surface through a GPI (7, 8). uPAR is a member of 
the lymphocyte antigen (Ly-6)/uPAR protein family 
and characterized by three similar functional domains 
- D1, D2, and D3 that are connected by bi-sulfide 
bridges (7). In addition to uPA, vitronectin is anther 
ligand that can bind uPAR. Since binding sites for 
uPA and vitronectin are distinct, uPAR can bind both 
ligands simultaneously (9, 10). One of the unique 
features of uPAR is that uPAR also exists in soluble 
form (suPAR) that is generated by the release of entire 
protein moiety from GPI anchor through proteolytic 
cleavage. The production of suPAR is believed to be a 
regulatory mechanism to reduce the number of uPAR 
on the cell surface. Additionally, both uPAR and su-
PAR can be cleaved in the linker region between D1 
and D2 domains by uPA (11), plasmin (12) and matrix 

metalloproteinases (MMPs) (13) to produce D1 frag-
ment and D2-D3 fragments (14-17). The cleaved su-
PAR possesses the ability to disrupt both uPA-uPAR 
and vitronectin-uPAR interactions, thus acting as an 
inhibitor of plasminogen activation at the cell surface 
(18, 19). The formation of suPAR and the cleavage at 
D1-D2 linker of uPAR are regarded as two 
post-transcriptional modifications that can control 
global uPAR cell surface expression and activity (20).  

uPAR expression and its diagnostic sig-
nificance in cancer  

Under normal condition, cells and tissues exhibit 
limited uPAR expression. However, uPAR expression 
is greatly elevated in the processes of tissue remodel-
ing, injury/wound healing and inflamma-
tion/immune response. For example, uPAR is highly 
expressed in gestational tissues during embryo im-
plantation/placental development (21, 22) and in mi-
grating keratinocytes at the edge of wounds (23). 
High level of uPAR is also observed during the pro-
cess of leukocyte activation and differentiation (24, 
25). Moreover, aberrant uPAR expression is fre-
quently detected in pathological conditions. For in-
stance, uPAR is readily seen in kidney during chronic 
proteinuric disease (26) and in the central nervous 
system following ischemia or trauma (27).  

 

 
Figure 1. Role of uPAR in tumor progression and metastasis. Binding of uPA to uPAR facilitates uPA activation and subsequent initiation of 
protease cascade, which in turn results in the degradation of extracellular matrix proteins and tumor cells invasion. Binding of uPA and vitronectin also 
promotes cell adhesion and cell migration. The action of uPA-uPAR/vitronectin is terminated through its interaction with PAI-1/PN-1 that triggers the 
internalization of uPAR complex. In addition, uPAR also interacts with various cell surface receptors such as integrins, growth factor receptors and 
ENDO180. These interactions activate diverse signaling pathways including FAK, Src, MAPK and PI3K, leading to EMT, cell proliferation, cell migration and 
expression of pro-cancer genes. Together, uPAR plays an essential role in tumor progression and metastasis. 
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Unlike normal tissues, uPAR level is constitu-
tively increased in majority of cancer types including 
solid tumors, leukemia and lymphomas as well as in 
tumor-associated stromal cells such as fibroblasts and 
macrophages (28-30). For instance, overexpression of 
uPAR is observed in a significant portion of individ-
ual cells from primary tumors and in circulating ma-
lignant cells from patients with advanced breast can-
cers (31). Importantly, increased levels of uPAR 
mRNA and protein in tumor tissue extracts are asso-
ciated with poor prognosis of wide spectrum of ma-
lignancies such as colon, lung, gastric and breast (32, 
33). In breast cancer, elevated uPAR expression is 
used as an independent prognostic marker of short-
ened relapse-free survival (34-36). In gastric cancer, 
high uPAR level in primary tumors is the indicator of 
aggressive cancer type (37, 38).  

Additionally, intact as well as cleaved forms of 
suPAR are found at high levels in blood, urine, and 
ascite of cancer patients with aggressive cancer types 
and their levels are frequently correlated with poor 
prognosis (39, 40). For example, elevated suPAR level 
is detected in the urine of patients with clinically 
high-risk pancreatic ductal adenocarcinoma (41) and 
metastatic ovarian carcinoma (11). The convenience of 
detecting secreted antigens clearly implicates that 
suPAR is a better biomarker than the mem-
brane-bound uPAR (17, 42). The fact that D2-D3 
fragment of suPAR is generated by tumor progres-
sion-associated uPA, plasmin and MMPs further 
suggest that D2-D3 fragment is a more accurate 
prognostic indicator than entire suPAR (18).  

Regulation of uPAR expression in cancer 
The promoter of uPAR gene contains binding 

sites for transcription factors such as activator protein 
1 (AP1), PEA3/Ets, specificity protein 1 (SP1) and AP2 
which mediate either induced or sustained uPAR 
transcription in cancer cells (43-45). Hypoxia tran-
scriptionally upregulates uPAR expression in cancer 
cells through the direct binding of hypoxia-induced 
factor 1α (HIF1α) to a hypoxia responsive element 
(HRE) in the uPAR promoter (46, 47). 
Post-transcription regulation also contributes to the 
level of uPAR in cancer cells. For example, RNA 
binding protein Hu antigen R and heterogeneous nu-
clear ribonucleoprotein C stabilize uPAR mRNA by 
directly binding to the AU-rich element (ARE) in the 
3’-untranslated region (3’-UTR) of the uPAR mRNA 
(48, 49). In the contrary, tumor suppressor protein p53 
accelerates uPAR mRNA degradation through bind-
ing to a 37-nucleotide element in the 3’-UTR of uPAR 
mRNA (50). Recent studies also indicate the role of 
microRNA in uPAR expression. For example, uPAR 

level was significantly enhanced by miR-10b in glio-
ma cells and this miRNA-10b-induced uPAR upreg-
ulation was mediated by suppressing the expression 
of HOXD10, a negative regulator of uPAR (51, 52).  

Proteolytic function and endocyto-
sis/internalization of uPAR in cancer.  

A critical role of uPAR in cancer progression is 
its involvement in proteolysis of ECM. Binding of 
pro-uPA, a zymogen of uPA to uPAR triggers the 
conversion of pro-uPA to active uPA. uPAR-bound 
uPA subsequently converts plasminogen to active 
plasmin that degrades ECM/basement membrane 
and releases active MMPs, thereby facilitating cancer 
cell invasion and metastasis (53, 54). Reciprocally, 
active plasmin can cleave and activate pro-uPA (55), 
exhibiting a positive feedback loop of uPA-plasmin 
cascade in cancer cells (56). Recently-solved crystal 
structure of uPA-uPAR complex reveals that uPAR 
recognizes an N-terminal growth-factor-like domain 
(GFD) of uPA where all three D domains of uPAR are 
packed closely and form a unique cone-shaped cavity 
at the center (10, 57).  

The proteolytic functions of uPAR are negatively 
regulated by plasminogen activator inhibitor-1 
(PAI-1), PAI-2 and protease nextin-1(PN-1) (58, 59). 
Both PAI-1 and PN-1 can bind to uPA-uPAR complex 
and such bindings trigger direct interaction between 
D3 of uPAR and low-density lipoprotein recep-
tor-related protein (LRP-1) on plasma membrane. The 
entire complex (PAI-1:uPA:uPAR:LRP1) is internal-
ized via clathrin-coated vesicles and trafficked to-
gether to the early endosomes where uPA:PA-1 and 
uPAR are dissociated (60). uPA and PAI-1/PN-1 are 
eventually degraded in the lysozome while uPAR and 
LRP-1 are recycled back from the endocytic com-
partment to the plasma membrane (60-63). Alterna-
tively, uPAR can also be internalized through its in-
teraction with uPAR-associated protein (uPAR-
AP)/endocytic receptor 180 (ENDO180), a member of 
mannose 6-phosphate (Man-6-P)/insulin-like growth 
factor-II receptor family, in a clathrin-dependent 
manner (64). ENDO180 is a constitutively recycling 
endocytic receptor (65, 66) and uPAR-ENDO180 in-
teraction delivers uPAR into the lysosomes for deg-
radation (64, 67). Interestingly, a recent study also 
shows that uPAR can be constitutively internalized 
without uPA in an LRP-1 and clathrin-independent 
manner (68). However, such endocytosed uPAR is 
only detected in early endosomes and does not reach 
lysosomes (68).  

Internalization and recycling of uPAR have a 
complex role in uPAR function. Its internalization is 
apparently essential for clearing uPA:PAI-1:uPAR 
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complex and decreasing the amount of cell surface 
uPAR available, thereby inhibiting diverse 
uPAR-mediated actions including proteolysis (69, 70). 
On the contrary, its internalization and recycling can 
facilitate uPAR-mediated action by redistributing 
unoccupied uPAR on the cell surface (69, 70). In addi-
tion, the internalization of uPAR also dissociates 
uPAR from its co-receptors including matrix-engaged 
integrins, thereby abrogating the pertinent down-
stream signaling (58). Clearly, endocytosis and recy-
cling are key events that regulate the level and dis-
tribution of uPAR along the plasma membrane, thus 
controlling uPAR functions including proteolysis (69, 
70). 

Non-proteolytic function of uPAR in 
cancer.  

Many tumor-promoting effects of uPAR occur 
independently from the proteolytic function. For 
example, knockdown of uPAR suppresses the phos-
phorylation of FAK, p38MAPK, JNK and ERK1/2, 
signaling molecules in the Ras-activated signaling 
pathways, leading to the inhibition in cell migration 
and angiogenesis in glioma (71). Notch 1 signaling can 
cross talk with ERK, NF-κB and PI3-K/AKT/mTOR 
signaling pathways (72) and impact cancer invasion 
and angiogenesis (73). However, how Notch 1 
achieves this is not clearly understood. In glioblasoma 
cells, downregulating uPAR abolishes in vitro inva-
sion and in vivo tumor development by suppressing 
Notch 1-pertinent gene expression and signaling 
events (74). This study implicates that uPAR could be 
the potential functional link between Notch1 and tu-
morigenicity. Although whether non-proteolytic 
function of uPAR requires uPA-uPAR interaction 
remains to be answered, it is clear that uPAR can 
promote tumor progression independent of its prote-
olytic function (75). 

With the aid of human breast cancer 
MDA-MB-468 cell line that exhibits epithelial cell 
phenotype, uPAR was found to promote epitheli-
al-mesenchymal transition (EMT) under hypoxic 
condition through the activation of diverse signaling 
molecules including ERK, PI3K/Akt, Src and Rac1 
(76, 77). However, uPAR-induced EMT is reversible 
by reoxygenation, preventing uPA-uPAR interaction 
or inhibiting the activities of PI3K, Src and ERK (76). 
In contrast, breast cancer cell line MDA-MB-231 that 
displays mesenchymal cell morphology expresses 
high level of uPAR. However, the mesenchymal 
morphology of MDA-MB-231 cells requires the pres-
ence of uPAR because their phenotype alters upon the 
knockdown of uPAR (76). Again, uPAR-induced EMT 
is independent of the proteolytic function of uPAR.  

Recent study has also revealed functional con-
nection between uPAR and cancer stem cell 
(CSC)-like properties. Forced expression of uPAR was 
shown to promote the emergence of a CD24-/CD44+ 
phenotype, the characteristic of CSCs, and the in-
crease in the number of cell surface integrin subunits 
β1/CD29 and α6/CD49f, marker of mammary gland 
stem cells in human breast cancer cell lines MCF-7 
and MDA-MB-468 (78). These uPAR-overexpressing 
cells were also found to exhibit significantly greater 
tumor initiation and growth in severe combined im-
munodeficient (SCID) mice (78). Interestingly, 
uPAR-induced CSC-like properties in MDA-MB-468 
cells are associated with EMT but were independent 
of EMT in MCF7 cells. These findings indicate that 
uPAR is capable of inducing CSC-like properties in 
breast cancer cells, either concomitantly with or sep-
arately from EMT (78). 

uPAR functions through its interaction 
with vitronectin.  

Vitronectin can bind uPAR in the absence of 
uPA, although its binding is enhanced by concurrent 
uPA-uPAR interaction. Vitronectin-uPAR interaction 
is also unaffected by vitronectin-αv integrin interac-
tion (79, 80), and this can explained by crystal struc-
tures of ternary complex of uPA-uPAR-vitronectin. In 
the ternary complex of uPA-uPAR-vitronectin, the 
GFD of uPA occupies the central cavity of the uPAR 
whereas N-terminal somatomedin B (SMB) domain of 
vitronectin binds to D1 domain and D1-D2 linker 
which are on the outer side of the central cavity of 
uPAR, thus there is no direct interaction between uPA 
and vitronectin in this ternary complex (10, 57, 81). 
Similar to uPA-uPAR complex, PAI-1 also interacts 
with vitronectin-uPAR complex through the SBD of 
vitronectin (82). The binding site of PAI-1 on vitron-
ectin overlaps with those on uPAR and αvβ3 integrin, 
and hence PAI-1 competes with both uPAR and αvβ3 
integrin for vitronectin binding (83). Vitron-
ectin-uPAR interaction promotes cell adhesion of 
various cell types (9, 79) and the adhesion is further 
increased by MRJ, a uPAR-interacting heat shock 
protein, in breast cancer cells (84). MRJ-increased ad-
hesion involves the D1 of uPAR because it is sensitive 
to anti-uPAR D1 domain antibody (84). Therefore, 
uPAR not only plays a role in invasion and metastasis, 
but also in the attachment and colonization of cancer 
cells in the distant organs.  

uPAR and its transmembrane 
co-receptors.  

uPAR being a GPI anchored cell surface protein, 
requires co-receptors to relay its downstream signals. 
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Integrins, GPCRs and growth factor receptors are 
found to physically interact with uPAR and are as-
sumed to serve as the co-receptors of uPAR. Among 
them, integrins are the most studied and are consid-
ered as the most significant co-receptors associated 
with uPAR signaling (85, 86). The interaction of uPAR 
with integrins was originally found in uPAR im-
munoprecipitates of human monocytes (87), and αMβ2 
(MAC1) being the first reported uPAR-interacting 
integrin (88). uPAR-αMβ2 integrin interaction is capa-
ble of simultaneously increasing the binding of αMβ2 
integrin to its ligand fibrinogen and to promote adhe-
sion to vitronectin in an uPA-independent mechanism 
(89-91).  

In addition to αMβ2 integrin, uPAR can also in-
teract with α5β1, α3β1, αvβ3 and αvβ5 integrins. Binding 
of fibronectin to α5β1 integrin induces FAK phos-
phorylation and activates Ras-ERK signaling path-
way. These two events are greatly enhanced by 
uPAR- α5β1 interaction (92, 93). Similarly, uPAR-α3β1 
integrin interaction further enhances Src activity in-
duced by the binding of laminin to α3β1 integrin (85, 
94). In human lung cancer cells, the interaction be-
tween uPAR-α5β1 integrin transactivates EGFR in an 
FAK-dependent mechanism, leading to the activation 
of Erk signaling pathway (92, 95). 
Co-immunoprecipitation experiment also shows that 
EGFR directly interacts with α5β1 integrin and this 
interaction is enhanced by uPAR expression, sug-
gesting that uPAR regulates EGFR-α5β1 integrin in-
teraction (92, 95). EGFR-mediated activation of Erk 
signaling pathway is essential for cell proliferation 
driven by uPAR-α5β1 integrin interaction because 
enhanced proliferation is abrogated by EGFR kinase 
inhibitor or downregulating uPAR expression (92, 95). 
EGFR activation appears to be specific for events 
driven by the uPAR-α5β1 integrin interaction because 
EGFR inhibitor does not affect other cellular events 
initiated by uPAR signaling (96).  

uPAR-integrin interactions facilitate tumor pro-
gression and development by eliciting cell migration, 
invasion, ECM proteolysis and EMT. Current hy-
pothesis is that uPAR-intergrin integrin interactions 
achieve it by inducing the expression of genes essen-
tial for these events (93, 95, 97). Consistent with this 
hypothesis, enforced uPAR expression is found to 
promote tumor formation by enhancing the expres-
sion of uPA and MMPs while disrupting 
uPAR-integrin interaction blocks uPAR-induced tu-
mor-promoting effects (98-100). Moreover, preventing 
uPAR-integrin interaction was found to suppress Erk 
activity and diminish the expression of ERK-regulated 
genes in lung cancer cells, thus forcing these cells into 
a protracted state of dormancy (98-100).  

An early study has reported the interaction be-
tween uPAR and uFPRL1/LXA4R that is a G pro-
tein-coupled receptor for a number of polypeptides 
and for the endogenous lipoxin A4 (LXA4). This in-
teraction is apparently required for uPAR-mediated 
cell migration in monocytic cells (101). More detailed 
study showed that D2D3 of uPAR moiety is sufficient 
to stimulate cell migration and it necessitates direct 
binding of D2D3 to FPRL1/LXA4R because inhibition 
or desensitization of FPRL1/LXA4R by antibodies or 
specific ligands specifically prevents D2D3-induced 
cell migration. In addition, D2D3 binding to 
FPRL1/LXA4R can be competed away by 
FPRL1/LXA4R agonists such as chemotactic peptide 
fMLP (101). This study reveals a unique mechanism 
for uPAR to induce cell migration that is to serve as a 
ligand to a chemotactic GPCR.  

Coordinated action of uPAR, vitronectin 
and αvβ3 integrin in tumor cell migration. 

Vitronectin receptor αvβ3 integrin and uPAR are 
often co-expressed at high level in aggressive tumors 
(102). Coimmunoprecipitation showed that αvβ3 in-
tegrin is in physical interaction with uPAR in a variety 
of invasive cancer cells. As distinct sequences in vit-
ronectin mediate its interactions with uPAR and αvβ3 
integrin (SBD domain for uPAR and Arg-Gly-Asp 
sequence for αvβ3 integrin), the ability of vitronectin to 
facilitate cell migration is believed to require both 
uPAR and αvβ3 integrin. In fact, vitronectin binding to 
cells induces the activation of Src kinases. Activated 
Src subsequently phosphorylates p130Cas and facili-
tates the formation of p130Cas-CRK complex that ena-
bles the activation of Rac, ultimately resulting in 
membrane protrusion and cell migration. Important-
ly, uPAR-αvβ3 integrin interaction is indispensible for 
this vitronectin-induced event (103). Moreover, recent 
study showed that uPA-uPAR interaction can also 
activate Rac and stimulate cell migration and both 
vitronectin and αvβ3 integrin are required for this 
uPA-induced event (26, 104-106). This finding sug-
gests that uPA-uPAR complex signals through vit-
ronectin-αvβ3 integrin for its tumor-promoting ac-
tions.  

uPAR as a therapeutic target. 
The nature of uPAR as a cell surface receptor in-

dicates it as a drug-able target. The important role of 
uPAR in tumor progression suggests that blocking its 
pertinent functions can potentially lead to the sup-
pression in tumorigenicity. Moreover, the relatively 
restricted expression in advanced tumor tissues adds 
another advantage for uPAR-targeted therapy as such 
therapy can be expected to be more specific to tumor 
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tissues and thus less toxic to the non-cancerous tis-
sues. Early works have mostly focused on inhibiting 
the proteolytic activity of uPA with specific inhibitors 
(107-109) or blocking uPA-uPAR binding with pep-
tides (110, 111). Several recent studies have also gen-
erated anti-uPAR antibodies that can block 
uPAR-mediated downstream signaling and/or acti-
vation pathways. Importantly, such antibodies pos-
sess the capability to suppress tumor growth and 
metastasis (112, 113). More recently, strategies are 
developed to target the interactions between 
uPAR and its binding partners such as vitronectin and 
integrins (114). Especially, such agents are now ad-
vancing towards clinic evaluation (115).  

Conclusion 
uPAR is overexpressed in almost all aggressive 

malignancies and plays an essential role in tumor 
progression and metastasis. In addition to uPAR’s 
well-established role in proteolysis, recent studies 
clearly demonstrate that uPAR also functions inde-
pendently from proteolysis. As co-receptors are es-
sential for these non-proteolytical functions of uPAR, 
distrupting the interactions between uPAR and its 
co-receptors represents as an attractive strategy for 
targeting aggressive malignancies.  
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